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Abstract: In this paper, we analyze the timeliness of a multi-user system in terms of the age of
information (AoI) and the corresponding stability region in which the packet rates of users lead to
finite queue lengths. Specifically, we consider a hybrid OFDMA-NOMA system where the users
are partitioned into several groups. While users in each group share the same resource block using
non-orthogonal multiple access (NOMA), different groups access the fading channel using orthogonal
frequency division multiple access (OFDMA). For this system, we consider three decoding schemes
at the service terminals: interfering decoding, which treats signals from other users as interference;
serial interference cancellation, which removes signals from other users once they have been decoded;
and the enhanced SIC strategy, where the receiver attempts to decode for another user if decoding
for a previous user fails. We present the average AoI for each of the three decoding schemes in
closed form. Under the constraint of the stable region, we find the minimum AoI of each decoding
scheme efficiently. The numerical results show that by optionally choosing the decoding scheme and
transmission rate, the hybrid OFDMA-NOMA outperforms conventional OFDMA in terms of both
system timeliness and stability.

Keywords: age of information; orthogonal frequency division multiple access; non-orthogonal
multiple access; stability; timeliness

1. Introduction

In recent years, the development of 5G/6G and next-generation wireless communica-
tion has led to the emergence of the Internet of Things (IoT) [1]. As the IoT’s supporting
technology, wireless sensor networks are widely deployed in a variety of real-time monitor-
ing applications [2]. However, transmitting time-sensitive information wirelessly requires
strict standards for stability and timeliness.

Stability and timeliness are two crucial metrics in wireless sensor networks. Tra-
ditional metrics, such as latency and throughput, which describe end-to-end delay and
data processing capabilities [3], may not be effective for applications with strict timeliness
requirements. These metrics cannot fully capture the issue of reduced timeliness caused
by sudden information updates. To this end, Kaul et al. proposed AoI as a new metric
for measuring the freshness of information [4]. AoI indicates the freshness of the latest
received information accurately, particularly for time-sensitive information. Stability is
a crucial metric for assessing transmission performance and ensuring the timeliness of
a network. The transmission of information from traditional monitoring equipment is
stable when using wired cables. This method has the advantage of being less susceptible to
interference from transmission scenarios and other signals. However, the complexity of
wiring increases both time and maintenance costs [5]. Wireless transmission monitoring
equipment is not bound by the data line flexibility of independent deployment. It is easy to
deploy and has faster maintenance compared to independent deployment, but it is highly
susceptible to interference from signals of the same frequency [6].
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If the focus is solely on the stability of the transmission process, it may lead to smaller
transmission latency. However, waiting for and retransmitting data may also reduce
the timeliness of received information. Excessive pursuit of timeliness may render the
transmission process unstable in the actual system due to inter-user interference. There-
fore, there is an urgent need to improve both the stability and timeliness of the wireless
transmission process.

Network access mechanisms are crucial for wireless communication. One such mecha-
nism is OFDMA technology [7], which allocates multiple mutually orthogonal subcarriers
to multiple users for simultaneous transmission. In OFDMA, each user is assigned an
independent resource block, ensuring dedicated transmission channels. NOMA, on the
other hand, shares the spectrum by allocating an entire resource block to multiple users
simultaneously [8]. It relies on successive interference cancellation (SIC) to decode signals
from the overlapping transmissions [9]. By integrating the strengths of both OFDMA
and NOMA, the stability and timeliness of information transmission in research can be
significantly enhanced.

In this paper, we consider the issues of stability and timeliness in wireless sensor
networks with hybrid OFDMA-NOMA access mechanisms.

1.1. Motivations

Since both stability and timeliness are important, we are motivated to consider the
following issues:

How can we design a transmission mechanism that not only guarantees stability up to a
defined threshold but also concurrently enhances timeliness?

Since Shannon’s foundational 1948 paper on information theory [10], most research
studies have focused on the saturated traffic model, where infinite amounts of stored data
need to be transmitted. However, this approach ignores the burstiness of traffic and the
importance of information timeliness in communication.

In a practical communication network, a user may receive traffic in bursts, meaning
that there are periods when the transmission queue is empty [11]. Burst-arriving traffic
refers to the random arrival of data, which can result in received packets becoming stale
and unusable before the next update packet arrives. Thus, AoI has emerged as a new metric
for measuring the freshness of information. AoI is the amount of time that passes between
creating a packet that is successfully delivered and when the packet is received by the
recipient. In contrast to traditional latency measures, AoI considers not just the frequency
of packet updates but also transmission delays. AoI indicates the freshness of received
information. The larger the AoI, the more stale the information. This metric is objective
and accurately describes the age of received information. Therefore, using AoI as a metric
for timeliness can effectively portray the system’s performance in handling bursty traffic.

The notion of stable areas arose as a result of research into bursty network traffic. In
such networks, users receive traffic in bursts, with data being queued in a buffer awaiting
transmission. For system stability, it is important to prevent the queue from growing
indefinitely. Stability analysis can be challenging due to the interaction between multiple
queues [12], which can complicate the characterization of the service process. The following
is an example of the OFDMA-NOMA system. In a hybrid OFDMA-NOMA system [13],
users are organized into groups, with frequency resources allocated orthogonally to each
group within the same time slot. This ensures efficient use of the available resources. Each
group is assigned a resource block, and NOMA-based SIC technology provides services
to the users within the group. Analyzing stability becomes more complex due to the
interactive coupling of bursty traffic among users within a subgroup. Additionally, while
the conventional SIC decoding scheme alleviates the decoding difficulty for post-sending
users to some extent, it still has limitations. This limitation arises because a decoding failure
for one user halts the decoding process for subsequent users. Therefore, it is necessary to
consider multiple decoding methods to handle various transmission scenarios.
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The system’s stable transmission ensures timely information updates. However, stabil-
ity alone does not guarantee that the system is up-to-date. When the sensor node generates
packets at a lower frequency, the service terminal receives stale information, leading to an
increase in AoI. Conversely, when the sensor node generates packets at a higher frequency,
packets may not be serviced in a timely manner due to system performance limitations,
causing them to accumulate in the queue. This also results in the service terminal observing
stale information. It is important to maintain a stable transmission process to avoid this
problem. Thus, achieving optimal timeliness depends on stability, but it still requires
exploring specific optimization methods.

In this paper, we analyze the stability of the system in detail for the problem of multi-
user bursty traffic in hybrid OFDMA-NOMA systems. To address user interactions, we
explore various decoding methods that are suitable for different transmission scenarios.
Building upon the system’s stable transmission, we incorporate AoI as a metric to assess
system timeliness. We designed a novel algorithm to optimize system timeliness without
compromising stability.

1.2. Related Works

The stability of wireless information transmission has received significant attention
in recent years. Jeon et al. analyzed the stable region of the transmission process from
the primary source node and the secondary node to the destination node, assuming the
capture effect [14]. They obtained the maximum stable throughput of the primary sensor
node. Kompella et al. found that identifying stabilization regions in random access systems
with three or more bursty sources presents a significant challenge [15]. This is due to
interference created by each source when its transmission queue is not empty, which affects
the others. In a queueing system, the service process of one queue is determined by the
condition of the other queues, known as interacting queues [16,17]. Characterizing the
stabilization region accurately presents a challenge due to the interactions between the
cohorts. In [18], the authors investigate the maximum throughput of mobile radio-powered
communication networks under mobile access points and the throughput maximization
problem is divided into two layers (internal and external) to solve the maximization of the
throughput of the WPCN under energy causality constraints. In [19], the authors address
the energy supply problem of IoT nodes, a wireless-powered IoT is studied and a generated
packet-based throughput maximization (GDPTM) algorithm is proposed to maximize the
short-term throughput when the IoT nodes have enough energy to transmit the generated
packets. In [20], the authors explore the trade-off between the achievable throughput of
a sensor node and the energy harvesting opportunities, propose an energy thresholding
approach, and prove the existence of an optimal energy threshold that maximizes the
achievable throughput. In [21], the authors investigate the effect of perceived energy and
data availability on the secondary throughput of an energy-harvesting cognitive radio
network (EH-CRN). Research on stable transmission regions has primarily focused on
throughput and delay, with only a few studies examining stable regions based on the
AoI freshness measure. However, the stability boundary is crucial for ensuring timely
system performance.

AoI has gained significant attention as a new metric for measuring timeliness in various
communication environments. Theoretical studies of AoI focus on the number of source
and destination nodes, service strategies, and queuing models. There are three analytical
approaches to AoI: The first approach, proposed by Kaul et al., involves decomposing the
area under the sawtooth function graph [22]. The second approach, by Yates et al., employs
a stochastic hybrid system (SHS) [23]. This approach achieves variation in AoI through
a simplified SHS model featuring a negative linear reset graph. The third approach, by
Bedewy et al., utilizes an age penalty function to measure dissatisfaction with AoI [24].

