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Abstract: Electric vehicles (EVs) are becoming more and more popular as they provide significant
environmental benefits compared to fossil-fuel vehicles. However, they represent substantial loads on
the power grid, and the scheduling of EV charging can be a challenge, especially in large parking lots.
This paper presents a metaheuristic-based approach parallelized on multicore processors (CPU) and
graphics processing units (GPU) to optimize the scheduling of EV charging in a single smart parking
lot. The proposed method uses a particle swarm optimization algorithm that takes as input the
arrival time, the departure time, and the power demand of the vehicles and produces an optimized
charging schedule for all vehicles in the parking lot, which minimizes the overall charging cost
while respecting the chargers’ capacity and the parking lot feeder capacity. The algorithm exploits
task-level parallelism for the multicore CPU implementation and data-level parallelism for the GPU
implementation. The proposed algorithm is tested in simulation on parking lots containing 20 to
500 EVs. The parallel implementation on CPUs provides a speedup of 7.1x, while the implementation
on a GPU provides a speedup of up to 247.6x. The parallel implementation on a GPU is able to
optimize the charging schedule for a 20-EV parking lot in 0.87 s and a 500-EV lot in just under 30 s.
These runtimes allow for real-time computation when a vehicle arrives at the parking lot or when the
electricity cost profile changes.

Keywords: electric vehicles; graphics processing units; metaheuristic; multicore processors; parallel
programming; parking lot; particle swarm optimization; recharge scheduling

1. Introduction

Electric vehicles (EVs) are becoming more and more popular due to their lower
environmental footprint. However, they represent a significant load on the power grid, and
this load is only going to increase in future years. As per the International Energy Agency,
EVs consumed about 100 TWh in 2022, and this is expected to increase to over 380 TWh by
the year 2032 [1]. To sustain this increased and dynamic demand, the power grid must be
modernized, automated, and optimized. One way to contribute to this effort is to develop
solutions for the EV charge scheduling problem. This problem focuses on generating an
optimized charging schedule for all EVs within a system. The goal may be to reduce the
peak power draw, maintain an acceptable voltage profile, or reduce the overall costs.

Like several scheduling problems, the problem of the EV charging schedule is non-
convex, involves a large number of variables, and is NP-hard, which means that an optimal
solution cannot be found in polynomial time [2]. In fact, for most realistically sized systems,
it is not guaranteed to find the optimal solution. To be more precise, the problem of the EV
charging schedule could be classified as a fully polynomial-time approximation scheme
(FPTAS) [3], as it is somewhat similar to the well-known knapsack problem. This means
that there exist polynomial time algorithms to find approximate solutions to the problem.
However, these algorithms will only find approximative solutions. Based on [4], several
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algorithms have been tested to solve the EV charging schedule problem. These can be clas-
sified into three families: Exact optimization methods, heuristics, and metaheuristics. Exact
methods include, among others, convex optimization methods [5], linear programming [6],
and mixed integer nonlinear programming (MINLP) [7]. These are deterministic and very
efficient when solving small instances of the problem. However, they can have difficulties
coping with the complexity of realistic and large-scale problem sizes. Heuristics work
by trial and error or by following a set of rules defined specifically to solve the problem
at hand. An example of a heuristic-based approach is proposed in [8], where a graph
search algorithm is used to find an optimized charging schedule. Two other examples
of heuristics for the problem at hand are the first-in-first-serve (FIFS) method and the
earliest-deadline-first (EDF) method [9]. Finally, metaheuristics are a class of optimization
algorithms that can be applied to a wide range of optimization problems. These algorithms
are generic, but a solution representation, a fitness function, and a search neighborhood
must be defined specifically for the problem under consideration. Metaheuristics have the
advantage of scaling very well to a large problem size. They can be used where classic
and heuristic methods fail to perform adequately. Examples of metaheuristics for the EV
charging schedule are particle swarm optimization (PSO) [10,11], and the genetic algorithm
(GA) [12,13], although several others have been used. In fact, metaheuristics are probably
the most commonly used methods for the EV charge scheduling problem. In their review
paper, the authors of [4] cover the use of several metaheuristics for the problem of EV
charging schedules and describe their advantages compared to other methods.

That being said, metaheuristics are no silver bullet. In fact, Wolpert and Macready, in
their paper no free lunch theorems for optimization [14], establish through a set of theorems
that performance improvement in one category of problems is typically balanced out by a
decline in performance in another category. This means that metaheuristics are not better than
other algorithms for all problems, but only for specific problems for which exact methods or
heuristics do not provide adequate results. It also means that to apply the metaheuristic to
a problem, one must define an efficient solution encoding, search neighborhood and fitness
function. Another paper from Loscos et al. [15] demonstrates through a formal proof that the
correlation between the inputs and the generated outputs remains undecidable in the context
of local search heuristics and, by extension, metaheuristics. This means that metaheuristics are
not guaranteed to generate optimal or even acceptable solutions in any given run due to the
non-deterministic aspect of the algorithm. However, their advantage still remains invaluable
in situations where other algorithms provide subpar results.

Because metaheuristics work by improving candidate solutions over a large number of
iterations, they can also suffer from a long execution time, depending on the configuration
parameters used. To avoid this problem, parallel implementations of metaheuristics have
been proposed, which benefit from today’s parallel processors. Examples are a parallel
GA [16] and a parallel PSO [17], both implemented on multicore central processing units
(CPUs). These parallel implementations use task-level parallelization where each thread
performs a big chunk of work in parallel. Task-level parallelization is optimal for multicore
CPUs where the number of cores is somewhat limited. Although the acceleration or
speedup gained by the parallelization of multicore CPUs can be significant, there are
parallelization implementations that can provide better speedup. One such technique is
data-level parallelization on graphics processing units (GPUs). In data-level parallelization,
each thread performs simple operations on a large quantity of data in parallel. Given that
GPUs have a much higher number of cores than CPUs, data-level parallelization on GPUs
has the potential to offer greater speedups. Examples of data-level parallelization on GPUs
of the PSO are provided in [18] and of the GA, in [19]. These implementations are for other
engineering problems, and therefore the solution encoding and the evaluation of the fitness
function are different than in this paper. The parallelization strategies related to those
aspects will therefore differ.

