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Abstract: Detecting pedestrians in varying illumination conditions poses a significant challenge,
necessitating the development of innovative solutions. In response to this, we introduce Prior-
AttentionNet, a pedestrian detection model featuring a Prior-Attention mechanism. This model
leverages the stark contrast between thermal objects and their backgrounds in far-infrared (FIR)
images by employing saliency attention derived from FIR images via UNet. However, extracting
salient regions of diverse scales from FIR images poses a challenge for saliency attention. To address
this, we integrate Simple Linear Iterative Clustering (SLIC) superpixel segmentation, embedding
the segmentation feature map as prior knowledge into UNet’s decoding stage for comprehensive
end-to-end training and detection. This integration enhances the extraction of focused attention
regions, with the synergy of segmentation prior and saliency attention forming the core of Prior-
AttentionNet. Moreover, to enrich pedestrian details and contour visibility in low-light conditions,
we implement multispectral image fusion. Experimental evaluations were conducted on the KAIST
and OTCBVS datasets. Applying Prior-Attention mode to FIR-RGB images significantly improves the
delineation and focus on multi-scale pedestrians. Prior-AttentionNet’s general detector demonstrates
the capability of detecting pedestrians with minimal computational resources. The ablation studies
indicate that the FIR-RGB+ Prior-Attention mode markedly enhances detection robustness over
other modes. When compared to conventional multispectral pedestrian detection models, Prior-
AttentionNet consistently surpasses them by achieving higher mean average precision and lower
miss rates in diverse scenarios, during both day and night.

Keywords: multispectral; pedestrian detection; feature fusion; computer vision; prior-attention

1. Introduction

Traffic object (pedestrians, motor vehicles, non-motor vehicles, road signs, etc.) detec-
tion under varying illuminance conditions has a wide range of applications in road traffic,
such as obstacle detection on roads, traffic flow monitoring at intersections, and unmanned
driving during the day and at night. In these scenarios, high-precision and -reliability
object detection methods are required [1]. During daylight hours, contemporary object
detection algorithms such as Yolo [2] and the fast R-CNN series [3] demonstrate commend-
able performance when operating on data from visible cameras. However, as illuminance
conditions deteriorate, the information gleaned from visible images weakens, often becom-
ing indistinguishable amidst background noise. In contrast, infrared (IR) images, generated
by capturing the heat radiating from objects, exhibit higher resilience to low visibility and
adverse weather conditions. They encapsulate vital contour information of objects that visi-
ble images struggle to preserve under low-illuminance conditions. Nevertheless, IR images
exhibit limitations in terms of resolution and detailed information. Conversely, RGB images
excel in capturing object details and texture information during daylight hours. Combining

Electronics 2024, 13, 1770. https://doi.org/10.3390/electronics13091770 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13091770
https://doi.org/10.3390/electronics13091770
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4219-497X
https://doi.org/10.3390/electronics13091770
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13091770?type=check_update&version=1


Electronics 2024, 13, 1770 2 of 15

IR and RGB images facilitates mutual feature compensation, effectively enhancing object
features in the fused images [4]. Thus, under varying illuminance conditions, multispectral
information fusion plays a pivotal role in enhancing object detection.

At present, the fusion based on multi-scale decomposition (MSD) remains the main
image fusion method that is widely studied and applied [5]. MSD decomposes a source
image into high- and low-frequency information and combines the decomposed frequency
information through fusion rules. How to improve MSD is thus the critical issue to the
MSD-based fusion framework. For this purpose, researchers have proposed new methods
such as Laplacian pyramid [6], low-pass pyramid [7], discrete wavelet pyramid [8], curvelet
transform [9], non-subsampling contourlet transform (NSCT) [10], and so on. Under low
illuminance, the fusion of original images generates the detailed information and contour
of objects integrated, but the background noise in visible images is also compensated by IR
images. Thereby, it renders the difference between contour in IR images and background
noise insignificant. If the area of the objects cannot be accurately acquired and located,
the objects are interfered with by the background noise in the fusion. This main issue
affects the accuracy of weak-light object detection [11,12]. Current multispectral detection
methods [13–15] are targeted to detect objects all day long by finding the appropriate
proportion of fusion, but they are not intently designed to detect objects at night. Therefore,
how to focus on the object area during fusion so as to reduce the effect of background noise
on detection is the key issue for low-illuminance object detection.