The concept of AoI has been extended to applications in the context of IoT sensor
networks. This extension has broadened theoretical research into AoI optimization within
real-world scenarios. Optimizing AoI is a challenging task due to constraints such as
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limited energy and the unavailability of updated data [25]. Kaul et al. analyzed the AoI
in vehicular networks employing random access protocols for communication [4]. They
showed that the solution to maximize throughput cannot be directly applied to minimize
the AoI in random access channels. Zhang et al. conducted a study on edge caching
systems, with a specific focus on mobile edge caching systems that take content updates
into consideration [26]. They used AoI to measure content timeliness and proposed an
optimized AoI-aware content update scheme. Mohammed et al. conducted a study on
cognitive radio, focusing on the time division multiple access (TDMA) strategy, where
only one user can transmit in a time slot, and the NOMA strategy, where multiple users
can transmit in a single time slot [27]. The objective was to maximize throughput while
adhering to the constraints of AoI. Maatouk et al. used the SHS approach to model the state
update system, calculate the average AoI, and verify the performance benefits on a carrier
sense multiple access (CSMA) system [28]. Li studied the timeliness of the CSMA/CA and
slotted Aloha wireless networks, verifying the effect of arrival rate on AoI [3]. From the
above studies, we found that there is a lack of studies applying AoI freshness measures to
interaction cohorts.

Thus, we examine the interaction queue to ensure stable transmission in a hybrid
OFDMA-NOMA system, utilizing the AoI metric.

1.3. Main Contributions

This paper investigates the impact of hybrid OFDMA-NOMA techniques on the uplink
performance in the presence of random traffic. A discrete-time queuing model is applied to
simulate the behavior of random traffic. We consider three decoding schemes: interference
decoding (strategy A), serial interference cancellation (strategy B), and an enhanced SIC
strategy with error handling (strategy C), while also addressing the drawbacks of existing
SIC decoding schemes. The three schemes differ in how they treat signals from other users.
Strategy A considers these signals as interference in all cases, while strategy B contrasts
with strategy C. If strategy C fails to decode the first node, the second node can be decoded
by considering the first node as interference. Employing the queuing model to simulate the
communication process, we identify the stabilization region for an uplink hybrid OFDMA-
NOMA system, incorporating all three decoding schemes. Additionally, we derive an exact
functional expression for the average AoI of the system. We design a stabilizing iterative
algorithm to rapidly determine the optimal AoI and arrival rate scheme tailored to the
scenario at hand.

The contributions of this paper are summarized as follows.

(1) In the hybrid OFDMA-NOMA system, we introduce three decoding schemes for
service terminals, i.e., interference decoding, serial interference cancellation, and an
enhanced SIC strategy with error handling. For each scheme, we derive the stable
transmission region of the system, where each pair of data rates ensures the stability
of the user queues.

(2) We use AoI as a measure to evaluate the timeliness of these decoding schemes and
derive an average AoI expression for each scheme. Furthermore, a stabilized iterative
algorithm is introduced to ascertain the optimal AoI for the current transmission
environment of the hybrid OFDMA-NOMA.

(3) Our results show that in low signal-to-noise ratio (SNR) cases, interference decoding
facilitates a reduced AoI while preserving transmission stability. In high SNR scenarios,
an enhanced SIC strategy with error handling is more effective at minimizing the AoI
and ensuring stable transmission.

1.4. Organization

The remainder of the paper is structured as follows: Section 2 describes the transmis-
sion model for wireless sensor networks, introducing definitions of queue stability and the
AoI. Section 3 characterizes the stable transmission region for the three decoding schemes.
The analysis and optimization of AoI, predicated on stability, are explored in Section 4.
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Section 5 presents the experimental findings and examines the influence of various channel
conditions on the network performance. Our concluding remarks are provided in Section 6.

2. System Model

We consider the real-time monitoring of a new energy vehicle battery. A total of
2G sensor nodes are responsible for independently monitoring the status information of
the battery and transmitting the data to the service terminal in real time (and in a timely
manner). In the uplink, we consider a hybrid OFDMA-NOMA system. The sensor nodes
are divided into G groups, each based on OFDMA technology. This allows the frequency
resources of the channel to be allocated orthogonally within the same time slot. There
are a total of G subchannels, with one assigned to each group. Two sensor nodes in the
group are served based on the NOMA technique. The system model is depicted in Figure 1.
Given the analogous nature of the transmission processes observed in each group, we will
proceed by examining group 1 as a representative example. In group 1, there are two sensor
nodes, designated as Bi, where i (i = 1, 2) represents the i-th sensor node in the group. In
the service process to group 1, both sensor nodes and service terminals rely on a single
antenna to send or receive information. Time is split into time slots, indexed by n.

Node 1

Battery

Service terminal

Subchannel 1

1

2

1

2

Decoding

Node 2

BatteryG
ro

u
p

 1

Node 2G-1

Battery

Subchannel G

2 1G −

2G

2 1G −

2G
Node 2G

BatteryG
ro

u
p

 G

··
·

··
·

··
·

··
·

Decoding

Figure 1. System model.

2.1. Channel Estimation

Sub-channel 1 is a Rayleigh-fading channel [29] that follows the independent distri-
bution. We use αi to represent the path loss coefficient of node i, and hi(n) to denote the
Rayleigh-fading channel coefficient of the i-th node, which follows a complex Gaussian
distribution. We denote fi(n) = |hi(n)|2, which indicates that the channel gain of node i is
a random variable with an index with a mean of 1/ki and 1/k2

i . The distribution function

of fi(n) is ki exp
(
−ki|hi|2

)
. The sensor node transmits an independent signal with the

transmission power Pi, where Bi(n) represents the transmission signal of the node i and di
represents the distance from the sensor node to the service terminal. n0(n) is an additive
Gaussian white noise (AWGN) with mean value N0. The additive signal, C(n), received by
the service terminal in the time slot, n, is as follows:

C(n) = h1(n)B1(n) + h2(n)B2(n) + n0(n) (1)

The serving terminal can only serve information from the sensor node, i, if the received
signal interference plus noise ratio (SINR) is greater than the threshold value vi. If the
serving terminal successfully receives the message from the sensor node, an ACK frame is
sent. If the service is not finished, a NACK frame is sent, and the message is held at the head
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of the queue until being retransmitted in a time slot. It is expected that the control channel
sends ACK and NACK packets with no errors or delays. The sensor nodes and service
terminal are considered to be fully aware of the channel status information (CSI) [30].

2.2. Data Queue Model

The data packet arrival process from the sensor node is an independent Bernoulli
process, and each packet is fixed in size. The arrival rate of the update package respectively
obeys the geometric distributions of λ1 and λ2, respectively, so the probability of reaching
a packet in the time slot, n, is as follows:

Pr(N = n) = (1 − λi)
n−1λi (2)

Each sensor node has a data queue Qi that transmits to the service terminal. The
data queue of the sensor node integrates with the process at the service terminal, which
essentially consists of the queuing process awaiting the transmission of the data queue. We
use the Geom/Geom/1 discrete-time queueing system to simulate changes in the sensor
node’s data queue. We Consider an early access (EA) system; the data packet arrives at
the end of the time slot, and the departure of the data packet occurs before the time slot
boundary. In addition, the service terminal’s duration for the data packet is an integer
multiple of the time slot. Each sensor node has an infinite buffer to hold the generated
packet. All data packets accept the service in the form of first-in-first-out (FIFO), the service
time is Si, and the service rate µi is the probability of successful transmission in the current
time slot.

2.3. Decoding Scheme

To optimize the utilization of limited spectrum resources, sensor nodes transmit
data to the service terminal using the same subchannel simultaneously. This concurrent
transmission inevitably leads to interference among the sensor nodes. The data from a
sensor node can be decoded by the service terminal only when the SINR surpasses a
specific threshold. To address the varied interference environments, the service terminal
employs three decoding strategies: interference decoding, traditional SIC decoding, and an
improved SIC decoding strategy.

• Interference decoding (strategy A). In this strategy, the service terminal treats signals
from two sensor nodes as mutual interference. To decode information from sensor
node 1, it regards signals from sensor node 2 purely as interference, and vice versa. The
service terminal attempts to decode the signals from each node amidst the cumulative
interference and noise, treating the undesired signal as part of the background noise.

• Serial interference cancellation (strategy B). The service terminal employs a SIC strat-
egy that first attempts to decode the information from one sensor node while consid-
ering the other’s signal as interference. Upon successful decoding and removal of the
first node’s signal, it aims to decode the second node’s information without interfer-
ence. If the initial decoding fails, it would interfere with the subsequent decoding
process, leading to potential failure in decoding the second node’s information.

• Enhanced SIC strategy with error handling (strategy C). This approach is an enhanced
SIC strategy. If the first node’s message is decoded successfully, the terminal proceeds
to decode sensor node 2’s information as per the standard SIC procedure. Uniquely, if
the decoding of sensor node 1 fails, the terminal still attempts to decode sensor node
2’s signal. In this scenario, the service terminal continues to try to decode the signal
from sensor node 2 by treating the signal from sensor node 1 as interference.

