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Abstract: The wheel–rail adhesion is one of the key factors limiting the traction performance of
railway vehicles. To meet the adhesion optimization needs and rapidly obtain wheel–rail creep
characteristics under specific operating conditions, an engineering identification method for wheel–
rail adhesion characteristics based on a nonlinear model is proposed. The proposed method, built
upon the traditional Teaching-Learning-Based Optimization (TLBO) algorithm, has been adapted to
the specific nature of nonlinear wheel–rail adhesion model parameters identification, enhancing both
the search speed in the early stages and the search accuracy in the later stages of the algorithm. The
proposed identification algorithm is validated using experimental data from the South African 22E
dual-flow locomotive. The validation results demonstrate that the proposed identification algorithm
can obtain a nonlinear wheel–rail adhesion characteristics model with an average adhesion coefficient
error of around 0.01 within 50 iteration steps. These validation results indicate promising prospects
for the engineering practice of the proposed algorithm.

Keywords: rail traffic; wheel–rail adhesion utilization; adhesion control; nonlinear model parameters
identification; optimal creep seeking

1. Introduction

Rail traffic is among the most efficient and lowest-emitting modes of transport, which
reduces greenhouse gas emissions, air pollution, and congestion [1–3]. To satisfy the
requirement of rail traffic expansion, railway vehicles with higher speed and greater
transportation capacity are urgently needed. Therefore, it has become inevitably necessary
to improve the unit traction power of railway vehicles.

However, the wheel–rail contact limits the traction and braking capabilities of railway
vehicles, although it can significantly reduce the running resistance of the train. When
the traction torque exerted on the driven wheel exceeds the physical adhesion limit of the
wheel–rail contact, the wheel slippage phenomenon occurs, which leads to the damage
of wheel and rail in a serious situation [4]. Therefore, wheel–rail adhesion utilization is
one of the most important factors influencing the actual traction power of railway vehicles.
Generally, there are two ways to improve the utilization performance of wheel–rail adhesion.
One is to assemble the sanders, which improves the adhesion conditions by the application
of sand into the wheel–rail contact [5]. The other is to employ the adhesion utilization
control, which makes better use of the available adhesion in the wheel–rail contact by
operating at optimal creep status [6]. However, the sanding increases 10 to 100 times the
wheel and rail wear, which makes the adhesion utilization control more preferred.

With the rapid development of electric traction control, several adhesion utilization
control algorithms have been proposed to improve the adhesion utilization performance of
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railway vehicle in recent years, such as re-adhesion control [7,8] and slip control [6,9–12].
The former limits the slip velocity to an acceptable value after the slip phenomenon has
already occurred, while the latter controls the slip velocity in a proper range around the
maximum value of the adhesion–slip characteristic. As a result, the slip control can prevent
the slip phenomenon by continuous slip velocity adjustment. To achieve optimal adhesion
utilization, accurate information of the maximum adhesion–slip point is a necessary condi-
tion for realizing slip control. Therefore, the core of the slip controllers based on maximum
point detection is identifying the maximum point on the adhesion–slip characteristic.

In the early years, the slip velocity of the maximum point was set to a constant
value measured in previous trials, which assumes the maximum value of the adhesion
coefficient occurs approximately at the same slip velocity [11]. In fact, the adhesion–slip
characteristic has been changing during train operation, especially, the characteristic differs
between dry, wet, and icy rail. As a result, the constant value was difficult to satisfy the
requirement of maximum adhesion utilization. To estimate the accurate information of
wheel–rail adhesion–slip characteristic, many adhesion identification approaches have
been proposed [13], which can be classified into data-driven methods and theoretical
model-based methods.

The data-driven identification methods typically use data-based models, such as
empirical formula model [14], artificial neural network model [15], Kalman filter-based
identification model [9], or machine learning-based model [16], to identify the adhesion
characteristic. However, the accuracy of data-driven models depended on the coverage
of the training data samples. In engineering applications, once the wheel–rail adhesion
conditions change beyond the coverage of the initial training samples, it is easy to identify
irregular adhesion characteristic curves. On the contrary, the theoretical model-based
methods, which utilized the theory of creep to establish mathematical relationships between
wheel–rail adhesion characteristic and vehicle state parameters, can confine the identified
adhesion characteristic curves within regular curves [17]. The challenge of the theoretical
model-based methods is to establish a theoretical model that can exactly describe the
wheel–rail adhesion characteristics under various conditions, and to accurately identify the
model parameters online [18].