Recently, research on the human visual system (HVS) has become increasingly
mature [16]. Visual attention is an important mechanism of HVS that helps extract com-
plex and important visual information by quickly selecting the most significant area [17].
Usually, the heat of important objects (pedestrians and moving vehicles) is higher than that
of the surrounding environment. The high-temperature area in an FIR image is typically
the region of important objects. Under low illuminance, the objects in the FIR image must
be clearer than those in an RGB image because of the heat difference. With this feature of
FIR images, the attention mechanism on the thermal objects of FIR images is adaptive to
varying-illuminance object detection. However, in FIR images, the scale of vehicles must be
larger than that of pedestrians in the same position. The size of near-end pedestrians is also
larger than that of far-end ones. The multiple scales of objects lead to difficulty in attention
region acquisition. Therefore, a multi-scale region attention mechanism is required.

This study introduces Prior-AttentionNet, an innovative object detection framework
designed to address varying-illuminance challenges. The model encapsulates a mechanism
of saliency attention and segmentation prior, meticulously focusing on multi-scale objects
to elevate detection efficiency. The core of this approach lies in the Prior-Attention mod-
ule, a novel attention mechanism that amalgamates segmentation prior knowledge with
saliency attention extraction, thereby streamlining the identification of critical attention
regions and enriching feature diversity across scales. Additionally, we pioneer an FIR-RGB
fusion technique grounded in illuminance levels, which, by merging infrared and visible
spectrum information, markedly bolsters object details and contours, thus ensuring high
detection accuracy under diverse lighting scenarios. Our comprehensive evaluation of
Prior-AttentionNet across KAIST, OTCBVS, and CVC-14 datasets, and its subsequent com-
parison with leading multispectral detection models, underscores the model’s efficacy and
potential in enhancing object detection performance.

2. Related Work

Under varying illuminance, multispectral object detection attracts extensive attention
due to the great advantages of multispectral data in all-day visual displays. Hwang
collected and marked the first dataset called KAIST for pedestrian detection and then
proposed the ternary histogram of oriented gradient (T-HOG) operator with a multispectral
auto-correlation function (ACF) to expand the gradient information of the IR image channel,
process FIR-RGB images in parallel, and detect pedestrians through the AdaBoost classifier.
Afterwards, ACF+T+THOG was comprehensively used as the baseline in this field, which
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encouraged researchers to improve the relative technologies in this field. Alzate et al.
mainly selected a group of the most commonly used and highest-scoring features from
the current pedestrian detection works. They then accessed the deformable part model
(DPM) and random forest (RF) of local experts with HOG and local binary pattern (LBP)
on benchmarks [18].

Some researchers adopted segmentation, enhancement, and edge computation to im-
prove object detection. A self-balanced sensitivity segmentationer (SuBSENSE) makes cam-
ouflaged foreground objects easier to detect through a pixel-level segmentation method [19].
Another foreground segmentation method using a neural network (FgSegNet) is also ap-
plied in moving object detection [20]. Illuminance-invariant structural complexity (IISC)
is employed to implement background subtraction in outdoor scenes for moving object
detection [21]. Kim et al. [22] reconstructed moving objects by computing the edges on the
result of frame differencing under varying illuminances. Gautam et al. [23] proposed a
style-transferred enhanced image module (STEIM) with an EfficientDet module (EDM) to
improve the resolution of IR input frames.

In terms of fusion methods, among the varied MSD methods for image fusion, NSCT
has a better frequency selectivity and regularity than other methods. Thus, NSCT-based
fusion methods are widely used in fusion applications. For instance, Chen et al. [24]
proposed a pulse convolution neural network (PCNN) combined with non-subsampled
shearlet transform (NSST) for multi-source image fusion. They employed a CNN to extract
the features of visible and IR images, which calculated the fusion weights. Su et al. [25]
proposed a compression fusion of FIR and visible images based on the combination of the
robust principal component analysis (RPCA) and NSCT. It aims to make up for the loss of
detailed texture information in fusion images. However, the principal component analysis
(PCA) that reduces the dimension information of original images unintentionally increases
the loss of useful information. Wagner et al. [26] developed two fusion architectures
(LateFusion and EarlyFusion) with a deep CNN, and their multispectral pedestrian detector
achieved more true detection.

Compared with the algorithm of single-mode pedestrian detection, the multispectral
pedestrian detection algorithm based on the R-CNN series and a deep neural network
(DNN) has stronger robustness and accuracy. Ding et al. [27] employed a network in
network (NIN) for FIR-RGB fusion and a selective kernel network to adaptively adjust
the receptive field size in detection. Liu et al. [28] developed a Halfway model of inter-
mediate fusion that achieved a balance between visual details and semantic information
and a missed detection rate (MDR) of 37% on KAIST. He et al. [29] proposed the regional
proposal network (RPN) from fast R-CNN for single-mode pedestrian detection and used
a decision tree for classification. Based on the concept, Konig et al. combined visible and
IR images into the RPN [30] and reduced the MDR to 29.8% on KAIST. A multispectral
simultaneous detection and segmentation R-CNN called MSDS-RCNN is explored, which
adds a pixel-level segmentation module to the detection method that splits the background
and objects [31].