Given the advantage of metaheuristics compared to classic optimization methods and
heuristics, this paper presents a PSO-based optimization algorithm for the problem of EV
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charge scheduling. The algorithm proposed is a multi-run PSO, which addresses the non-
deterministic aspect of metaheuristics and provides a higher-quality result than a single-run
PSO. Compared to other metaheuristics, the PSO is a natural fit for continuous optimization
functions as particles evolve in a continuous multidimensional space [20]. To address the long
execution time of the metaheuristic, the algorithm is parallelized on CPUs using task-level
parallelization and on GPUs using data-level parallelization, and the performance results of
both methods are thoroughly compared. The proposed multi-run PSO is tested in simulation
using nine different scenarios containing 20 to 500 EVs. The results show that the proposed
algorithm performs better than previously published algorithms in the literature, and scales
well to large scenarios, which are not often used in the literature. The parallel implementation
on CPUs leads to a 7.1x speedup, and the parallelization on a GPU leads to a 247.6x speedup,
compared to a sequential execution on a CPU.

This paper makes three main contributions. Firstly, it describes from start to finish a
solution for EV recharge scheduling optimization based on a multi-run PSO. Our proposed
solution also includes a fitness function that encompasses the optimization objective and
multiple constraints. Secondly, it proposes a method based on task-level parallelization
to efficiently implement the multi-run PSO on multicore CPUs. This approach provides a
significant speedup compared to sequential execution on a CPU, but the runtime remains
too long to be used in real time. Thirdly, it proposes a method based on data-level paral-
lelization to implement the multi-run PSO on a GPU. This method provides the greatest
speedup and allows the algorithm to be used for real-time optimization.

The reminder of this paper is organized as follows. Section 2 presents previous works
published on the topic of EV recharge scheduling optimization in order to appreciate the
contribution of our paper. Section 3 discusses the materials and methods, which include
the problem definition, a description of GPUs, the multi-run PSO, the fitness function, the
parallelization of multicore CPUs, and the parallelization of a GPU. Section 4 presents the
results based on five tests performed in simulation and finally, Section 5 concludes with a
discussion on the relevance and significance of the proposed algorithm.

2. Previous Works

In this section, we present several works that have been published on the subject of
EV recharge scheduling in order to better situate this paper amongst existing literature.

In [21], Chen et al. published a charge-scheduling algorithm for EVs in a parking lot.
Their algorithm uses a simulated annealing (SA) metaheuristic and considers renewable
energy sources such as photovoltaic panels and storage batteries. The SA is an algorithm
that is inspired by the annealing process in metallurgy, and it usually improves a single
candidate solution over several iterations. To make the algorithm more efficient, the
authors use multiple candidate solutions and introduce the concept of elitism, where a
good solution is allowed to continue to the next iteration even though it could be discarded
as per the SA rules. They tested their algorithm in simulation on a 100-EV parking lot, and
their multi-solution SA with elitism was revealed to be more efficient than a traditional SA.

To obtain a true population-based metaheuristic, one can refer to [13], in which
Abdullah-Al-Nahid and Aziz proposed a GA for the EV recharge scheduling problem. The
GA is a very popular metaheuristic inspired by the evolution of species. It improves a
population of candidate solutions using operators such as crossover and mutation over
several iterations. They tested their algorithm in simulation on a 30-EV parking lot and
achieved positive results.

In [11], Zheng et al. present a PSO-based algorithm for the charging and discharging of
EVs. They used a Monte Carlo method to estimate the charging load of EVs throughout the
day, and they used a PSO to compute the optimal charging and discharging schedule of the
EVs based on the time-of-use electricity pricing. PSO is another popular metaheuristic that
has been used with great success in a wide range of engineering problems. The objective of
this work is to reduce the peak-to-valley load difference for the grid and lower the charging
cost for the customer, resulting in a multi-objective collaborative optimization.
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To get the best of both worlds and benefit from the advantages of the GA and the PSO,
the authors of [22] propose a hybrid GA-PSO algorithm for the problem of EV charging.
Their problem description includes battery swapping stations where car batteries can
be swapped for very fast recharging. They tested their algorithm on the IEEE-33 node
distribution network with 100 groups of 10 EVs.

Another common metaheuristic used for the EV charge scheduling problem is the
gravitational search algorithm (GSA), as it is proposed in [23]. This algorithm is similar
to the PSO in the sense that particles (or candidate solutions) move in a multidimensional
space and are attracted to each other. However, contrary to the PSO, where a particle is
attracted only to its best previous position and the swarm’s best particle, in the GSA, each
particle is attracted to all other particles, and the attraction force is proportional to the
quality of the particles and their distance. In [23], the author investigates three different
decision functions for the GSA: The tangent, the sigmoid, and the round function, in order
to identify which one of the three is best suited for the problem at hand. They test their
GSA-based algorithm on the 34-node distribution network with fewer than 30 EVs.

Continuing in the frame of developing a more performant and faster converging algo-
rithm, the author of [24] published a hybrid PSO-GSA-based method for the problem of EV
charge scheduling. They conduct exhaustive testing using various benchmark functions to
demonstrate the superiority of the algorithm compared to the two original algorithms before
using it in simulation to optimize the charging schedule. Their optimization objective includes
the overall charging cost and the load variance of the grid. They show that they were able to
improve the operational stability of the grid and the economic benefit for the users.

In [25], Rho et al. focus on the problems of EV load estimation and EV charge schedul-
ing, but rely on machine learning (ML) techniques instead of metaheuristics. In the first
step, they use the XGBoost algorithm [26], which is a tree-based ML technique that uses
a boosting method that learns residuals to estimate a function with great accuracy. In a
second step, they use a convolutional neural network long short-term memory network
(CNN-LSTM) to compute a charging/discharging schedule.

Two more works of interest on the topic of EV charge scheduling are [9,27], both
published by Wu et al. These papers are interesting because they include the complete
details of an example electricity cost profile and a single parking lot profile in the form
of tables. This allows researchers to reuse their scenario and compare new methods to
theirs. This is what we are doing in this paper, we are reusing the scenario from [9] to test
our proposed parallel algorithm on multicore CPUs and a GPU for the optimization of EV
recharge scheduling.