2.4. The Stability of the Queue

The stability of the system is a key performance indicator. The stability of the queue
refers to the equilibrium between the data that enters and exits the queue. For an infinite
length of time, the amount of time that newly arriving data wait in the queue to be served
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does not grow indefinitely. Specifically, a data queue is considered stable if its length is
finite. The formal definition of the stability of the queue is as follows:

Definition 1 (queue stability). Use Qi
n to indicate the length of the time queue i (where i ∈

{0, 1, 2 · ··}) at the beginning of the discrete-time system n (where n ∈ {0, 1, 2 · ··}) starts; Pr{�}
represents the probability of a given event. If lim

n→∞
Pr
{

Qi
n < x

}
= F(x) and lim

x→∞
F(x) = 1, the

queue is stable.

Loynes’ Law explains the relationship between arrival rates and service rates clearly [31].
If the queue remains steady, the average service rate of the service terminals must exceed
the average packet arrival rate. If the opposite is not true, the queue length will grow
infinitely, resulting in queue instability. The stable transmission area refers to the range
of system-stable work in a wireless sensing network in a wireless sensing network. The
stable transmission area consists of the arrival rate of a stable node of multiple queues. This
article studies the stable transmission area with two nodes as an example, and the formal
definition of the stable transmission area is as follows:

Definition 2 (stable transmission area). Use λ1 to represent the arrival rate of node 1 data packet,
and use λ2 to represent the arrival rate of node 2 data packets. The stable transmission area, R, is
defined as the two-node arrival rate collection; that is, R = {(λ1, λ2)}

2.5. Age of Information

AoI is a new metric used to measure the freshness of information. It indicates the
time elapsed since the generation of successfully received packets. This metric is vital for
applications that require frequent updates and timely decision-making. The more recent
the information, the fresher it is.

AoI ∆N, in the discrete-time system, is defined as follows:

Definition 3 (age of information). At any time slot, n, the current time, n, and the service
terminal receive the latest observed data packets to generate a difference between the times, G(n),
as follows:

∆N = n − G(n) (3)

In discrete-time systems, the AoI remains constant at the current time slot. The AoI
changes when the time slot changes.

3. Stable Transmission Region

We use stochastic dominance techniques [32] to deconstruct the interaction between
two sensor data queues. Subsequently, we construct the dominant system to calculate the
average service rate of service terminals to data queues.

Next, we evaluate the stable transmission regions of the three decoding strategies
while considering the constraints of queue stability. We determine these stable transmission
regions based on the arrival rate constraints necessary to achieve stable transmission. The
stability constraints established in this section serve as the theoretical groundwork for the
subsequent analysis of timeliness in the following section.

3.1. Strategy A (Interference Decoding) Stabilization Region

This decoding strategy is distinguished by the independence of decoding success
or failure between sensor nodes. Subsequently, we compute the arrival rate constraints
necessary for stabilizing two data queues under this decoding strategy. Let Di/ε denote the
event that the data queue from sensor node i is successfully decoded by the service terminal
when both sensor node 1 and sensor node 2 send packets, where ε = 1, 2. Similarly, let
Di/i denote the event that the data queue from sensor node i is successfully decoded by
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the service terminal when only sensor node i sends packets. The probability of an event
occurring is denoted by Pr{�}. The average service rate µ1,A of sensor node 1 and the
average service rate µ2,A of sensor node 2 under decoding strategy A can be represented
as follows:

µ1,A = Pr{Q2 = 0} × Pr{D1/1}+ Pr{Q2 > 0} × Pr
{

D2/1,2
}

, (4)

µ2,A = Pr{Q1 = 0} × Pr{D2/2}+ Pr{Q1 > 0} × Pr
{

D2/1,2
}

, (5)

When only one queue is transmitted, the service terminal can successfully decode the data
packet from sensor node i only when the SNR received by the service terminal is greater
than the threshold vi. Hence, the event probability that data from sensor node i can be
successfully decoded when only sensor node i data are transmitted in a queue can be
expressed as follows:

Pr{Di/i} = Pr{SNRi ≥ vi}

= exp

(
− ki N0vi

Pid−α
i

)
(6)

When data queues from two sensor nodes are transmitted simultaneously, the data packets
from the service terminal can be successfully decoded only if the SINR received at the
service terminal is greater than the threshold vi. The SINR signifies that while decoding the
current queue, another queue and noise concurrently interfere with the decoding process of
the current queue. When two nodes are simultaneously transmitting data, the information
from node 2 is considered interference when decoding node 1. In this case, the SINR of
node 1 is given by the following:

SINR1 =
|h1|2P1d−α

1

N0 + |h2|2P2d−α
2

(7)

When two sensor nodes engage in simultaneous data transmission, the probability of
successfully decoding the data queue of the first node can be expressed as Pr

{
D1/1,2

}
:

Pr
{

D1/1,2
}
= Pr{SINR1 > v1}

=
k2P1d−α

1
P2d−α

2 k1v1 + k2P1d−α
1

exp

(
− k1N0v1

P1d−α
1

)
(8)

Similarly, when two nodes are simultaneously engaged in data transmission, the informa-
tion from node 1 is regarded as interference when decoding node 2. The SINR of node 2 is
represented as follows:

SINR2 =
|h2|2P2d−α

2

N0 + |h1|2P1d−α
1

(9)

The event probability that the second data queue can be successfully decoded when data
are transmitted from two sensor nodes can be expressed as follows:

Pr
{

D2/1,2
}
=

k1P2d−α
2

P1d−α
1 k2v2 + k1P2d−α

2
exp

(
− k2N0v2

P2d−α
2

)
(10)

Then, Equations (4) and (5) can be written as follows:
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µ1,A = Pr{Q2 = 0} × Pr

{
|h1|2P1d−α

1
N0

≥ v1

}
+ Pr{Q2 > 0} × Pr

{
|h1|2P1d−α

1

N0 + |h2|2P2d−α
2

≥ v1

}
(11)

µ2,A = Pr{Q1 = 0} × Pr

{
|h2|2P2d−α

2
N0

≥ v2

}
+ Pr{Q1 > 0} × Pr

{
|h2|2P2d−α

2

N0 + |h1|2P1d−α
1

≥ v2

}
(12)

The first term in Equations (11) and (12) signifies that when another sensor node
does not send packets, the average service rate of the service terminal to the current
node depends only on the successful decoding probability of the current node under noise
interference. The second term shows that when both sensor nodes have packets to send, one
sensor’s sending operation interferes with the other’s decoding. The reason for this is that
the service terminal must decode the data queue of another sensor while dealing with the
interference caused by the data queue and noise of one of the nodes. The sending processes
of both sensor nodes interact with each other, making it impossible to obtain an accurate
average service rate. The construction of dominant systems can lead to breakdowns in their
interactions. Next, we will consider the dominant system that is dominated by each sensor
node separately.

We consider the first dominant system, which is dominated by the data queue of
sensor node 1. In this system, when sensor node 1 does not have any data to transmit, it
is assumed that it still sends virtual packets to the service terminal. The transmission of
virtual packets from node 1 interferes with the decoding process at node 2. The process of
transferring the data queue from sensor node 2 to the first master system is identical to that
of the original system.

The following proposition gives the region of stable transmission for the first
dominant system.

Proposition 1. The stable transmission region of the first dominant system of strategy A is denoted
by R1,A and given by Equation (13).

R1,A =



(λ1, λ2) :

1 − λ2
P2d−α

2 k1

P1d−α
1 k2v2+P2d−α

2 k1
exp

(
− k2 N0v2

P2d−α
2

)
 exp

(
− k1 N0v1

P1d−α
1

)
λ1

+

λ2
P2d−α

2 k1

P1d−α
1 k2v2+P2d−α

2 k1
exp

(
− k2 N0v2

P2d−α
2

)
λ1

P1d−α
1 k2

P2d−α
2 k1v1 + P1d−α

1 k2
exp

(
− k1N0v1

P1d−α
1

)
> 1,

f or0 ≤ λ2 ≤
P2d−α

2 k1

P1d−α
1 k2v2 + P2d−α

2 k1
exp

(
− k2N0v2

P2d−α
2

)
, λ1 ≥ 0


(13)

Proof. In the first dominant system, as sensor node 1 continuously sends virtual packets to
the service terminal, the data queue of sensor node 1 is never emptied. Thus, the probability
that Pr{Q1} = 0 is equal to 0 and b Pr{Q1 > 0} = 1 is equal to 1. Remembering that the
average service rate of the service terminal for data from the queue of sensor node 2 is µ̂2,A,
Equation (12) can be written as follows:

µ̂2,A =
P2d−α

2 k1

P1d−α
1 k2v2 + P2d−α

2 k1
exp

(
− k2N0v2

P2d−α
2

)
(14)

Loynes’ criteria define a stable data queue at sensor node 2 as one in which the
average service rate exceeds the average arrival rate, i.e., λ2 < µ̂2,A. The status of the
service terminal to sensor node 1’s data queue is determined by sensor node 2’s queue state.
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Applying Little’s law [33], we can calculate the probability of continuous data transmission
in the data queue of sensor node 2 as follows:

Pr{Q2 > 0} =
λ2

µ̂2,A
. (15)

The average service rate of node 1 in the first dominant system is derived from
Equation (11), as follows:

µ̂1,A =

1 − λ2

P2d−α
2 k1

P1d−α
1 k2v2+P2d−α

2 k1
exp

(
− k2 N0v2

P2d−α
2

)
 exp

(
− k1N0v1

P1d−α
1

)
(16)

The first dominant system is regarded as stable only if both queues are stable at the
same time and the average packet service rate is greater than the average arrival rate,
i.e., λ1 < µ̂1,A and λ2 < µ̂2,A hold simultaneously. Bringing Equations (16) and (14) into
simplification yields a formula for the stable transmission region, R1,A, of the first dominant
system as in Equation (13).