The mode difference remains a difficult issue in fusion. Guan et al. [14] and Li et al. [32]
introduced the light perception network to weight day and night networks by using
predicted illuminance values. Xu et al. [33] proposed a cross-modality transfer CNN
(CMT-CNN) to learn the non-linear mapping from FIR-RGB images so as to overcome
adverse lighting. Zhang et al. [34] improved the effectiveness of multi-mode feature fusion
by encoding the correlation between the two modes through a cross-modal interactive
attention network (CIAN). Then, they proposed a novel aligned region CNN (AR-CNN)
to capture position offset and solve the problem of position offset between multi-modal
images through a regional feature alignment module [35]. Zhou et al. [13] proposed the
mode balance network (MBNet), which adaptively selects two mode features through
the differential mode perception fusion module. Jiang et al. proposed a cross-modality
fusion framework based on Yolov5. The backbone network is used for multi-scale feature
fusion, which enables the network to detect objects with different scales, thus improving
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detection accuracy. Park et al. [36] verified the effectiveness of the proposed framework with
extensive experiments, and it achieved state-of-the-art pedestrian detection performance
on thermal infrared images.

3. Materials and Methods
3.1. Network Structure

In this study, we introduce a deep neural detection network named Prior-AttentionNet,
which is based on a Prior-Attention module and image fusion for pedestrian detection
under varying illumination conditions. The architecture of Prior-AttentionNet is depicted
in Figure 1 and primarily consists of two parts: the image fusion algorithm framework and
the detector framework. Within the image fusion algorithm, this paper focuses on adopting
superpixel segmentation to extract prior features from infrared images. These features are
then integrated into the UNet [37] saliency attention extraction module to obtain feature
maps, which are combined with the FIR-RGB fused image.
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The Prior-Attention module and the image fusion module are integrated using a
masking approach, where the feature map obtained from the Prior-Attention module is
masked onto the FIR-RGB multispectral fusion image. The method of merging the feature
map with the FIR-RGB fusion image is illustrated in Equation (1).

Iout = Matt + IFIR-RGB (1)

Here, Matt represents the feature map output by the Prior-Attention module, IFIR-RGB
represents the fused image after image fusion, and Iout represents the FIR-RGB image after
being masked by the feature map.

Masking can filter out background noise in the FIR-RGB image, reducing interference
in the detector’s feature-learning process while simultaneously enhancing the edge contour
features of pedestrians, making pedestrians in the image easier to detect. This complies
with the requirements for scientific research documentation.

For detection, the network employs YOLOv5, into which the combined images are fed
to realize end-to-end training and detection.
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3.2. Prior-Attention Module

In this section, we introduce a Prior-Based Saliency Attention module, consisting of
feature extraction using SLIC (Simple Linear Iterative Clustering) superpixel segmentation
and saliency attention derived from UNet.

3.2.1. Segmentation Feature Extraction Module

The segmentation feature extraction module is based on the superpixel segmenta-
tion. The Simple Linear Iterative Clustering can be divided into the following steps: First,
initialize cluster centers uniformly on the image. Then, assign pixels to the nearest clus-
ter centers based on a comprehensive measure of color similarity and spatial proximity.
Afterward, recalibrate each cluster center based on the mean of the pixels assigned to
them. This assignment and update process iterates until the cluster centers stabilize,
achieving convergence.

The specific implementation steps of this method are as follows:
Step 1: Choose vector X as the feature vector of the pixel.
Step 2: Initialize cluster centers: Distribute initial cluster centers evenly based on the

set number of superpixels (K). Assuming the total number of image pixels is N and the
distance between neighboring centers is S, the calculation formula is Equation (2).

S = sqrt(N/K) (2)

Step 3: Move the initial cluster centers to the position of the minimum gradient within
a 3 × 3 neighborhood around each initial cluster center.

Step 4: Assign labels to each pixel based on the distance D from the center pixel
within a 2S × 2S neighborhood around each seed point. The distance measurement for
superpixel segmentation quality includes color distance and spatial distance, as shown in
Equations (3)–(5).

D =

√(
dc

m

)2
+

(
ds

s

)2
(3)

dc =

√(
Rj − Ri

)2
+

(
Gj − Gi

)2
+

(
Bj − Bi

)2
+

(
Dj − Di +

(
Hj − Hi

)2
)

(4)

ds =
√(

xj − xi
)2

+
(
yj − yi

)2 (5)

Here, dc is the color distance, ds represents the spatial distance, and m and s denote the
maximum allowable values for color distance and spatial distance, respectively.

Step 5: Update cluster centers, repeating the above steps iteratively until convergence
of the error.