Despite the fact that the vast majority of papers on EV recharge scheduling use meta-
heuristics, and that metaheuristics are time consuming due to the vast majority of them being
population based and typically requiring a large number of iterations, to our knowledge
there has been little to no work conducted on developing parallel algorithms for the fast
computation of EV recharge scheduling. However, there exist several parallel implementa-
tions of metaheuristics applied to other fields. In [28], a parallel PSO for a multicore CPU is
proposed. The PSO population is divided into multiple sub-populations, and each thread
runs an independent PSO algorithm on its own sub-population. At given intervals, the best
particles from the sub-population are shared between the threads to allow cooperation. A
similar approach was proposed in [29] to develop a parallel PSO and a parallel GA applied
to the problem of trajectory planning for uncrewed air vehicles (UAV). In [30], the same
strategy was used to parallelize a hybrid GA-PSO algorithm, still for the problem of UAV
path planning. To achieve a higher performance than what is possible on a multicore CPU,
one can turn to GPUs. A parallel GA on GPU for vehicle routing is proposed in [31], where
a speedup of 1700x is achieved when compared to a sequential implementation on CPU.
Other implementations of the GA on GPU are published in [32–34]. In all instances, data-level
parallelism must be exploited in the algorithm to allow the implementation to benefit from
the massively parallel architecture of the GPU. This represents a significant programming
effort, but the speedup achieved is quite rewarding.
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In this paper, we propose two parallel implementations of the PSO for the problem of
EV recharge scheduling. The first implementation is for multicore CPUs, while the second
is for GPUs. These parallel implementations allow a significant speedup of the algorithm,
which is essential for large parking lots if one wants to run the algorithm in real time.

3. Materials and Methods
3.1. Problem Formulation

This section formulates the problem that this paper addresses. However, before the
problem formulation is given, two terms must be defined. Firstly, an electricity cost profile
is a structure that contains the cost of the electricity in kWh for each timeslot of the day. This
is useful to represent variable electricity pricings. Secondly, a parking lot profile includes
the arrival time, departure time and power demand (i.e., the amount of energy required
to recharge the battery) for each EV that travels to or from the parking lot. In this work,
it is assumed that there are enough charging stations in the parking lot to serve all the
EVs. Given an electricity cost profile and a parking lot profile, the problem of EV charge
scheduling is defined as follows:
minimize

C =
numEV

∑
i=1

depi

∑
t=arri

xd
t
i ∗ ElecPricet (1)

subject to
depi

∑
t=arri

xd
t
i = demi ∀i ∈ EV (2)

xd
t
i ≤ limChr ∀i ∈ EV, ∀t ∈ T (3)

numEV

∑
i=1

xd
t
i ≤ limT f ∀t ∈ T (4)

where C is the overall cost for charging all EVs in the parking lot, numEV is the number of EVs,
arri and depi are the arrival and departure time of EVi, xd

t
i is the electric quantity assigned to

EVi at timeslot t, ElecPricet is the price of electricity in timeslot t, demi is the energy demand
for vehicle i, limChr is the charging rate limit for each vehicle, and limT f is the transformer
capacity limit for the entire parking lot. Equations (2)–(4) are the constraints to the problem.

In a word, the problem of EV charge scheduling consists of calculating a charging
schedule for all EVs in the parking lot in order to minimize the overall cost of charging the
vehicles while ensuring that each EV gets the required energy and respecting the maximum
charging rate for each vehicle and the transformer capacity limit for the entire parking lot.
This problem is large scale, nonlinear, non-convex, and NP-hard [2], hence the need for
metaheuristic optimization, which is efficiently parallelized on parallel processors such as
multicore CPUs and GPUs.

3.2. Graphics Processing Units

GPUs are coprocessors that were originally used specifically for graphics applications.
They were initially built as parallel hardware pipelines to process a large throughput of
graphics data efficiently. However, over the years, the hardware pipelines were replaced
with a large number of programmable processors. The general architecture of an NVIDIA
GPU is illustrated in Figure 1. The large number of compute cores is divided into streaming
multi-processors (SM). Each core has a set of registers, and the cores within the same SM
share a memory called shared memory. This small, but high-speed, memory is used to
share data between threads within the same SM. The GPU has a level 2 cache that interfaces
with the global memory. The global memory is shared by all the cores on the GPU. In this
research, we use the NVIDIA RTX 4070 Ti (manufactured by NVIDIA Corp., sourced in
Kingston, Canada) to run our experimental tests. This GPU has 7680 cores divided into
80 SMs, 48 MB of L2 cache, and 12 GB of global memory.
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When programming an NVIDIA GPU, one can use the CUDA compute framework [35].
The computer, or CPU, is referred to as the host, and the GPU is the device. A CUDA
program consists of host code that calls CUDA functions (or kernels) to run code in parallel
on the device. An illustration of the execution model of a CUDA program is shown in
Figure 2. Here, the host code calls kernel 1, which launches a grid of threads on the
device. The threads are organized in blocks. A grid can have up to three dimensions, and
blocks can also have up to three dimensions. In Figure 2, both the grid and the blocks are
two-dimensional. When launching a grid of threads, the blocks are mapped to the SM on
the device. This means that threads from the same block can share data through shared
memory within a kernel and can also be synchronized. However, threads from different
thread blocks cannot be synchronized inside a kernel. They are synchronized at the end
of the kernel only. To share data between threads from different blocks, one must use the
global memory and use multiple kernels.
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3.3. Particle Swarm Optimization

The PSO is a population-based metaheuristic that was first published by Kennedy
and Eberhard in 1995 [36]. The algorithm is inspired by the movement of a flock of birds
or a school of fish. It simulates the movement of particles in a multidimensional search
space. The position of the particles represents candidate solutions, and they evolve through
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an iterative process until optimized solutions are found. At each iteration, particles are
attracted by their previous best position (local influence) and the swarm’s best position
(global influence).