The research on the wheel–rail creep theoretical model has a long history, including
Carter’s two-dimensional rolling contact creep theory, V-J no-spin three-dimensional rolling
contact model, Shen’s improved small-spin three-dimensional rolling contact model, the
Kalker precise creep theory (abbreviated as CONTACT), and the Kalker Simplified Theory
(abbreviated as FASTSIM) [19]. The above models employed a constant friction coefficient,
resulting in discrepancies between the calculated adhesion characteristic curves and ex-
perimental measurements, particularly after reaching the maximum adhesion coefficient.
In addition, swarm intelligence-based multiple models approach is proposed in Ref. [20],
which is promising to be used as an on-board friction condition monitoring tool for railway
vehicles with traction. A real-time estimation of the wheel–rail contact forces based on
an estimator design model that takes into account the nonlinearities of the interaction by
means of a fitting model functional to reproduce the contact mechanics in a wide range of
slip, and is easily integrated in a complete model-based estimator for railway vehicles [21].
Suitable modelling of the railway vehicle dynamics is presented in Ref. [22] for the model-
based estimator synthesis to perform the equivalent conicity monitoring employing only
the carbody and bogie frame measurements, taking into account the track adhesion level
variation. Ref. [23] presents a particle swarm optimization (PSO)-based Extended Kalman
Filter (EKF) to estimate adhesion force. A new approach, based on FASTSIM algorithm
and Polach theory, is numerically very efficient and has been specifically designed for an
innovative degraded adhesion model [24]. In Ref. [25], a finite element model is developed
to investigate the mechanical behavior of sand particles in a wheel–rail contact and how
they affect the adhesion level. Ref. [26] proposed a three-dimensional wheel–rail adhesion
model under wet conditions, which considers insufficient water supply, the measured
surface roughness, and dynamic effect of the vehicle and track system.
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Among the aforementioned influencing factors of adhesion coefficient, the wheel slip
velocity, which is defined as the difference between a wheel circumference velocity and
the vehicle longitudinal velocity, is the most suitable and adjustable factor for adhesion
utilization [27–29]. As shown in Figure 1, there is a nonlinear relationship, which is usually
called adhesion–slip characteristic, between wheel slip and adhesion coefficient. Regardless
of wheel–rail contact conditions, there is always a peak point, which is also known as
the maximum adhesion point, on the adhesion–slip curve. The slip corresponding to the
maximum adhesion point is the optimal slip. The area on the left side of the maximum
adhesion point is called the stable zone, in which the adhesion coefficient increases with
wheel slip.
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Figure 1. Adhesion coefficient versus wheel slip.

To better simulate wheel–rail adhesion characteristics, Polach [30] proposed a novel
wheel–rail creep model based on FASTSIM, which incorporated a friction coefficient that
varies with creep speed and includes a damping factor. Additionally, it utilized an ad-
hesion/slip zone adjustment coefficient when calculating wheel–rail creep forces. As a
result, it achieved a high degree of agreement with experimental data. Considering the
engineering reliability and universality, FASTSIM will be studied in this paper due to its
wide implementation in engineering cases and simulation software.

However, fitting examples provided by Polach and other scholars indicated significant
variations in parameter configurations of the Polach’s wheel–rail creep model due to factors
such as vehicle type, speed category, and track conditions [31–34]. Therefore, relying solely
on characteristic parameters of the Polach’s creep model under typical track conditions
cannot meet the adhesion optimal utilization control requirements of engineering practice.
However, when fitting specific wheel–rail adhesion characteristics, it is necessary to adjust
numerous model parameters in the Polach’s creep model, many of which lack clear physical
significance [35,36]. It is difficult to achieve globally optimal model parameters using
traditional parameter identification methods.