See Appendix A.1.

Next, we consider the second dominant system, which is dominated by the data queue
of sensor node 2. In this system, even if sensor node 2 has no data to transmit, it sends
virtual packets to the service terminal. The transmission procedure for sensor node 1
stays unaltered.

The stabilization region of the second dominant system is given by the following
Proposition:

Proposition 2. The stabilized transmission region of the second dominant system of scheme a is
denoted by R2,A and is given by Equation (17).

R2,A =



(λ1, λ2) :

1 − λ1
P1d−α

1 k2

P2d−α
2 k1v1+P1d−α

1 k2
exp

(
− k1 N0v1

P1d−α
1

)
 exp

(
− k2 N0v2

P2d−α
2

)
λ2

+

λ1
P1d−α

1 k2

P2d−α
2 k1v1+P1d−α

1 k2
exp

(
− k1 N0v1

P1d−α
1

)
λ2

P2d−α
2 k1

P1d−α
1 k2v2 + P2d−α

2 k1
exp

(
− k2N0v2

P2d−α
2

)
> 1,

f or 0 ≤ λ1 ≤
P1d−α

1 k2

P2d−α
2 k1v1 + P1d−α

1 k2
exp

(
− k1N0v1

P1d−α
1

)
, λ2 ≥ 0


(17)

Proof. The queue of sensor node 2 is never emptied; Pr{Q2 = 0} is equal to 0 in Equation (11).
In the second dominant system, the average service rate, µ̂1,A, of the service terminal to the
data queue of sensor node 1 is denoted as follows:

µ̂1,A =
P1d−α

1 k2

P2d−α
2 k1v1 + P1d−α

1 k2
exp

(
− k1N0v1

P1d−α
1

)
(18)

Using the Loynes criterion, the transmission process of sensor node 1’s data queue
is deemed stable if the average service rate surpasses the average arrival rate; that is,
λ1 < µ̂1,A. The service status of sensor node 2 at the time of the service terminal is
determined by whether data are transferred from sensor node 1. Little’s law can be used to
calculate the probability of data transmission in the data queue of sensor node 1 as follows:

Pr{Q1 > 0} =
λ1

µ̂1,A
(19)
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Equations (18) and (19) are brought into Equation (12) to derive the average service
rate of sensor node 2 in the second dominant system:

µ̂2,A =

1 − λ1

P1d−α
1 k2

P2d−α
2 k1v1+P1d−α

1 k2
exp

(
− k1 N0v1

P1d−α
1

)
 exp

(
− k2N0v2

P2d−α
2

)
(20)

The second dominant system is regarded as stable only if both queues are stable at the
same time and the average packet service rate is greater than the average arrival rate,
i.e., λ1 < µ̂1,A and λ2 < µ̂2,A hold simultaneously. Simplifying this yields the stable
transmission region R2,A of the second dominant system as in Equation (17).

Proposition 3. The stabilization region using the interference decoding strategy is denoted by RA
and is equal to the concatenation of the stabilization domains of the first dominant system and the
second dominant system:

RA = R1,A ∪ R2,A. (21)

where R1,A and R2,A are given by Proposition 1—Equation (13) and Proposition 2—Equation (17),
respectively.

Proof. The coupling between the queues of sensor nodes introduces complexity to the
analysis process. To address this complexity, the stochastic dominance dominant technique
is introduced to decouple the interactions between queues. The stabilization region derived
by this technique is both sufficient and necessary for the original system. This argument is
thoroughly demonstrated in reference [32].

In summary, the stabilized transmission region consists of the concatenation of the sta-
bilized regions of the first and second dominant systems. Therefore, we have Equation (21).

The derivation of some of the simplified formulas is presented in Appendix A.

3.2. Strategy B (Serial Interference Cancellation) Stabilization Region

Strategy B uses serial interference cancellation, assuming that the channel conditions
of the data queue of sensor node 1 are better than those of the data queue of sensor node 2.
In this strategy, the service terminal first attempts to decode the data queue of sensor node 1.
If it is successful, the interference from the data queue of sensor node 1 is removed from
the synthesized signal, and the decoding of the data queue of sensor node 2 can continue.
However, if the decoding of the data queue of sensor node 1 fails, the data queue of sensor
node 2 cannot be decoded.

Denoting the average service rate of the service terminal using the SIC interference
interruption strategy to the data queue of sensor node 1 by µ1,B, µ1,B can be expressed
as follows:

µ1,B = Pr{Q2 = 0} × Pr{D1/1}+ Pr{Q2 > 0} × Pr
{

D2/1,2
}

(22)

Using
{

D1/1,2, D2/2
}

to denote the event where the data queue of sensor node 2 is success-
fully decoded following the successful decoding of the sensor node 1 data queue by the
service terminal, the average service rate µ2,B of the sensor node 2 data queue is denoted
as follows:

µ2,B = Pr{Q1 = 0} × Pr{D2/2}+ Pr{Q1 > 0} × Pr
{

D1/1,2, D2/2
}

(23)

If the data queues of two sensor nodes are transmitted simultaneously, the decoding process
of the sensor node 2 data queue depends on the successful decoding of the sensor node 1
data queue. The interference-free decoding of sensor node 2 can be realized only after
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the successful decoding of the sensor node 1 data queue. Therefore,
{

D1/1,2, D2/2
}

can be
derived as follows:

Pr
{

D1/1,2, D2/2
}
= Pr

{
|h1|2P1d−α

1

N0 + |h2|2P2d−α
2

≥ v1,
|h2|2P2d−α

2
N0

≥ v2

}

=
k2P1d−α

1
k2P1d−α

1 + P2d−α
2 k1v1

exp

[
−
(

k2 +
P2d−α

2 k1v1

P1

)
· N0v2

P2d−α
2

− k1N0v1

P1d−α
1

]
(24)

The service rate of the service terminal to the data queue of sensor node 2 is obtained
as follows:

µ2,B = Pr{Q1 = 0} × Pr

{
|h2|2P2d−α

2
N0

≥ v2

}

+ Pr{Q1 > 0} × Pr

{
|h1|2P1d−α

1

N0 + |h2|2P2d−α
2

≥ v1,
|h2|2P2d−α

2
N0

≥ v2

}
(25)

Since inter-queue interactions still exist, the stochastic dominance technique is still
applied to obtain a stable transmission region.

For ease of presentation, Pr
{

|h1|2P1d−α
1

N0+|h2|2P2d−α
2

≥ v1, |h2|2P2d−α
2

N0
≥ v2

}
is denoted as mB

1 ,

Pr
{

|h1|2P1d−α
1

N0
≥ v1

}
is denoted as mB

2 , Pr
{

|h2|2P2d−α
2

N0+|h1|2P1d−α
1

≥ v2

}
is denoted as mB

3 ,

Pr
{

|h2|2P2d−α
2

N0
≥ v2

}
is denoted as mB

4 , and Pr
{

|h1|2P1d−α
1

N0+|h2|2P2d−α
2

≥ v1

}
is denoted as mB

5 .

In the first dominant system dominated by the data queue of sensor node 1, the
following citations provide the stable transmission region of the first dominant system.

Proposition 4. The stable transmission region of the first dominant system of strategy B is denoted
by and given by Equation (26).

R1,B =

{
(λ1, λ2) :

λ1

mB
2
+

λ1
(
mB

2 − mB
3
)

mB
2 mB

1
< 1, 0 ≤ λ2 ≤ mB

1 , λ1 ≥ 0

}
(26)

Proof. In the first dominant system, Pr{Q1 > 0} = 1, the average service rate of the service
terminal to the data queue of sensor node 2 is denoted by µ̂B

2 , i.e., µ̂2,B = mB
1 Using Little’s

theorem, the probability that the data queue of sensor node 2 is not empty is as follows:

Pr{Q2 > 0} =
λ2

µ̂2,B
(27)

Bringing Equation (27) into Equation (22), according to Loynes’ theorem, the first
dominant system is stabilized when λ1 < µ̂1,B and λ2 < µ̂2,B hold simultaneously. The
stabilized transmission region of the first dominant system under strategy B can be found
in Equation (26)

See Appendix A.2.

In the second dominant system dominated by the data queue of sensor node 2, the
stable transmission region is given by the following proposition:

Proposition 5. The stabilized transmission region of the second dominant system of strategy B is
denoted by R2,B and is presented in Equation (28).