In this work, we used an improved version of the PSO, which we call the multi-run
PSO. Because the PSO is a non-deterministic algorithm, it usually produces different results
each time the algorithm is run, and some instances return better results than others. For
this reason, we wrap the original PSO in an outer loop that runs the PSO multiple times,
and the best solution of all the runs is the solution returned by our multi-run PSO.

The flowchart of our multi-run PSO is shown in Figure 3. Each run starts at line 2
by randomly initializing the position xt and velocity vt of the particles. The cost of each
particle is then evaluated at line 3. Based on the cost calculated, the particles’ best previous
positions bt are updated at line 4 and the swarm’s best position gt is updated at line 5. The
velocity and position of the particles are then updated at lines 6 and 7 using:

vt+1 = ωvt + c1r1(bt − xt) + c2r2(gt − xt) (5)

xt+1 = xt + vt+1 (6)

where all bold variables are vectors, v is the velocity of the particle; x is its position; b
is the best position previously occupied by the particle; g is the best position previously
occupied by any particle of the swarm; r1 and r2 are vectors of random values between
0 and 1; and ω, c1 and c2 are the inertia, the personal influence, and the social influence
parameters, respectively. Finally, t is the time or iteration index. The termination criterion
is verified at line 8. In our implementation, we have used a fixed number of iterations
that was selected experimentally so that good solutions are produced for all the problem
sizes studied. Line 9 is where the best solution tracked by the multi-run PSO is updated.
Line 10 is the termination criterion for the outer loop of the multi-run PSO. In our case, it
is also based on a fixed number of iterations. This has the advantage of guaranteeing a
known runtime for the algorithm for a given instance size and characteristics, as well as
the computing environment. Finally, the best result is returned by the algorithm at line 11.
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3.4. Solution Encoding

The input to the PSO is provided in the form of an electricity cost profile and a parking
lot profile. As explained earlier, an electricity cost profile contains the cost of the electricity
in kWh for each timeslot of the day. A parking lot profile includes for each car their arrival
time, their departure time, and their power demand (i.e., the amount of energy required
to recharge the battery). Candidate solutions or particles used by the multi-run PSO are
encoded as:

X =
{

xarr1
1 , . . . , xdep1

1 , xarr2
2 , . . . , xdep2

2 , . . . , xt
i , . . . , xarrnumEV

numEV , . . . , xdepnumEV
numEV

}
(7)

where xt
i is the electric quantity assigned to EVi at timeslot t. There is an x for each timeslot

for which the vehicle is parked in the parking lot. The value of x varies between 0 and 1 and
represents the proportion of the charging demand of the vehicle. To decode a candidate
solution, one must use the following equation:

xd
t
i =

 xt
i

∑
depi
t=arri

xt
i

demi (8)

where xd
t
i is the decoded version of xt

i and demi is the charging demand for vehicle i. In the
event that all xt

i are equal to zero, the decoding resets these values to 0.5 to avoid a division by
zero. This decoding ensures that the candidate solution always fulfill the power demand of
the vehicle equality defined in Equation (2) holds true for all vehicles i.

3.5. Fitness Function

The fitness function is what guides the multi-run PSO during the optimization
process. It is composed of an optimization objective and constraints. The optimization
objective consists of minimizing the cost of the electricity purchased by the owners of
the EVs, as defined in Equation (1). There are three constraints to the problem. The one
defined in Equation (2) is satisfied by the solution encoding. The next two are integrated
into the fitness function. The constraint at Equation (3) specifies that an EV cannot
request more power than what is available at a charging station or what the charging
port can provide during any single timeslot. The constraint at Equation (4) specifies that
all the EVs in the parking lot cannot request more power than the transformer capacity
during any single timeslot. These constraints are integrated into the fitness function by
using penalty terms. The penalty term associated with the constraint at Equation (3) is
defined as:

dlimChr =
numEV

∑
i=1

depi

∑
t=arri

dt
i (9)

where

dt
i =

{
0, xd

t
i ≤ limChr(

xd
t
i − limChr

)2, xd
t
i > limChr

(10)

For every timeslot in which an EV is present, this checks if the charging power
requested by an EV is higher than the available power at the charger. If it is, the square of
the difference is added to a sum, which forms the penalty term dlimChr. The penalty term
associated with the constraint at Equation (4) is defined as:

dlimT f =
T

∑
t=1

et (11)
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where

et =


0,

numEV

∑
i=1

xd
t
i ≤ limT f(

numEV

∑
i=1

xd
t
i − limT f

)2

,
numEV

∑
i=1

xd
t
i > limT f

(12)

For every timeslot, this checks if the charging power requested by all vehicles present
in the parking lot is greater than the transformer limit. If it is greater, the square of the
difference is added to a sum, which forms the penalty term dlimT f .

A combined penalty term ρ is then computed by summing the two terms:

ρ = dlimChr + dlimT f (13)

Now that the penalty term has been calculated, the fitness function F(X) can be
computed by integrating both the objective function and the penalty term, as follows:

F(X) =

{
0 + 1

1+ρ , ρ ≥ 0
1 + 1

1+C , ρ = 0
(14)

When there is a penalty value greater than 0, the penalty term is considered in the
function, and the fitness has a value between 0 and 1. This represents infeasible solutions,
as one or more of the two constraints were violated. Despite being infeasible, solutions with
a lower level of violation result in a better fitness. This is important to guide the multi-run
PSO towards feasible solutions at the initial stage of the optimization process. When there
is no penalty, the cost term is considered, and fitness has a value between 1 and 2. This
represents a feasible solution. Moreover, fitness increases inversely with cost, meaning that
solutions with lower costs have higher fitness.