The number K of superpixels in segmentation varies for different images. For accurate
segmentation, we adopt a pre-trained detection (e.g., YOLOv5) model to estimate the
appropriate number of superpixels. The ratio of the FIR image size to the largest detection
frame is used as the number of superpixels.

Through the segmentation, the image can be split into pieces of superpixels. Each
superpixel comprises pixels with similar thermal features, and the gray-scale value of
each superpixel corresponds to the level of thermal radiation. The superpixels with a gray
level higher than the setting threshold are the attention area, which retains the objects. We
expect that a small- or middle-scale object can be entirely involved in one single superpixel
block. In some cases, small objects may be divided into multiple disconnected superpixels.
To solve this issue, we use an iterative process to update the cluster centers until the
error converges. This enhances the connectivity among superpixels. In Figure 2a,b, we
can see that an FIR image decomposes to superpixels. Two pedestrians are included in
one superpixel.
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Segmentation enhances the superpixels of the foreground area prior to filtering while
weakening the superpixels of the background area. In Figure 2, SLIC segments the FIR im-
age into a set of superpixels, forming a segmented image, which is ultimately transformed
into a segmentation feature image based on the average gray-scale values of the superpixels.

3.2.2. Prior-Based Saliency Attention

The segmentation prior prefers to concentrate on the connected regions, which contain
the objects. For middle- or large-scale objects, the richer the details of the object, the more
likely it is that the object is divided into different connected regions. When the integrity of
the object is damaged, the accuracy of object detection declines.

For the larger-scale objects with rich details, we need another attention mode. UNet
is a well-known deep learning network, originally designed for the segmentation of med-
ical images. Its characteristic feature is the adoption of a symmetrical Encoder–Decoder
structure, and the introduction of Skip connections between the encoder and decoder,
to preserve detailed information lost during the down-sampling process. This structure
enables UNet to excel in image segmentation tasks that require precise localization.

The UNet network is used for saliency attention extraction. The input is an FIR
image, and the trained UNet saliency extraction network can output high-quality feature
maps. As illustrated, the feature map distinctly extracts two pedestrians, eliminating a
large amount of background noise. The UNet network is capable of precisely capturing
the subtle temperature differences between pedestrians and the background in infrared
images, and through deep learning, it automatically learns to differentiate features of
pedestrians and the background from the data. UNet’s strong adaptability, scalability,
and flexibility, with proper training, enable it to effectively locate the salient regions
of pedestrians in infrared images, providing powerful support for pedestrian detection
and related applications. Joint training with subsequent detection models can help the
network focus more quickly on learning and detecting pedestrian features, improving the
performance of the detection network.

From Figure 3, fusing segmentation prior with saliency attention at the decoding
layer significantly accentuates pedestrian features while mitigating background noise.
This adaptation allows subsequent detection models to more efficiently focus on and extract
pedestrian features, thereby enhancing both learning efficiency and detection accuracy.
The incorporation of SLIC superpixel segmentation prior features enables the UNet saliency
attention extraction network to converge more swiftly under the guidance of prior features.
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3.3. Image Fusion Module

Fusions at the pixel, feature, and decision levels are the main methods of image
fusion. The fusions at the feature and decision levels often lose the details of objects.
In particular, before different-sized images are fed to the network, down-sampling usually
causes information loss. When the image resolution is low, the loss is not conducive to
object detection. The resolution of FIR images is typically low, and RGB images under low
illuminance have a small amount of information. Hence, fusion either at the feature level or
decision level is unsuitable. Fusion at the pixel level has high efficiency in data processing,
rich image details, and strong robustness. Thus, pixel-level image fusion is adopted.

In pixel-level fusion, the registration method matches the feature points and utilizes the
affine matrix of image transformation. NSCT is adopted to implement the fusion in multi-
scale transformation. In NSCT, the non-subsampling (NSP) tower performs multi-scale
decomposition to obtain low- and high-frequency information. After this, the non-down-
sampling filter bank (NSDFB) constructs multi-direction and multi-scale representations of
the image. Finally, the fusion of high- and low-frequency information is based on rules and
the inverse NSCT.

The low-frequency part indicates the smooth area (e.g., background) of the image.
It contains the spectral information and most of the energy in the image. The fusion in
the low-frequency part is the weighted sum of the low frequencies of both the FIR and
RGB images. Generally, the edge information of FIR images is highly significant under
varying illuminances, especially at night. Hence, the intensity distribution of FIR images
dominates the weight of low-frequency fusion. This guarantees that high-contrast features
are preserved in FIR-RGB images at night. The fusion in the low-frequency part is calculated
using Equation (6).

LFN = F · LAN + (1 − F) · LBN (6)

Here, LAN and LBN indicate the low-frequency information of FIR and RGB images,
respectively. LFN indicates the low-frequency information after fusion. F is the weight
for fusion.