R2,B =

{
(λ1, λ2) :

λ1
(
mB

4 − mB
1
)

mB
5 mB

4
+

λ2

mB
4
< 1, f or0 ≤ λ1 ≤ mB

5 , λ2 ≥ 0

}
(28)
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Proof. In the second dominant system, we can obtain Pr{Q2 > 0} = 1. The average
service rate of the service terminal to the data queue of sensor node 1 is denoted by µ̂1,B,
i.e., µ1,B = mB

3 .
Using Little’s theorem, the probability that the data queue of sensor node 1 is non-

empty is as follows:

Pr{Q1 > 0} =
λ1

µ̂1,B
(29)

Bringing Equation (29) into Equation (23), the queue is stable when the constraints
of Loynes’ theorem are satisfied, i.e., λ1 < µ̂1,B and λ2 < µ̂2,B hold simultaneously. We
can obtain the stable transmission region of the second dominant system under strategy B,
given by Equation (28).

Proposition 6. The stabilization region of the decoding strategy using SIC is denoted by RB, i.e.,
RB = R1,B ∪ R2,B, where R1,B and R2,B are given by Equations (26) and (28).

Proof. This proof follows a similar approach to that of Proposition 3 and involves utilizing
stochastic dominance techniques to derive stable transmission regions. Due to its similarity,
the detailed derivation of some simplified formulas is provided in Appendix A.

3.3. Strategy C (Enhanced SIC Strategy with Error Handling) Stabilization Region

Decoding strategy C, referred to as an enhanced SIC strategy with error handling,
represents an improvement over strategy B by increasing the probability of successful
decoding for the data queue of sensor node 2. In this approach, even if the service terminal
fails to decode the data queue of sensor node 1, it proceeds to re-decode the data queue of
sensor node 2 and treat the data queue of sensor node 1 as interference. This is different
from strategy B, where the decoding of the data queue of sensor node 2 depends on the
successful decoding of the data queue of sensor node 1. Therefore, strategy C increases the
probability of successful decoding for sensor node 2’s data queue, contributing to improved
overall system performance.

By µ1,C, we denote the average service rate of the service terminal using decoding
policy C to the data queue of sensor node 1, as expressed in Equation (30):

µ1,C = Pr{Q2 = 0} × Pr{D1/1}+ Pr{Q2 > 0} × Pr
{

D2/1,2
}

(30)

We use Pr
{

D1/1,2, D2/2
}

to denote the successful re-decoding of node 2 when two
sensor nodes are transmitted at the same time, provided that node 1 fails to decode. The
average service rate of the service terminal for the data queue of sensor node 2 can be
expressed as follows:

µ2,C = Pr{Q1 = 0} × Pr{D2/2}+ Pr{Q1 > 0} ×
(
Pr
{

D1/1,2, D2/2
}
+ Pr

{
D1/1,2, D2/1,2

})
(31)

We decouple the interaction queue using the stochastic dominance technique. For

ease of notation, Pr
{

|h1|2P1d−α
1

N0
≥ v1

}
is denoted as mC

1 , Pr
{

|h2|2P2d−α
2

N0
≥ v2

}
is denoted as

mC
2 , Pr

{
|h1|2P1d−α

1
N0+|h2|2P2d−α

2
≥ v1

}
is denoted as mC

3 , Pr
{

|h1|2P1d−α
1

N0+|h2|2P2d−α
2

≥ v1, |h2|2P2d−α
2

N0+|h1|2P1d−α
1

≥ v2

}
is denoted as mC

4 , and
{

|h1|2P1d−α
1

N0+|h2|2P2d−α
2

< v1, |h2|2P2d−α
2

N0+|h1|2P1d−α
1

≥ v2

}
is denoted as mC

5 .

In the first dominant system dominated by the data queue of sensor node 1, the
following citations give the stable transmission region of the first dominant system.
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Proposition 7. The stable transmission region of the first dominant system of strategy C is denoted
by R1,C and is given by Equation (32).

R1,C =

{
(λ1, λ2) :

λ1

mC
1
+

λ1
(
mC

1 − mC
3
)

mC
1
(
mC

4 + mC
5
) < 1, f or 0 ≤ λ2 ≤ mC

4 + mC
5 , λ1 ≥ 0

}
(32)

Proof. In the first dominant system, which is governed by the data queue of sensor node 1,
the average service rate of the service terminal to the data queue of sensor node 2 is denoted
as µ̂2,C. Specifically, µ̂2,C = mC

4 + mC
5 .

Using Little’s theorem, the probability that the data queue of sensor node 2 is non-
empty is Pr{Q2 > 0} = λ1

µ̂2,C
.

According to Loynes’ theorem, i.e., λ1 < µ̂1,C and λ2 < µ̂2,C hold simultaneously, and
the stable transmission region is presented in Equation (32).

See Appendix A.3.

In the second dominant system, which is dominated by the data queue of sensor
node 2, the stable transmission region is defined by the following proposition:

Proposition 8. The stable transmission region of the second dominant system of strategy C is
denoted by R2,C and is given by Equation (33).

R2,C =

{
(λ1, λ2) :

λ1
(
mC

2 − mC
4 − mC

5
)

mC
3 mC

2
+

λ2

mC
2
< 1, f or 0 ≤ λ1 ≤ mB

3 , λ2 ≥ 0

}
(33)

Proof. In the second dominant system, where the data queue of sensor node 2 is dominant,
the average service rate of the service terminal to the data queue of sensor node 1 is denoted
as µ̂1,C, and we have µ̂1,C = Pr

{
D2/1,2

}
.

We employ Little’s theorem and Loynes’ criterion, which state that the system is stable
when λ1 < µ̂1,C and λ2 < µ̂2,C hold simultaneously. The stable transmission region of the
second dominant system is given by Equation (33).

Proposition 9. The stabilization region of the service terminal using the SIC interference inter-
ruption strategy is denoted by RC, i.e., RC = R1,C ∪ R2,C, where R1,C and R2,C are given by
Equations (32) and (33).

Proof. This proof is similar to that of Theorem 1 and is, therefore, omitted. The derivation
of some of the simplified formulas is presented in Appendix A.

3.4. Discussion of the Stable Transmission Region

In order to better understand the stable transmission region, we provide some dis-
cussion of the stable transmission region. A schematic diagram of the stable transmission
region of the OFDMA uplink system using the three policies to serve the terminals is
shown in Figure 2, where the polygons O-A-B-C, O-A-D-C, and O-A-E-C denote the sta-
ble transmission regions RA, RB, and RC, respectively, which are made up of the nodes’
arrival rates.

Strategy A does not account for decoding failures and treats the messages from other
users directly as interference. Strategy A is not affected by the decoding success or failure
of another user during the decoding process, so it stabilizes the transmission region to a
minimum. Strategy B ignores the case of the decoding failure of user 1, so when user 1 fails
to decode, it cannot decode user 2. Strategy C considers the case where user 1’s decoding
fails. Thanks to the attempt to recover user 2’s message even after user 1’s decoding failure,
strategy C can obtain a larger stable transmission region than strategy B, i.e., Rb ⊂ Rc
always holds.
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Figure 2. Stabilization regions corresponding to the three decoding strategies.

4. AoI Analysis

In this section, we investigate the network performance using the AoI as a metric
when considering queue stability constraints. We propose a stable iterative algorithm to
assess the minimum AoI of the system. Subsequently, we determine the minimum AoI for
each decoding strategy and optimize the overall AoI of the system in a scenario with fixed
transmit power to determine the most effective transmission strategy.

First, we conduct an initial analysis of the queueing model. For the data queue
transmitted from each sensor node to the service terminal, the packet arrival process
follows an independent Bernoulli process with an arrival rate of λ. The packet arrival rate
is identical to the service process arrival rate. In each time slot, the service process can
also be considered an independent Bernoulli process. According to the Bernoulli arrival
process, the time slot interval between two consecutive arrivals has a geometric distribution.
Therefore, each queuing system is equivalent to a Geom/Geom/1 queue, representing the
queuing process as an early arrival system.

The average message age of a single queue is given by the following proposition:

Proposition 10. For a single packet with arrival rate λ, the average message age of a Geom/Geom/1
queue with service rate µ is ∆N:

∆N =
λ2(1 − µ)

µ2(µ − λ)
+

1
µ
+

1
λ

(34)

Proof. Figure 3 depicts the evolution of the AoI sample path of a data queue at a single node
in a discrete-time system. The illustration shows that the mth data packet arrives at moment
nm and completes service, departing at moment nm. The time interval between the arrival
of the mth packet and the (m − 1)th packet is denoted by Xm. Wm represents the waiting
time for the mth packet to be served by the terminal after arriving at the queue, while Sm
denotes the service time for the mth packet. The system time Tm indicates the duration
that the mth packet remains in the system, expressed either as the sum of the waiting time
Wm (which is a non-negative value) and the service time Sm (i.e., Tm = Wm + Sm), or as
the sum of the arrival interval Xm+1 of the (m + 1)th packet and the waiting time Wm+1
(i.e., Tm = Xm+1 + Wm+1). It is evident that the system time Tm−1 of the (m − 1)th packet
solely depends on the arrival interval and service time of the packet preceding the mth
packet, independent of the arrival interval Xm of the mth packet. Therefore, given that the
transmission system is in a steady state, the randomness of the system time for each packet
remains consistent. The discrete-time AoI increases linearly within the time slot, and upon
the service terminal’s observation of the latest packet arrival, the AoI resets to reflect the
time the newest packet has spent waiting for service in the queue.
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Figure 3. Discrete-time age of information sample paths.