3.6. Parallelization on Multicore CPU Using OpenMP

The first parallelization technique employed in this paper is parallelization on multi-
core CPUs using OpenMP. OpenMP [37] is a popular specification for parallel programming.
It allows the easy creation and management of threads on multicore CPUs. One key feature
of OpenMP is that it can run for-loops in parallel by running each iteration of the loop using
a different thread. This, of course, is feasible only when the iterations do not depend on
each other. In our multi-run PSO, the outer loop fulfills this requirement as each run of the
PSO is completely independent. For this reason, we have parallelized our multi-run PSO
by running the iterations of the outer for-loop in parallel. The flowchart of the resulting
parallel implementation is shown in Figure 4 for the case of two threads. In the flowchart,
we can note that the outer loop still appears, but iterations are completed by multiple
independent threads. Before the start of the outer loop, an array of the same dimension
as the number of outer loop iterations is created in memory to store the best fitness and
position for each iteration. This ensures that each iteration of the outer for-loop does not
share any data and is fully independent. At the end of the parallel for-loop, the main thread
iterates through this array to find the very best fitness and position, which is returned by
the algorithm. Because the outer loop has a large number of iterations, a large number of
threads can be used in the parallel implementation.

3.7. Parallelization on GPU Using CUDA

The parallelization on a multicore CPU is a task-level parallelization. Each thread
performs a big chunk of work in parallel. In the case of the multi-run PSO, each thread
performs one or more runs of the PSO. The performance gain will be significant but cannot
be higher than the number of outer-loop iterations. If higher performance is desired, a data-
level parallelization is required where each step of the original algorithm is parallelized
so that it executes in parallel on the data. Because there are a large number of particles
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and each particle has a large dimension, the performance gain obtained by the data-level
parallelization is expected to be much higher than that of the task-level parallelization.
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In our second parallel design, we use the CUDA compute framework to develop
a data-level parallel implementation of the multi-run PSO. Instead of parallelizing the
outer-loop iteration, we parallelize each step of the original PSO on the GPU and leave the
outer-loop sequential.

Before we can discuss in detail the implementation of each step, we must present
two parallel primitives that are used extensively in the proposed CUDA implementation.
The first parallel primitive is the parallel map illustrated in Figure 5. In this example, it
performs the square of the values in the input vector using one thread per value. The
parallel map primitive can be used for any operation that maps N input values to N output
values using one thread per value. Compared to a sequential loop, which takes N steps
to process the input vector, the parallel map primitive takes a single step, provided that
there are enough compute cores on the device to run the operation. Because of this, the
parallel map primitive is extremely efficient and typically leads to substantial speedups in
a parallel implementation.
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The second parallel primitive illustrated in Figure 6 is the parallel reduction. It maps
N input value to a single output. In this example it is used to find the maximum value, but
it could also be used to compute the sum or the product of an input vector. Compared to a
loop which would take N steps, the parallel reduction primitive takes log2(N) steps. As an
example, for an input vector of 1024 elements, only 10 steps would be required to perform
the reduction, provided that there are enough compute cores on the device.
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Now that these two parallel primitives have been introduced, we can go over the
details of the parallel implementation on a GPU, for which the flowchart is shown in
Figure 7. In the GPU implementation, the iterations of the outer loop of the multi-run PSO
are completed sequentially, but the steps within each PSO run are completed in parallel.
The algorithm starts on the CPU, or host, which controls the sequence of the parallel
kernels that are called on the GPU, or device. For maximum performance, all the steps of
the algorithm are parallelized, and limited interaction between the CPU and the GPU is
required during the optimization process.

In step 2, the initialization of the particles’ position and velocity is parallelized using
a parallel map primitive with one thread per dimension of each candidate solution. As an
example, for 1000 solutions, each with a dimension of 85, a total of 85,000 threads are launched.
Each thread initializes its individual random number state, which is kept in global memory,
and uses this state to initialize the position and velocity of its associated particle.

Next comes the computation of the fitness for each candidate solution at step 3. In this
case, we use one thread block per solution and one thread per vehicle. Each thread decodes
the candidate solution for a vehicle and verifies if the charge rate has been exceeded at
any timeslot. The kernel uses an atomic add to compute the transformer demand in each
timeslot. Each thread also computes the electricity cost to recharge its associated vehicle.
Three parallel reduction primitives are used to compute the charge rate excess term from
Equation (10), the transformer limit excess term from Equation (12), and the overall cost for
the parking lot. Finally, the fitness for the candidate solutions is computed by thread 0 of
each block using the aggregated values from the parallel reductions.

Step 4 consists of the update of each particle’s best previous position. This is par-
allelized using a parallel map primitive and one thread per dimension of the candidate
solutions. Based on the thread identifier (ID), each thread verifies if the fitness of the newly
calculated solution is greater than the fitness of its current previous best and updates one
dimension of its current best.

Steps 5 and 6 consist of a 2-kernel reduction operation to find the index of the par-
ticle with the highest fitness. In the first kernel, a parallel reduction primitive is used in
each block to find the maximum value within the block. In the second kernel, another
parallel reduction primitive is used to find the maximum value from the output of the
previous kernel. A 2-kernel implementation is required because blocks in CUDA cannot be
synchronized or share data within a single kernel.

Now that the index of the best particle has been found, step 7 updates the swarm’s
best particle using a parallel map operation with one thread per dimension of the candidate
solution.

The velocity and position of every particle are updated in step 8 using another parallel
map primitive with one thread per dimension of each candidate solution.

The termination criterion, which consists of a fixed number of iterations, is verified at
step 9. Once the PSO is complete and the termination criteria are met, the swarm’s best
particle is copied from the GPU’s global memory to the CPU to be used by the outer loop
of the multi-run PSO.

Throughout the implementation of the parallel PSO on the GPU, the number of threads
used in each kernel in each step was always maximized. This ensures that the massively
parallel architecture of the GPU is utilized to its maximum, and also provides scalability
for future GPUs, which are likely to contain more cores.



Electronics 2024, 13, 1783 12 of 20Electronics 2024, 13, x FOR PEER REVIEW 13 of 22 
 

 

Initialize particles’ position xt and velocity vt 

Update all bt 

Find index of gt in each thread block

Find index of global gt

Compute new velocities vt+1 and positions xt+1

Terminate ?

Return gt

Global 
Memory

no

Start

Copy gt
yes

Update global gt

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Compute costs f(xt) 

1.

...

...

...

...

...

 
Figure 7. Flowchart of the parallel multi-run PSO on GPU using CUDA. 