P =
R

maxx∈Ω{R(x)} (7)

F =
arctan(λP)
arctan(λ)

(8)

In Equations (7) and (8), R represents the pixel values of the original image, max
refers to the maximum pixel intensity value within the pixel region Ω, P∈[0, 1] maps the
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pixel intensity distribution in the infrared image, F∈[0, 1] represents the distribution of
infrared features, and λ is the tuning parameter of the function. Through this method,
greater weight is assigned to the infrared information during the fusion process, thereby
helping to avoid the problem of reduced target contrast in the fused image due to the loss
of high-frequency information.

When λ is relatively large, according to the formula for F, the corresponding non-linear
transformation becomes more pronounced. Since infrared images contain more information
under low-illumination conditions compared to RGB images, F must be greater than 0.5;
under high illumination, F is less than 0.5. Through experimental testing, we determined
that when λ = 30, it satisfies the requirements for the magnitude of F under different
illumination conditions.

The high-frequency information usually contains the edges and contours of objects.
In the image decomposition, a very high frequency typically represents sharp changes in
brightness and edges with large contrast changes in the image, such as borders, bright lines,
and regional outer lines. The larger the absolute value of the high frequency, the richer the
details the objects have. For pedestrians, the absolute value is large. The maximum absolute
value rule for the fusion of the high-frequency band can be calculated using Equation (9).

LHl =

{
LAl , |LAl > LBl |
LBl , otherwise,

(9)

Here, LAl and LBl are the high-frequency parts decomposed in the FIR and RGB images,
respectively. LHl indicates the high-frequency information after fusion. The contrast of the
fused high-frequency image is close to that of the source sub-image.

3.4. Complexity and Running Time

The prior-saliency attention is the main part of Prior-AttentionNet. The complexity of
Prior-AttentionNet depends on the segmentation and saliency attention.

The time complexity for the segmentation calculation mainly comes from SLIC su-
perpixel segmentation. SLIC is based on a k-means algorithm with a time complexity of
O(N × c), where N is the number of pixels in the image and c is the number of clusters.
The time complexity of SLIC is proportional to the number of pixels and clusters. In this
study, SLIC is dedicated to the superpixel clustering problem, and its complexity is linear
with the number of pixels and independent of c. Therefore, the time complexity of SLIC
is O(N).

The saliency attention is calculated by UNet, and the time complexity of UNet depends
on the depth and width of the network as well as the size of the input image. Specifically,
assuming that UNet has L layers, each layer has C convolutional kernels with a size of
K2, and the input image size is W × H = N. Therefore, the time complexity of UNet
is O((LCK2) × W × H) = O(NLCK2). Here, LCK2 represents the time complexity of the
convolutional layers, and N is the number of pixels in the input image. The time complexity
of UNet increases with the depth and width of the network.

The calculations for the segmentation and saliency attention are parallel, so they do not
affect each other. The time complexity of UNet is larger than that of SLIC,
i.e., O(NLCK2) > O(N). In terms of time complexity, the calculation of saliency attention
is dominant in Prior-AttentionNet. The time complexity of dual attention is O(NLCK2).
The object detection algorithm used in this paper primarily runs on GPU for most of its
computational power, so the computation time is mainly governed by the GPU’s processing
time. The runtime depends on the size of the dataset, and on our dataset, it operates at a
speed of 52 frames per second (fps) on an RTX 4080 graphics card.

4. Experiment
4.1. Datasets

KAIST [38], OTCBVS [39], and CVC-14 are benchmarks adopted for model validation.
Table 1 lists the number of images derived from different datasets for training and validation.



Electronics 2024, 13, 1770 9 of 15

Table 1. Number of images for training and validation from day and night.

Datasets
Day Night

Training Validation Training Validation

KAIST 2254 225 3500 350
OTCBVS 1054 105 400 106
CVC-14 706 71 1386 139

In KAIST, we adopted the pre-process that removed the images without pedestrian
instances and those with inconsistent numbers of pedestrian instances. A total of 6329 RGB
and FIR images were derived from the frames for detection during the day and at night.
To improve the training, we re-labeled some images that contained wrong labels.

In OTCBVS, we used the OSU RGB-thermal database, which supports the detection of
objects in thermal FIR and RGB imagery. We extracted 1454 and 211 frames of RGB and
FIR videos for training and testing, respectively. We re-labeled some images without labels
during the pre-processing stage. In this dataset, the size of the moving objects is very small.

CVC-14 contains FIR and RGB images of high quality. We selected 777 and 1535 FIR-
RGB images of day and night scenes for training and validation, respectively.