To derive the discrete-time AoI, we decompose the graph as shown in Figure 3. The
period between the mth packet and the m + 1st packet, denoted as the period block ∆Nm,
represents the AoI of the mth packet. The area of the period block signifies the AoI of
the mth packet. The region under can be seen as the sum of region Q0, Q1, · · · and the
triangular region Qm with width Tm. Hence, we have the average discrete message age
over the time interval of N, assuming that the service terminal receives a total of M packets,
where M = max{m|nm ≤ N}.

∆N = lim
N→∞

1
N

M

∑
m=1

∆Nm

= lim
N→∞

1
N
(Q0) + lim

N→∞

1
N

M−1

∑
m=1

Qm + lim
N→∞

1
N
(Qm) (35)

The triangular region Qm in Equation (35) can be derived by solving the following:

Qm =
1
2
(Tm−1 + Xm)(Tm−1 + Xm + 1)− 1

2
(Tm−1 + 1)Tm−1

= Tm−1Xm +
1
2

X2
m +

1
2

Xm (36)

When N → ∞, the values of the first and last terms of Equation (35) converge to 0,
which can be obtained as follows:

∆N = lim
N→∞

m − 1
N

1
m − 1

m−1

∑
m=1

Qm

= ρE[Qm]

= ρ

(
E[TmXm] +

1
2

E
[

X2
m

]
+

1
2

E[Xm]

)
(37)

where ρ denotes the steady-state rate of the packet when the system is stabilized for steady
transmission, i.e., ρ = lim

N→∞
m−1

N .

Under the Geom/Geom/1 queuing model, the packet arrival process and the service
process are independent of each other at each time slot. Consequently, the service duration
Sm and the packet arrival interval Xm are independently and identically distributed. Both
Sm and Xm follow the geometric distribution, with the packet arrival rate denoted by λ and
the service rate denoted by µ. The expected values of the arrival interval and the service
duration are given by E(Xm) =

1
λ and E(Sm) =

1
µ .
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Since the service duration Sm and the arrival interval Xm are independent, we have
the following:

E[TmXm] = E[(Wm + Sm)Xm]

= E(WmXm) + E(Sm)E(Xm)

=
1 − µ

µ − λ
· λ

µ2 +
1

µλ
(38)

See Appendix A.4.
According to the equation, ρ = lim

N→∞
m−1

N , as all the derivations of the previous term

are conducted under a steady-state system, the steady-state rate ρ must exist and can be
expressed in terms of the following expectations:

ρ =
1

E(Xm)
= λ (39)

The results of Equations (38) and (39) are substituted into Equation (37) to express the
average AoI of the data queue at a single sensor node under the steady-state system:

∆N = λE(Qm)

= λ

(
λ(1 − λ)

µ − λ
+

1
µλ

+
1

λ2

)
=

λ2(1 − λ)

µ2(µ − λ)
+

1
µ
+

1
λ

(40)

The AoI is expressed as a function of the packet arrival rate λ and the service rate µ,
denoted as ∆N = N(λ, µ).

Proposition 11. Denote the system average AoI of the sensor node ith data queue in the φth

dominant system as [�](φ), and when decoding strategy κ is used (κ = A, B, C), the uplink system
average AoI ∆κ can be expressed as follows:

∆κ = min


 λ2

1(1 − µ̂1)

µ̂2
1(µ̂1 − λ1)

+
1

µ̂1
+

1
λ1

+
λ2

2(1 − µ̂2)

µ̂2
2(µ̂2 − λ2)

+
1

µ̂2
+

1
λ2

,

µ̂1,φ,κ = µ̂1,φ,κ(λ2), µ̂2,φ,κ = µ̂2,φ,κ(λ1), (λ1, λ2) ∈ Rφ,κ


(φ)

|φ = 1, 2

 (41)

where µ̂i,φ,κ denotes the service rate of the node ith data queue in the φth dominant system, and
Rφ,κ denotes the stabilization region of the φth dominant system under decoding strategy κ.

Proof. We denote the arrival rate of the sensor node 1 data queue as λ1 and the service rate
as µ1, and the arrival rate of the sensor node 2 data queue as λ2 and the service rate as µ2.
The discrete-time averaged AoI ∆N1 and ∆N2 for sensor node 1’s data queue and sensor
node 2’s data queue are denoted as follows:

∆N1 =
λ2

1(1 − λ1)

µ2
1(µ1 − λ1)

+
1

µ1
+

1
λ1

(42)

∆N2 =
λ2

2(1 − λ2)

µ2
2(µ2 − λ2)

+
1

µ2
+

1
λ2

(43)

Based on the analysis of the stable region in the previous section, it is evident that
the data queue transmissions of the two sensor nodes interact with each other, making it
impossible to obtain the exact functional expression of the service rate. Therefore, under
each decoding strategy, we utilize the stochastic dominance technique to construct the
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dominant system separately, aiming to obtain the precise functional expression between the
service rate and the arrival rate. In the first dominant system dominated by the data queue
of node 1, the service rate µ̂2 of the service terminal for the data queue of node 2 remains
constant. The service rate µ̂1 of the service terminal for the data queue of node 1 can be
expressed as a function of λ2, i.e., µ̂1 = µ̂1(λ2). In the second dominant system dominated
by the data queue of node 2, the service rate µ̂1 of the service terminal for the data queue
of node 1 remains constant. The service rate of the service terminal for the data queue of
node 2, µ̂2, can be expressed as a function of λ1, i.e., µ̂2 = µ̂2(λ1). The AoI of the two nodes’
data queues can be expressed as a function of the arrival rates λ1 and λ2. Hence, we have
∆N1 = N(λ1, µ̂1(λ2)) and ∆N2 = N(λ2, µ̂2(λ1)).

It is crucial to acknowledge that the primary challenge in calculating the AoI lies in
the interactions between the cohorts. The average AoI based on the dominant system
characterizes the average AoI of the original system. Each set of rate pairs (λ1, λ2) in
the stable region of the two dominant systems, as well as the functional equation of the
service rate, is derived under the constraints of stable transmission. The concatenation
of the stable regions of the two dominant systems characterizes the stable region of the
original system. Therefore, each set of rate pairs (λ1, λ2) in the stabilization region of the
two dominant systems is realizable in the original system and ensures the stability of the
original system transmission.

Hence, the average AoI of the original system can be expressed in terms of the mini-
mum AoI in the two dominant systems. The system average AoI of sensor node i’s data
queue in the φth dominant system is denoted as ∆(φ), as follows:

∆(φ) = ∆N(φ)
1 + ∆N(φ)

2 (44)

Then, the system average AoI ∆ can be expressed as follows:

∆ = min
{

∆(φ)|φ = 1, 2
}

(45)

Based on the above analysis, it can be concluded that the average AoI of the uplink
system using the κ decoding strategy, where κ = A, B, C, is given by Equation (41).

When the decoding strategy is determined and the transmit power Pi of sensor node i
is fixed, a functional expression for the stabilization region can be obtained. The minimum
average AoI of the uplink system then depends solely on the rate pair (λ1, λ2). With three
different decoding strategies, the minimum average AoI in the same transmission scenario
can be determined. This offers insights into the selection of decoding strategies in various
transmission scenarios.

Under different decoding strategies, solving the minimum average AoI involves
finding the minimum value of the objective function subject to multiple constraints, namely
the following:

min ∆κ

s.t.{λ1,κ , λ2,κ} ⊆ R1,κ
⋃

R2,κ ,

µ1,κ = µ1,κ(λ2,κ),

µ2,κ = µ2,κ(λ1,κ)

(46)

To achieve the optimal average AoI, it is necessary to explore all rate pairs (λ1, λ2) in
the stabilization region. Hence, a stabilized iterative algorithm is designed to obtain the
optimal average AoI and transmission parameters. Algorithm 1 outlines this stabilized
iterative algorithm for the average AoI uplink. In this algorithm, the objective function
traverses all possible values of the arrival rate in the stabilized region in the two dominant
systems. It selects the smallest AoI value in the two dominant systems to obtain the
minimum average AoI of the system and outputs the pair of rates (λ1, λ2) that achieves the
optimal average AoI.
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Algorithm 1 Optimal information age based on the traversal algorithm.

Input: Packet arrival rate λi, packet service rate µ1(λ2), µ2(λ1), first dominant system
stability domain R1, second dominant system stability domain R2;

Output: Minimize the average AoI ∆min, achieve the optimal average AoI for the rate pair
(λ1, λ2);

1: In the first dominant system, λ1 is initialized to 0; λ2 is initialized to 0;
2: for λ1 to λmax

1 ∈ R1 do
3: for λ2 to λmax

2 ∈ R1 do
4: The obtained rate pairs (λ1, λ2) are brought into the µ1(λ2), µ2(λ1) equation;
5: Bring in to solve for the average AoI ∆(1) of the first dominant system;
6: λ2 increase the step size;
7: end for
8: λ1 increase the step size;
9: end for

10: Return the optimal average AoI ∆(1) of the first dominant system and the rate pair
(λ1, λ2) that achieves the optimum;

11: Follow the above steps to return the optimal average AoI ∆(2) in the second dominant
system and realize the optimal rate pair (λ1, λ2);

12: Compare the size of ∆(1) and ∆(2) and return the system optimal average AoI ∆min and
the corresponding rate pair (λ1, λ2).