  

Figure 7. Flowchart of the parallel multi-run PSO on GPU using CUDA.

4. Results

The proposed parallel PSO for parking lot EV recharging schedule optimization is
validated using nine tests. In the first test, we run the proposed algorithm for a 20-EV
parking lot and compare the results to previously published results in [9] to demonstrate
the expected functioning of the algorithm. In the second test, we run the algorithm for
larger parking lots, ranging from 100 to 500 EVs, to demonstrate the scalability of the
method. In the third test, we demonstrate the advantage of the multi-run PSO compared
to the single-run PSO. In the fourth test, we measure the runtime and speedup of the first
parallelization technique, which is the parallel PSO on multicore CPUs using OpenMP.
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Finally, in the fifth test, we measure the runtime and speedup of the second parallelization
technique, which is the parallel PSO on GPU using CUDA.

The experimental setup used to run the simulations consists of a Dell 7920 Workstation
(manufactured by Dell Inc., sourced in Kingston, Canada) equipped with dual Intel Xeon
Silver 4214R CPUs. Each CPU has 12 hyperthreaded cores, for a total of 24 hyperthreaded
cores. The CPUs are clocked at 2.40 GHz. The workstation is also equipped with an
NVIDIA RTX4070 Ti GPU (manufactured by NVIDIA Corp., sourced in Kingston, Canada)
with 7680 CUDA cores clocked at 2.31 GHz and 12 GB of graphics GDDR6X RAM memory.
The workstation has 128 GB of DDR4 RAM memory.

4.1. Test 1: Optimizing the Schedule for a 20-EV Parking Lot

The first simulation test consists of using the proposed parallel PSO to compute an
optimized recharging schedule for a 20-EV parking lot. To allow comparison with results
published in the literature, we have used the same electricity cost profile and EV parking
profile as in [9]. The electricity cost profile is listed in Table 1. It shows the cost of the
electricity in USD/kWh during the 10 time periods during which the parking lot is open.
The reader can note that the cost is at its maximum at timeslot 3 and timeslot 8, times during
which recharging of the EVs should be avoided as much as possible due to the higher costs.
The next input to the simulation is the EV parking lot profile listed in Table 2. For each
vehicle, the profile includes its arrival time, its departure time, and its power demand in
kWh. This power demand represents the energy required to recharge the vehicle. The EV
charging rate limit in a single time interval is 9.6 kW, and the base transformer limit value
for the entire parking lot is 60 kW. The parallel PSO is configured using the parameters
listed in Table 3. The inertia, personal, and social influence parameters have been set using
values recommended from [38], which promote the convergence of the algorithm. For
the number of particles and the number of inner- and outer-loop iterations, these values
have been set experimentally to perform well in all test cases used in this study. The test is
repeated 100 times to gather statistical data.

Table 1. Electricity cost (USD/kWh) (reproduced from [9]).

Time 1 2 3 4 5 6 7 8 9 10

Electricity Cost 0.1 0.2 0.4 0.2 0.1 0.1 0.2 0.4 0.2 0.1

Table 2. EV parking lot profile (reproduced from [9]).

EV Arrival Time Departure Time Demand (kWh) EV Arrival Time Departure Time Demand (kWh)

1 1 3 18 11 3 8 26
2 3 5 15 12 2 6 17
3 1 5 25 13 5 8 15
4 2 4 18 14 4 8 16
5 2 3 15 15 3 7 14
6 6 10 22 16 5 8 12
7 7 8 14 17 4 7 16
8 8 10 16 18 5 9 19
9 7 8 10 19 1 10 28

10 6 9 20 20 1 5 16

The results of one simulation are shown in Table 4. For each EV, this table lists the
power demand in kW during each timeslot (or hour). The power demand for all EVs was
satisfied. As an example, EV1 uses 9.60 kW during the first hour and 8.40 kW during
the second hour, which sums to the desired 18 kWh demand as listed in Table 2. It is
the same for all other EVs. We can note that minimal recharging is performed during
hours 3 and 8 due to the higher electricity cost, which shows the proper, well-functioning
optimization behavior of the algorithm. From the data listed in Table 4, it is also apparent
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that the constraints have been respected. The maximum power demand for each EV in
each timeslot never exceeds the maximum of 9.6 kWh, and the overall demand for the
entire parking lot never exceeds the base transformer limit of 60 kW. The cost of this
recharging schedule is USD 53.72. It is lower than what has been published in [9] for
various metaheuristic-based algorithms, which ranged from USD 53.77 to USD 59.45. The
difference between our proposed GPU-based PSO and the best algorithm published in [9]
is small, but the true advantage of our proposed GPU-based PSO is that it is able to
scale to very large parking lots, which was not demonstrated in [9]. When compared to
heuristic methods, the difference is more prominent in favor of our multi-run PSO. In [9],
the authors reported a cost of USD 70.10 for a random search (RS), a cost of USD 73.52 for
first-in-first-serve (FIFS), and a cost of USD 73.69 for earliest-deadline-first (EDF).

Table 3. Simulation parameters.

PSO Parameters Value

PSO inertia (ω) 0.7298
PSO personal influence (c1) 1.4960

PSO social influence (c2) 1.4960
Number of particles 1000

Number of iterations (inner loop) 5000
Number of iterations (outer loop) 10

Table 4. Optimized schedule for 20 EVs as calculated by the proposed PSO algorithm.