4.2. Training Setting

In this study, we conducted experiments using NVIDIA RTX4080 GPU with PyTorch.
The parameter setting was achieved by conducting pretests on the datasets for ten runs.
Then, we took the value of parameters under the highest accuracy of detection as the setting
in the uniform experiment.

To observe the effect of the detector in Prior-AttentionNet, we adopted YOLOv5 to
implement pedestrian detection. The parameter settings for the detector used in this paper
are shown in Table 2.

Table 2. Parameter settings of the detector.

Detector Backbone Training
Epoch

Batch
Size

Learning
Rate

Weight
Attenuation IoU

YOLOv5 CSPDarknet53 100 4 10−3 10−4 0.5

4.3. Evaluation Metric

In evaluating object detection models, including pedestrian detection, we focus on
three critical metrics: the miss rate (MR), mean average precision (mAP), and the F1 Score.
The MR, sampled for a false positive rate per image (FPPI) within the range [0.01, 1], as
proposed by Dollar et al. [40], is the most popular metric for pedestrian detection tasks,
emphasizing high-accuracy areas, making it highly relevant for commercial applications.
The mAP, on the other hand, calculates the average precision at varying recall levels,
providing a comprehensive single-figure measure of a model’s quality across different
confidence thresholds, widely accepted for its effectiveness in assessing overall detection
precision. Lastly, the F1 Score harmonizes precision and recall into a single metric, offering
a balanced view of the model’s detection accuracy by equally weighting the importance of
precision (the quality of the detected objects) and recall (the completeness of the detection).
Together, these metrics offer a multifaceted evaluation of detection models, ensuring both
the effectiveness and reliability of the detection tasks.

4.4. Comparison with State-of-the-Art Multispectral Pedestrian Detection Methods
4.4.1. KAIST Dataset

To validate the effectiveness of our proposed method, we compared it with the current
state-of-the-art multispectral pedestrian detectors, including RF HOG+LBP [18], LateFusion
CNN, EarlyFusion CNN [26], CMT-CNN [33], Halfway fusion [28], MSDS-RCNN [31],



Electronics 2024, 13, 1770 10 of 15

CIAN [34], AR-CNN [35], MBNet [13], and ICAFusion [41]. Table 3 shows the detection
results of our method and the state-of-the-art detectors on the KAIST dataset. Across all
scenes, including day and night, we achieved a miss rate of 6.13% at night and 7.04%
during the day, which is a reduction of 0.69% at night and 0.81% during the day compared
to the previous best method, ICAFusion [41]. From these results, our method demonstrates
effective feature fusion of the two spectra, maintaining good detection accuracy in both
daytime and nighttime scenarios.

Table 3. MR of comparison models and Prior-AttentionNet on KAIST dataset.

Method Low Illuminance (Night) High Illuminance (Day)

RF HOG+LBP [18] 29.4 28.7
LateFusion CNN [26] 37.0 46.2
EarlyFusion CNN [26] 51.8 50.9

CMT-CNN [33] 54.8 47.3
Halfway fusion [28] 26.59 24.88
MSDS-RCNN [31] 10.60 13.73

CIAN [34] 11.13 14.77
AR-CNN [35] 8.38 9.94
MBNet [13] 7.86 8.28

ICAFusion [41] 6.82 7.85
Ours 6.13 7.04

4.4.2. OTCBVS Dataset

To verify the effectiveness of our proposed method, we compared it with the current
state-of-the-art multispectral pedestrian detectors, including SuBSENSE [19], IISC [21],
Kim’s method [22], FgSegNet [20], SRCNN+EDM, EDSR+EDM, and STEIM+EDM [23].
Table 4 presents the detection results of our method and these advanced detectors on
the OTCBVS dataset. Across all scenes, encompassing both day and night, our method
achieved an F1 Score of 0.678 and a mean average precision (mAP) of 94.54%, which
is a 7.03% improvement over the previous best method, STEIM+EDM [23]. Given that
pedestrian targets in OTCBVS are primarily small-scale, the aforementioned results indicate
that our method also exhibits commendable performance in handling small-scale targets.

Table 4. mAP and F1 Score of models tested on OTCBVS dataset.

Method F1 Score mAP

SuBSENSE [19] 0.638 -
IISC [21] 0.674 -

Kim’s method [22] 0.569 -
FgSegNet [20] 0.077 -

SRCNN+EDM [23] - 65.45
EDSR+EDM [23] - 76.01
STEIM+EDM [23] - 87.51

Ours
all day night all day night

0.678 0.699 0.639 94.54 97.65 92.62

4.4.3. CVC-14 Dataset

Table 5 shows the performance of models tested on CVC-14; we compared our model
with RF HOG+LBP [18], Halfway fusion [28], AR-CNN [35], and MBNet [13]. Across all
scenes, including day and night, we achieved a miss rate of 17.6% at night and 11.0% during
the day. Our model achieves the best detection performance during the daytime. While
there is not a significant improvement in detection performance compared to MBNet during
nighttime, our model significantly outperforms MBNet and other methods during daytime.
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Table 5. MR of comparison models and Prior-AttentionNet on CVC-14 dataset.