The iterative algorithm provided for stabilization is essentially the same as solving the
fixed point issue. Algorithm 1 converges to a unique solution owing to the ergodicity of
the adopted queueing model and the fixed-point theorem. Utilizing the aforementioned
algorithm, we can obtain the optimal average AoI under different decoding strategies, along
with the arrival rate parameter needed to achieve the optimal average AoI. By comparing
the optimal average AoI of the three strategies, we can select the optimal transmission rate
for the uplink system to balance stability and timeliness under the current transmission
environment of the subchannels.

To verify the timeliness of the proposed hybrid OFDMA-NOMA system, we evaluate
and compare its performance with that of the conventional OFDMA system. In an OFDMA
system, two users alternate using a single resource block. When the data queue of the first
user is non-empty, the second user remains silent and waits for transmission. Conversely,
when the first user sends empty data, the second user gains permission to transmit. At this
point, there is no further interaction between the queues. The probability that the ith user
successfully sends is given by the following:

Pr
{

SNROFDMA
i ≥ vi

}
= exp

(
− ki N0vi

Pid−α
i

)
(47)

Therefore, the service rate of the service terminal for the two users can be expressed as fol-

lows: µOFDMA
1 = exp

(
− k1N0v1

P1d−α
1

)
and µOFDMA

2 =

(
1− λ1 exp

(
− k1N0v1

P1d−α
1

))
exp
(
− k2N0v2

P2d−α
2

)
,

respectively. The system can stabilize transmission when the arrival rate is less than the service
rate, i.e., λi < µOFDMA

i . Under this constraint, the average AoI of the conventional OFDMA
system is expressed as follows:

∆N =
λ2

1(1 − λ1)(
µOFDMA

1
)2(

µOFDMA
1 − λ1

) + 1
µOFDMA

1
+

1
λ1

+
λ2

2(1 − λ2)(
µOFDMA

2
)2(

µOFDMA
2 − λ2

) + 1
µOFDMA

2
+

1
λ2

(48)
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5. Simulation Results

In this section, we provide numerical results and Monte Carlo simulations to evaluate
the stabilized transmission area and AoI performance of the hybrid OFDMA-NOMA
system. A total of 100 sensor nodes are considered, with the nodes divided into 50 groups,
each containing 2 nodes. The groups are accessed using OFDMA technology, while the
sensor nodes within the groups are accessed using NOMA technology. We consider the
Rayleigh-fading channel, with path loss using the free-space path loss model. Unless there
are other instructions, the parameter settings for each group are as follows, the Rayleigh-
fading channel parameters are set to k1 = 2, k2 = 5, and the successful demodulation and
decoding SNR thresholds are set to 0.3 dB. The path decay factor is α = 2, and the distances
between the two sensor nodes and the service terminal are 10 m and 15 m, respectively. In
the simulation, we simulated 20 times and set the simulation time to 5000 slots.

Figure 4 depicts the stabilized region images of the three decoding strategies at a
high decoding threshold (vi = 0.8 dB), while Figure 5 illustrates the stabilized region
images of the three decoding strategies at a low decoding threshold (vi = 0.2 dB). The
horizontal coordinate in the figure represents the arrival rate of the data queue of sensor
node 1, while the vertical coordinate represents the arrival rate of the data queue of
sensor node 2. The letters A, B, and C in the figure represent three distinct strategies of
interference decoding, serial interference cancellation, and an enhanced SIC strategy with
error handling, respectively.

Figure 4 illustrates that, when decoding thresholds are high, strategy A has the smallest
stable transmission region, strategy B has a slightly larger stable transmission region than
strategy A, and strategy C has the largest stable transmission region. Strategy A, which does
not employ successive interference cancellation (SIC), must consider node 1 as interference
when decoding node 2. This increases the difficulty of decoding node 2, which has poorer
channel conditions, due to the better channel conditions of node 1. In contrast, the other
two decoding strategies using SIC prioritize the decoding of node 1, which excludes the
interference of node 1 from the total signal, thus increasing the decoding opportunity of
node 2. Furthermore, strategy C, in comparison to strategy B, attempts to decode node 2
even in the event that node 1 fails to decode successfully. This approach, therefore, increases
the probability of node 2 being successfully decoded, resulting in strategy C exhibiting the
greatest degree of stability.
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Figure 4. Stable regions of three decoding strategies at high decoding thresholds.
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Figure 5 illustrates that the range comparison of the three decoding strategies for the
low decoding threshold scenario is identical to that of the high decoding threshold scenario.
Strategy C has the largest stable transmission region, followed by strategy B and strategy
A. The probability of successful decoding for each node increases in the scenario with
a low decoding threshold as compared to the scenario with a high decoding threshold.
Consequently, each decoding strategy exhibits a more expansive range of stable regions
at low decoding thresholds than at high decoding thresholds. It is important to note that
a high arrival rate does not necessarily imply high timeliness, and the analysis of stable
regions provides constraints for timeliness analysis.
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Figure 5. Stable regions of three decoding strategies at low decoding thresholds.

Set noise spectrum density to N0 = 4 × 10−12. Figure 6 displays the image of the
sensor data queue and average AoI when the lead system under the uplink wireless sensor
network is used under the lead system with three decoding strategies. The x-axis represents
the arrival rate of queue 1, the y-axis represents the arrival rate of queue 2, and the z-axis
represents the system average AoI corresponding to the arrival rate.

The image of the average AoI shows a pattern of high values around its edges, with a
concave shape in the center. Here, the minimum value at the concave indicates the optimal
average AoI for the uplink. The figure corresponds to a higher AoI when the arrival rate
is close to 0. When the update packet arrival rate of any node is close to 0, it means that
almost no update packet arrives at that node, and the received information in the queue
is stale, which reduces the freshness of the information, so the system has a larger value
of AoI. This also corresponds to a higher AoI when the arrival rate of the update packet
increases to the edge of the convergence region of stability and the packets are in the queue.
The packets pile up in the queue and the newly arrived packets are not processed in time,
reducing the freshness of the information. It is only when the arrival rate of each node
reaches the value corresponding to the most concave point that the minimum AoI can be
obtained, while the system is stable in transmission.

Figure 7 denotes the minimum AoI value of the system under the three decoding
strategies statistically using a stable iterative algorithm with different transmit SNRs. The
horizontal coordinate represents the transmit SNR and the vertical coordinate represents
the minimum AoI of the system. The Monte Carlo simulation results agree very well with
the analytical results. The AoI of the three decoding schemes shows a decreasing trend
as the SNR increases. As the SNR increases, the decoding success rate increases, and the
arriving packets can be served in time, so the AoI decreases.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Age of information of the dominant system in the uplink. (a) Interference decoding: age
of information for the first dominant system. (b) Interference decoding: age of information for the
second dominant system. (c) Serial interference cancellation: age of information for the first dominant
system. (d) Serial interference cancellation: age of information for the second dominant system.
(e) Enhanced SIC strategy with error handling: age of information for the first dominant system.
(f) Enhanced SIC strategy with error handling: age of information for the second dominant system.

Under the current channel parameter settings, as the SNR increases, the minimum
average AoI of the three decoding strategies shows a gradually decreasing trend. When
the SNR is low (SNR = 5 dB), the interference decoding strategy has a lower AoI, and the
decoding method of mutually regarded interference, which directly regards the information
from another node as interference, allows the update packet to be served in time even if it
possesses a small stabilized area, thus resulting in a smaller average AoI. Under the current
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channel parameters, the interference decoding strategy is used at a low SNR, which makes
the system time-efficient and stable.
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Figure 7. Minimum age of information for systems with different policies.

When the SNR is high (SNR = 30 dB), the enhanced SIC strategy with error handling
is used to achieve a lower average AoI upper limit. Higher SNR levels increase interference
from another data queue when using the interference decoding strategy, thus increasing
the difficulty in decoding the queue. Using SIC, node 2 cannot decode after the failure
of decoding the queue at node 1. The failure of decoding leads to untimely service and
makes the information obsolete. Using an enhanced SIC strategy with error handling, the
decoding success probability of node 2 is improved, the update packet obtains fast service
with a smaller AoI, and the system is more time-sensitive while having stability.

The AoI comparison between the optimal policy of the hybrid OFDMA-NOMA system
and the optimal policy of the conventional OFDMA system is shown in Figure 8. The
Monte Carlo simulation results agree very well with the analytical results.
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Figure 8. OFDMA-NOMA optimal policy vs. the OFDMA age of information.