EV T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Total

EV1 9.60 8.40 0.00 - - - - - - - 18.00
EV2 - - 0.00 7.64 7.36 - - - - - 15.00
EV3 9.60 3.88 0.00 5.70 5.83 - - - - - 25.00
EV4 - 8.45 0.00 9.55 - - - - - - 18.00
EV5 - 9.60 5.40 - - - - - - - 15.00
EV6 - - - - - 4.58 2.36 0.00 5.46 9.60 22.00
EV7 - - - - - - 9.60 4.40 - - 14.00
EV8 - - - - - - - 0.00 6.40 9.60 16.00
EV9 - - - - - - 9.60 0.40 - - 10.00

EV10 - - - - - 7.24 7.10 0.00 5.65 - 20.00
EV11 - - 0.00 3.83 8.01 7.73 6.42 0.00 - - 26.00
EV12 - 1.72 0.00 3.60 5.12 6.56 - - - - 17.00
EV13 - - - - 7.47 7.53 0.00 0.00 - - 15.00
EV14 - - - 1.38 4.04 5.79 4.79 0.00 - - 16.00
EV15 - - 0.00 4.31 3.00 4.13 2.56 - - - 14.00
EV16 - - - - 4.86 2.97 4.17 0.00 - - 12.00
EV17 - - - 5.73 4.02 4.73 1.52 - - - 16.00
EV18 - - - - 5.05 5.61 5.61 0.00 2.74 - 19.00
EV19 9.60 1.52 0.00 0.00 1.26 3.14 2.87 0.00 0.01 9.60 28.00
EV20 9.60 1.90 0.00 0.52 3.97 - - - - - 16.00
Total 38.40 35.47 5.40 42.26 60.00 60.00 56.60 4.80 20.26 28.80 352.00

4.2. Test 2: Optimizing the Schedule for Larger Parking Lots

For the second test, we optimize larger parking lots containing 40 to 500 EVs. The
parking lot profile for these larger parking lots is generated randomly (Supplementary
Materials). The PSO is configured as per Table 3. The algorithm is run 100 times to obtain
statistical results, which are listed in Table 5. For each scenario, we have listed the best,
worst, median, and mean costs with the standard deviation. Although the 20-EV scenario
has been discussed in the previous test, we show the results in Table 5 for the sake of
completeness.
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Table 5. Result of the parallel multi-run PSO for larger size parking lot.

Parking Lot
Size (Number

of EVs)
Dimension Best

(USD)
Worst
(USD)

Median
(USD)

Mean
(USD)

Standard
Deviation

(USD)

20 85 53.72 53.72 53.72 53.72 0.00
40 171 120.29 120.71 120.30 120.36 0.10
60 270 174.62 176.91 175.80 175.76 0.58
80 356 251.23 256.01 253.69 253.67 1.00
100 394 300.97 306.87 304.45 304.35 1.30
200 898 692.19 716.31 706.03 705.67 4.64
300 1251 969.72 999.96 989.44 988.60 6.25
400 1700 1425.02 1459.22 1444.29 1443.87 7.21
500 2099 1821.19 1859.99 1846.07 1845.41 7.88

Regarding the performance of the algorithm, firstly, one can note that the dimension
of the problem is very large. There is one dimension for each timeslot in which an EV
is parked in the parking lot. As most EVs are parked for more than one timeslot, the
dimension of the problem is much larger than the number of EVs. This high dimension
speaks to the difficulty of the problem and explains why large numbers of particles and
iterations are required to run the algorithm. Secondly, despite the large dimension, the
proposed algorithm is very consistent at finding optimized solutions. This is clear in the
20-EV scenario, where the best and worst solutions have the same value. This means
that the algorithm found a schedule that costs exactly USD 53.72 for all 100 runs. For
the larger scenarios, there are differences between the best and worst solutions, but the
standard deviation is always very small. The largest standard deviation is USD 7.88 for
the 500-EV scenario, which represents 0.43% of the best solutions. This means that the
proposed algorithm is able to find good-quality solutions in a very consistent manner.

4.3. Test 3: Comparison of the Single-Run and Multi-Run PSO

The third test consists of demonstrating the advantage of the multi-run PSO compared
to a single-run PSO. Because the PSO is a non-deterministic algorithm, it can return subop-
timal solutions in any single run. To address this limitation and guarantee higher-quality
solutions, it is important to run the PSO multiple times and return the best solution found
after all runs. In this test, we configure the single-run PSO to use 50,000 iterations, and the
multi-run PSO is configured as in the previous tests with 10 rounds of 5000 iterations. This
way, both configurations perform the same amount of work, but the multi-run benefits
from restarting the search at the beginning of every run. The test is repeated 100 times
for each scenario to obtain statistical results. The results are listed in Table 6, with the
best mean and standard deviation highlighted in bold. One can note that for most of the
scenarios, the multi-run PSO achieved a lower mean cost than the single-run PSO. Only
for the largest scenarios is the single-run PSO better. Moreover, the standard deviation is
smaller for the multi-run PSO in all instances. This demonstrates the advantage and the
motivation for using a multi-run PSO.

4.4. Test 4: Performance of the Parallel PSO for Multicore CPU Using OpenMP

In the fourth test, we measure the runtime and speedup provided by the first parallel
implementation of the proposed PSO-based algorithm, which consists of a multi-threaded
implementation using OpenMP. In this implementation, the multiple CPU threads run
the iterations of the outer loop of the algorithm concurrently. The minimum runtime and
maximum speedup are expected when the number of threads approaches the number of
iterations of the outer loop. Since there is no interaction between the iterations of the loop,
a linear speedup is expected, where the speedup should be equal to the number of threads
used. The system used for this test is the multicore workstation for which the specifications
have been provided at the beginning of this section. The scenario used is the 20-EV parking
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lot scenario, and the number of threads is varied between 1 and 10. Since the parameters
of the PSO remain the same as those listed in Table 3. Since the number of outer-loop
iterations is set to 10 and these iterations are to be completed in parallel using one thread
per iteration, the maximum speedup is expected using 10 threads.

Table 6. Comparison of the results for the single-run and multi-run PSO.