Method Low Illuminance (Night) High Illuminance (Day)

RF HOG+LBP [18] 26.6 (RGB)
16.7 (FIR)

81.2 (RGB)
24.8 (FIR)

Halfway fusion [28] 34.4 38.1
AR-CNN [35] 18.1 24.7
MBNet [13] 13.5 24.7

Ours 17.6 11.0

4.5. Ablation Study

In this ablation study, we delve into the intricate interplay between two pivotal
modules: the FIR-RGB Fusion Module and the Prior-Attention module. These modules
represent critical components of our pedestrian detection framework, each contributing
distinct capabilities to enhance the overall performance. Our primary objective is to
comprehensively assess and quantify the impact of these modules on pedestrian detection
accuracy, particularly when confronted with varying illuminance conditions. We conducted
ablation experiments on the KAIST and OTCBVS datasets.

4.5.1. Effect of FIR-RGB Fusion Module

From Tables 6 and 7, it can be observed that the FIR-RGB mode shows improvements
compared to the single FIR and RGB modes. In low-light conditions, FIR images tend
to perform better, while in well-lit scenarios, the detection performance of RGB datasets
is often superior. By fusing FIR and RGB, we can effectively leverage the advantages
of different spectra in varying lighting environments, resulting in a dataset with richer
features that is more conducive to further image processing and object detection. The use
of the FIR-RGB mode has led to further improvements in the MR compared to detection
using a single spectrum.

Table 6. MR and mAP of FIR mode, RGB mode, and FIR-RGB mode tested on KAIST.

Mode
Night

(Low Illuminance)
Day

(High Illuminance)

MR mAP MR mAP

FIR 9.76 75.6 17.61 91.5
RGB 10.87 78.5 12.55 93.2

FIR-RGB 7.89 87.0 13.52 93.5

Table 7. MR and mAP of FIR mode, RGB mode, and FIR-RGB mode tested on OTCBVS.

Mode
Night

(Low Illuminance)
Day

(High Illuminance)

MR mAP MR mAP

FIR 17.98 84.4 19.30 94.2
RGB 20.97 86.8 17.86 95.2

FIR-RGB 19.53 89.4 17.60 97.8

Figure 4 illustrates the detection results on three datasets. The FIR-RGB mode exhibits
higher detection rates and confidence compared to the FIR and RGB modes. In the KAIST
dataset, all three modes detect pedestrians. In the OTCBVS dataset, the FIR-RGB mode
achieves the highest confidence score. The FIR-RGB mode optimizes detection rates over the
FIR and RGB modes. The fused data can leverage the advantages of individual modalities,
ultimately leading to more consistent detection results. Although multispectral image fusion
may potentially reduce visual perception quality, it provides additional feature information
for machine learning and object detection, thereby enhancing detection performance.
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4.5.2. Effect of Prior-Attention Module

Tables 8 and 9 present the comparative results of the ablation experiment of the Prior-
Attention module. For low illuminance, FIR-RGB+ Prior-Attention boosts the average mAP
by 7.79%, and for high illuminance, it enhances it by 3.61%. On KAIST images, FIR-RGB+
Prior-Attention excels with an 11.6% mAP improvement under low illuminance and 6.4%
under high illuminance. However, on OTCBVS images, it achieves a substantial 25.55%
reduction in mAP.

Table 8. Ablation study on KAIST.

Mode
Night

(Low Illuminance)
Day

(High Illuminance)

MR mAP MR mAP

FIR-RGB 7.89 87.00 13.52 93.50
FIR-RGB + Saliency Attention 6.62 92.10 8.73 95.53

FIR-RGB + Segmentation 6.26 97.31 8.14 97.74
FIR-RGB + Prior-Attention 6.13 97.56 7.04 98.12

Table 9. Ablation study on OTCBVS.