The results show that our proposed hybrid OFDMA-NOMA outperforms the con-
ventional OFDMA in terms of timeliness. When the SNR is low, our hybrid system has
a greater advantage. When the SNR is low, node 2 in the conventional OFDMA system
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has to wait until node 1’s service is completed and the queue is empty before transmit-
ting. In a low SNR environment, the probability of successfully decoding between two
nodes decreases, leading to reduced transmission opportunities for node 2; this makes the
information of node 2 stale, which makes the average AoI have a large value. When the
SNR gradually increases, the average AoI of each scheme shows a decreasing trend, but
our proposed optimal strategy is still better than the traditional scheme. When the SNR
is large, the probability that both nodes can successfully decode increases, which leads
to fast decoding for both nodes and reduces the value of AoI to some extent. However,
the parallel transmission scheme still has an advantage over alternating transmissions.
Figure 9 illustrates the average service rate corresponding to the optimal timeliness under
stability constraints versus the signal-to-noise ratio. The simulation results align with
the numerical analysis. Figure 9a demonstrates that the average service rate of node 1
gradually increases with the increase in the signal-to-noise ratio in the OFDMA system
and the hybrid OFDMA-NOMA system. Moreover, the average service rate of node 1 in
the OFDMA system is consistently higher than that in the hybrid OFDMA-NOMA system.
Figure 9b illustrates that the average service rate of node 2 in the OFDMA system and
hybrid OFDMA-NOMA system gradually increases with the increase in the signal-to-noise
ratio. Furthermore, the average service rate of node 2 in the OFDMA system is consistently
inferior to that of the hybrid OFDMA-NOMA system. As a consequence of the superior
channel conditions of node 1, the service rate of node 1 is invariably greater than that
of node 2 in the OFDMA system. This results in node 1 being consistently served, thereby
reducing the service opportunity of node 2. In contrast, the optimal policy designed for the
hybrid OFDMA-NOMA system effectively reduces the service rate of node 1 while enhancing
the service rate of node 2. Furthermore, the parallel transmission of two nodes enhances the
probability of node 2 being served. This approach allows both node 1 and node 2 to have the
opportunity to be served, thereby reducing the average message age of the system.
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Figure 9. The relationship between the average service rate of node i and SNR. (a) The relationship
between the average service rate of node 1 and SNR. (b) The relationship between the average service
rate of node 2 and SNR.

6. Conclusions

In this paper, we study the stability and timeliness of OFDMA-NOMA systems, where
each user has dynamic traffic arrivals. Within this system, two users form a group to share
a resource block for simultaneous message transmissions. We consider three decoding
schemes tailored to different transmission scenarios and employ the queueing theory to
delineate the system’s stable transmission region. We avoid the interplay between the
two queues and obtain an explicit formula for the average AoI of the system. Furthermore,
a stable iterative algorithm is used to calculate the minimum average AoI and find the
optimal transmission strategy. Numerical validations underscore the superiority of the
designed hybrid OFDMA-NOMA system over traditional OFDMA systems in enhancing
timeliness while maintaining stability.
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Appendix A

Appendix A.1. Proof of Proposition 1

For the event probability that the data from a sensor node can be successfully decoded
when only one sensor node’s data queue is transmitted, we provide the following proof:

Pr{Di/i} = Pr{SNRi ≥ vi}

=Pr

{
|hi|2Pid−α

i
N0

≥ vi

}

= Pr

{
|hi|2 ≥ N0vi

Pid−α
i

}

=
∫ ∞

N0vi
Pid−α

i

ki,D exp
(
−ki|hi|2

)
d
(
|hi|2

)

= exp

(
− ki N0vi

Pid−α
i

)
(A1)

For the event probability that the first data queue can successfully decode when two sensor
nodes have data transmission at the same time, we provide the following proof:

Pr
{

D1/1,2
}
= Pr{SINR1 > v1}

= Pr

{
|h1|2P1d−α

1
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(
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(A2)
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Appendix A.2. Proof of Proposition 4

For the probability that the data queue of node 2 is successfully decoded when the
service terminal successfully decodes the data queue of sensor node 1, we provide the
following proof:

Pr
{

D1/1,2, D2/2
}
= Pr

{
|h1|2P1d−α

1

N0 + |h2|2P2d−α
2

≥ v1,
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2
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≥ v2

}

= Pr
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2

P1d−α
1
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Appendix A.3. Proof of Proposition 7

When the data queues of two sensor nodes are transmitted at the same time, in the
case where the decoding of the data queue of sensor node 1 fails, the data queue of node 1
is regarded as interference, and the event probability of the data queue of node 2 being
successfully decoded is given as follows:

Pr
{

D1/1,2, D2/1,2
}
= Pr

{
|h1|2P1d−α

1

N0 + |h2|2P2d−α
2
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It is easy to see that the continued solution of Equation (A4) requires a discussion on

the case of magnitudes of |h1|2P1d−α
1 −N0v1

P2d−α
2 v1

and N0+|h1|2P1d−α
1

P2d−α
2

v2.
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2

v2, we have |h1|2P1d−α
1 (1 − v1v2) ≤ N0v1 + N0v1v2.

The inequality holds if and only if 1 − v1v2 ≤ 0, i.e., v1v2 ≥ 1.
Therefore, Equation (A4) can be derived as follows:
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−k1|h1|2

)
k2 exp

(
−k2|h2|2

)
d
(
|h1|2

)
d
(
|h2|2

)

=
k1P2d−α

2
P1d−α

1 k2v2 + k1P2d−α
2

exp

(
− k2N0v2

P2d−α
2

)
(A5)

(2) If 1 − v1v2 > 0, we have v1v2 < 1. For the integration limit, we have the following
two possibilities: when |h1|2 > N0v1+N0v1v2

P1d−α
1 (1−v1v2)

, then the integration limit of |h1|2 becomes
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(
N0v1+N0v1v2

P1d−α
1 (1−v1v2)

,+∞
)

; if |h1|2 < N0v1+N0v1v2
P1d−α

1 (1−v1v2)
, then the integration limit of |h1|2 becomes(

0, N0v1+N0v1v2
P1d−α

1 (1−v1v2)

)
, so Equation (A4) can be written as follows:

Pr
{

D1/1,2, D2/1,2
}
= Pr

{
|h2|2 >

|h1|2P1d−α
1 − N0v1

P2d−α
2 v1

, |h2|2 ≥
N0 + |h1|2P1d−α

1
P2d−α

2
v2

}

=
∫ +∞

N0v1+N0v1v2
P1d−α

1 (1−v1v2)

∫ +∞

|h1|2P1d−α
1 −N0v1

P2d−α
2 v1

k1 exp
(
−k1|h1|2

)
k2 exp

(
−k2|h2|2

)
d
(
|h1|2

)
d
(
|h2|2

)
+

∫ N0v1+N0v1v2
P1d−α

1 (1−v1v2)

0

∫ +∞

N0+|h1|2P1d−α
1

P2d−α
2

v2

k1 exp
(
−k1|h1|2

)
k2 exp

(
−k2|h2|2

)
d
(
|h1|2

)
d
(
|h2|2

)

=

{
1 − exp

[
−
(

k1 +
P1d−α

1 k2v2

P2d−α
2

)
N0v1 + N0v1v2

P1d−α
1 (1 − v1v2)

]}

×
k1P2d−α

2
P1d−α

1 k2v2 + k1P2d−α
2

exp

(
− k2N0v2

P2d−α
2

)
(A6)

Appendix A.4. Proof of Proposition 10

For the joint expectation of arrival interval and waiting time, we provide the following proof:
Denote λ0 = (1 − µ)/(1 − λ), and the probability density function of the system time

Tm is as follows: fT(k) = (1 − λ0)
k−1λ0. When given the Xm = x condition, the conditional

expectation of Wm is as follows:
E[Wm|Xm = x ] = E

[
(Tm−1 − x)+|Xm = x

]
= E

[
(T − x)+

]
=

N

∑
x
(k − x) fT(k)dk

=
N

∑
x
(k − x)(1 − λ0)

k−1λ0dk

=
λx

0
1 − λ0

(A7)

We apply the expectation iteration to solve E[WmXm]:

E[WmXm] =
N

∑
x=1

xE[Wm|Xm = x ] fT(x)

=
λ

µ − λ

1 − µ

µ2

=
1 − µ

µ − λ
· λ

µ2 (A8)
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6. De Vries, J.P.; Simić, L.; Achtzehn, A.; Petrova, M.; Mähönen, P. The Wi-Fi “congestion crisis”: Regulatory criteria for assessing
spectrum congestion claims. Telecommun. Policy 2014, 38, 838–850. [CrossRef]

7. Li, J.; Wu, X.; Laroia, R. OFDMA Mobile Broadband Communications: A Systems Approach; Cambridge University Press: Cambridge, UK, 2013.
8. Jamal, M.N.; Hassan, S.A.; Jayakody, D.N.K.; Rodrigues, J.J. Efficient nonorthogonal multiple access: Cooperative use of

distributed space-time block coding. IEEE Veh. Technol. Mag. 2018, 13, 70–77. [CrossRef]
9. Shi, L.; Li, Z.; Bi, X.; Liao, L.; Xu, J. Full-duplex multi-hop wireless networks optimization with successive interference cancellation.

Sensors 2018, 18, 4301. [CrossRef]
10. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
11. Rong, B.; Ephremides, A. Cooperative access in wireless networks: Stable throughput and delay. IEEE Trans. Inf. Theory 2012,

58, 5890–5907. [CrossRef]
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