Parking Lot
Size (Number

of EVs)

Single-Run PSO Multi-Run PSO

Dimension Mean
(USD)

Standard
Deviation

(USD)

Mean
(USD)

Standard
Deviation

(USD)

20 85 54.10 0.44 53.72 0.00
40 171 121.42 0.79 120.36 0.10
60 270 176.49 1.16 175.76 0.58
80 356 253.80 1.38 253.67 1.00

100 394 306.30 3.70 304.35 1.30
200 898 708.01 6.86 705.67 4.64
300 1251 998.68 11.64 988.60 6.25
400 1700 1439.02 13.28 1443.87 7.21
500 2099 1841.24 11.13 1845.41 7.88

The runtimes and speedup are shown in Figure 8. These are the average values of
10 runs. The PSO-based optimization algorithm took 187.6 s to run the scenario with
one thread and only 26.3 s to run the same scenario using 10 threads. This represents
a speedup of 7.1x, which is close to the number of threads used, meaning that a linear
or perfect speedup was almost achieved. This demonstrates the appropriateness of the
parallelization technique used to parallelize the algorithm using multicore CPUs. However,
despite the significant performance gain, the final runtime of 26.3 s still remains too high
for a small parking lot. This means that when an EV arrives in the parking lot, it takes
26.3 s to recompute the optimized schedule. Moreover, although not shown here, this
runtime increases significantly when the size of the parking lot increases. That being said,
it is possible to further reduce the runtime of the proposed algorithm through a parallel
implementation on a GPU.
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Figure 8. Runtime and speedup of the parallel implementation on multicore CPU using OpenMP.

4.5. Test 5: Performance of the Parallel PSO for GPU Using CUDA

The final test consists of measuring the runtime and speedup of the parallel imple-
mentation on a GPU. For this test, we use the 20-, 100-, 200-, and 500-EV scenarios and run
the algorithm 10 times. The average runtimes and speedups are shown in Figure 9. The
runtimes for the sequential version on a CPU are 187.6 s for the 20-EV scenario and 2506.1 s
for the 500-EV scenario. In comparison, the runtimes for the GPU implementation are 0.87 s
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and 29.3 s, respectively. This results in speedups of 215.6x for the 20-EV scenario and 85.5x
for the 500-EV scenario. The maximum speedup of 247.6x is achieved using the 100-EV
scenario. This is due to the level of parallelism being sufficiently high to fully utilize the
massively parallel architecture of the GPU. After 100 EVs, the amount of data processed by
each CUDA block becomes too high, and the performance suffers, especially because of
the atomic operation used in the evaluation of the fitness function. This explains why the
speedup decreases after 100 EVs. It is now clear, especially for larger parking lots, that a
sequential implementation on the CPU takes too long to be used in real time, whereas a
parallel implementation on the GPU can be completed in real time. These measurements
truly show the advantage of the parallel implementation on the GPU.
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5. Discussion

This paper presented a parallel algorithm for the optimization of the EV recharge
scheduling problem. The algorithm is based on the PSO but uses multiple runs to ensure the
consistency of the quality of the solutions computed. A fitness function that encompasses
the optimization objective and the constraints has been defined. To avoid the long execution
time often inherent to metaheuristics, the algorithm was parallelized using two different
approaches. The first approach uses task-level parallelization, which is suited for multicore
CPUs. It ran the multiple PSO runs in parallel, reducing the execution time by a factor of
7.1x without affecting the end results. The second parallelization technique was data-level
parallelization, which is suited for a GPU implementation, where all steps within the PSO
were parallelized. By exploiting the massively parallel architecture of the GPU, this second
technique led to a speedup of up to 247.6x compared to sequential execution on a CPU. The
proposed algorithm was tested in simulation using nine different scenarios with parking
lot sizes of 20 to 500 EVs.

Compared to previous works published in the literature, our proposed algorithm
provided a better solution for the smallest parking lot size, but the main advantage is
that our algorithm is scalable to large parking lot sizes, which are rarely used in other
works. This was possible because the parallel algorithm on the GPU is so fast that it can be
run with a very large number of candidate solutions and iterations while maintaining an
acceptable runtime for real-time use. As an example, we were able to find solutions to the
20-EV parking lot in just 0.87 s and the 500-EV parking lot in 29.3 s. These times represent
the minimum period at which the charging schedule could be updated on a continuous
basis. Despite the important advantages of the proposed algorithm, one drawback needs
to be mentioned. The PSO is a non-deterministic algorithm that can provide suboptimal
results in any run. By proposing the multi-run PSO, we reduce the chances of obtaining
suboptimal results, but the algorithm still remains non-deterministic, and there is always a
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possibility of obtaining a suboptimal result. One must be aware of this fact when using the
proposed multi-run PSO.

In our future work, we intend to investigate the use of a hybrid algorithm where the
multi-run PSO would be combined with a greedy algorithm for the problem of EV recharge
scheduling. We also intend to focus on the problem of multi-parking lot EV scheduling,
in which vehicles would be directed to a specific parking lot upon arrival based on the
charging schedule of each lot.

6. Conclusions

The number of EVs in operation has increased drastically over the last few years and
is expected to continue to increase in the future. EVs provide a significant environmental
benefit but also a substantial burden on the power grid. One challenge that is of current
interest to researchers is the EV recharge scheduling problem, where an optimized schedule
is computed to recharge EVs within a smart parking lot. This paper presented a parallel
multi-run PSO on a multicore CPU and GPU for the EV recharge scheduling problem. To
better contextualize the contribution, we first presented a literature survey of previous
methods published for this problem. We then presented the proposed method, which
included the problem formulation, an introduction to the PSO and the GPU, the solution
encoding, the fitness function developed, the task-level parallelization on the CPU, and the
data-level parallelization on the GPU. We then tested the proposed parallel algorithm using
nine scenarios of sizes ranging from 20 EVs to 500 EVs in five different tests. In the first test,
we demonstrated that our multi-run PSO provides a better schedule with a lower recharge
cost than previous solutions published in the literature, including other metaheuristics
and greedy methods. In the second test, we showed that the proposed algorithm scales
well to large parking lots with up to 500 EVs. In the third test, we show that the proposed
multi-run PSO performs better than a single-run PSO for most scenarios with the same
overall number of iterations. In the fourth and fifth tests, we showed the speedup achieved
by the task-level parallelization on the multicore CPU and the data-level parallelization
on the GPU. The speedups were 7.1x and 247.6x, respectively, compared to a sequential
execution on a CPU. The runtime of the GPU implementation is 0.87 s for 20 EVs and 29.3 s
for 500 EVs, which is small enough to allow for real-time scheduling. In conclusion, the
parallel multi-run PSO algorithm proposed has the advantage of computing schedules
with a lower overall recharge cost in a reduced execution time. This provides an economic
advantage compared to not using any optimization method or using previously published
optimization methods.
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