Mode
Night

(Low Illuminance)
Day

(High Illuminance)

MR mAP MR mAP

FIR-RGB 19.53 89.42 17.60 97.80
FIR-RGB + Saliency Attention 16.73 92.61 12.73 95.70

FIR-RGB + Segmentation 8.00 97.86 8.00 98.62
FIR-RGB + Prior-Attention 5.00 98.32 5.00 99.16

In Figure 5, it can be observed that on the KAIST and OTCBVS image datasets, the de-
tection performance significantly improves when adopting the FIR-RGB + Prior-Attention
mode compared to using the FIR-RGB + Saliency Attention mode and the FIR-RGB + Seg-
mentation mode. The Prior-Based Saliency Attention mode effectively leverages superpixel
segmentation prior features to enhance the pedestrian extraction capability of saliency atten-
tion, effectively improving detection outcomes. This method can detect pedestrians of vary-
ing scales with high confidence. Compared to other modes, the FIR-RGB + Prior-Attention
mode significantly boosts the confidence of detections. For instance, on KAIST images,
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the confidence level of a cyclist in the image increased from 0.80 to 0.98. By incorpo-
rating superpixel segmentation prior into saliency attention, the detector identified two
pedestrians that were previously undetectable. On OTCBVS images, by adding superpixel
segmentation prior to saliency attention, the detector identified four smaller pedestrians
and also detected pedestrians with occlusions. Although the saliency attention mode excels
at highlighting pedestrian features, it may miss smaller pedestrians. By incorporating the
SLIC superpixel segmentation prior, the model’s performance in extracting attention for
small objects can be enhanced, improving the detection accuracy for multi-scale pedestrians.
Employing a saliency attention extraction network with superpixel segmentation prior can
more efficiently detect pedestrians in various environments.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 16 
 

 

6.4% under high illuminance. However, on OTCBVS images, it achieves a substantial 
25.55% reduction in mAP. 

Table 8. Ablation study on KAIST. 

Mode 
Nightzouqiuxia(Low 

Illuminance) 
Dayzouqiuxia(High 

Illuminance) 
MR mAP MR mAP 

FIR-RGB 7.89 87.00 13.52 93.50 
FIR-RGB + Saliency Attention 6.62 92.10 8.73 95.53 

FIR-RGB + Segmentation 6.26 97.31 8.14 97.74 
FIR-RGB + Prior-Attention 6.13 97.56 7.04 98.12 

Table 9. Ablation study on OTCBVS. 

Mode 
Nightzouqiuxia(Low 

Illuminance) 
Dayzouqiuxia(High 

Illuminance) 
MR mAP MR mAP 

FIR-RGB 19.53 89.42 17.60 97.80 
FIR-RGB + Saliency Attention 16.73 92.61 12.73 95.70 

FIR-RGB + Segmentation 8.00 97.86 8.00 98.62 
FIR-RGB + Prior-Attention 5.00 98.32 5.00 99.16 

In Figure 5, it can be observed that on the KAIST and OTCBVS image datasets, the 
detection performance significantly improves when adopting the FIR-RGB + Prior-Atten-
tion mode compared to using the FIR-RGB + Saliency Attention mode and the FIR-RGB + 
Segmentation mode. The Prior-Based Saliency Attention mode effectively leverages su-
perpixel segmentation prior features to enhance the pedestrian extraction capability of 
saliency attention, effectively improving detection outcomes. This method can detect pe-
destrians of varying scales with high confidence. Compared to other modes, the FIR-RGB 
+ Prior-Attention mode significantly boosts the confidence of detections. For instance, on 
KAIST images, the confidence level of a cyclist in the image increased from 0.80 to 0.98. 
By incorporating superpixel segmentation prior into saliency attention, the detector iden-
tified two pedestrians that were previously undetectable. On OTCBVS images, by adding 
superpixel segmentation prior to saliency attention, the detector identified four smaller 
pedestrians and also detected pedestrians with occlusions. Although the saliency atten-
tion mode excels at highlighting pedestrian features, it may miss smaller pedestrians. By 
incorporating the SLIC superpixel segmentation prior, the model’s performance in ex-
tracting attention for small objects can be enhanced, improving the detection accuracy for 
multi-scale pedestrians. Employing a saliency attention extraction network with super-
pixel segmentation prior can more efficiently detect pedestrians in various environments. 

 
Figure 5. Detection on KAIST and OTCBVS with YOLOv5: (a) FIR-RGB mode; (b) FIR-RGB + Saliency
Attention mode; (c) FIR-RGB + Segmentation mode; (d) FIR-RGB + Prior-Attention mode.

5. Conclusions

In summary, this study introduces Prior-AttentionNet, an advanced end-to-end detec-
tion model designed to address the complex task of multi-scale pedestrian detection under
varying illumination conditions. Prior-AttentionNet utilizes Prior-Attention mechanisms
and image fusion techniques to enhance detection accuracy. By extracting attention feature
maps, it effectively highlights pedestrians in FIR-RGB fused images. Additionally, through
the use of a Prior-Attention module for image fusion processing, it successfully reduces
background noise from pedestrians that remain in the background even after saliency map
masking. However, the method proposed in this paper has certain requirements for the
quality of FIR images, and further optimization is needed to enhance its generalization
performance. In future work, we will employ an adaptive fusion method for visible and
infrared images to further improve the performance of pedestrian detection models under
different data quality conditions.
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