To enhance the efficiency of wheel–rail adhesion characteristic identification and meet
the practical engineering application requirements, an engineering-oriented identification
method for wheel–rail adhesion characteristics based on the Polach’s creep model is pro-
posed in this paper. The proposed method not only enables the real-time observation of
adhesion coefficients using existing traction system state information, but also allows rapid
acquisition of the corresponding Polach’s model parameters, thus obtaining comprehensive
information of wheel–rail adhesion–slip characteristics. For accurate identification of model
parameters, a swarm intelligence search method is introduced. To enhance identification
accuracy and convergence speed, the characteristics of the Polach’s model are considered
and targeted improvements are made to the original Teaching-Learning-Based Optimiza-
tion (TLBO) algorithm. Those improvements enable adaptive adjustment of the model
parameter search gradient and enhance both the early-stage search speed and the late-stage
search accuracy of the proposed algorithm.
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2. Nonlinear Model of Wheel–Rail Adhesion Characteristics

To numerically simulate the adhesion characteristics between wheel–rail contact, the
model of Polach has been implemented in this study [30]. The Polach’s method assumes that
the maximum tangential stress τmax distribution on wheel–rail contact satisfies Coulomb’s
friction law:

τmax = µ · σ (1)

where µ is friction coefficient of wheel–rail contact, and σ is normal stress on the wheel–rail
contact surface.

In addition, according to the Hertz theory, the Polach’s method assumes that the
contact spot of wheel–rail is an ellipse, and semi-axis length of the ellipse can be calculated
by Hertz theory according to the axle weight and wheel–rail size. The slip area, adhesion
area, and tangential/normal stress distribution in the elliptical contact spot are shown in
Figure 2, and the maximum normal stress can be calculated using:

σ0 =
3
2

Q
πab

(2)

where Q is the normal force exerted on wheel–rail contact, which is also called wheel load,
and a and b are the semi-axis lengths of the elliptical contact spot.
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The relative displacement between the wheel and rail in wheel–rail contact increases
linearly from point A to point C. In the adhesion area (i.e., A-B), the relative displacement
between the wheel and rail is caused by the deformation of the material, and the tangential
stress of wheel–rail increases linearly simultaneously. If the tangential stress τ reaches
its maximum value τmax in the trailing point (B) of adhesion area, a slip motion of the
wheel–rail contact surface appears. Hence, the area from point B to point A is called the
slip area. According to the Kalker’s simplified theory, assuming that the tangential stress is
proportional to the slip s and the distance from the leading point A with proportionality
constant C, which is the tangential contact stiffness of the wheel–rail contact surface. Then,
the gradient of tangential stress ε in adhesion area of wheel–rail contact surface is:

ε =
2
3

Cπa2b
Q · µ

s (3)
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where s = vs/vv is the slip ratio between the wheel and rail, vs is the wheel slip velocity,
and vv is the train velocity.

The total adhesion force Fadh of wheel–rail contact can be obtained by integrating the
tangential stress in the elliptical contact spot:

Fadh =
x

U

τdxdy (4)

where U is the contact area of wheel–rail, and τ is the tangential stress in wheel–rail contact.
To solve Equation (4), the tangential force distribution is transformed from an ellipsoid

to a hemisphere by the coordinate transformation shown in Figure 3. Finally, the total
adhesion force is obtained as:

Fadh = −2Qµ

π
(

ε

1 + ε2 + arctanε) (5)
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Considering the phenomenon of the friction coefficient decreases with increasing
wheel slip, a variable friction coefficient was proposed by Polach:

µ = µ0

[
(1 − A)e−Bvs + A

]
(6)

where A = µ∞/µ0 is the ratio of limit friction coefficient at infinity wheel slip µ∞ to the
maximum friction coefficient µ0, and vs is the slip velocity.

Since the contaminants between wheel and rail contact decreases the stiffness of the
contact surface, the adhesion force–slip function reduces its gradient significantly. To model
the adhesion degradation of wheel–rail contact under contaminants, Equation (5) has been
modified by Polach as:

Fadh =
2Qµ

π

(
kAε

1 + (kAε)2 + arctan(kSε)

)
, kS ≤ kA ≤ 1 (7)

where kA is the reduction factor in the adhesion area, and kS is the adjustment factor in the
slip area.

According to Equation (7), the numerical model of adhesion coefficient µadh can be
given as:

µadh =
2µ

π

(
kAε

1 + (kAε)2 + arctan(kSε)

)
, kS ≤ kA ≤ 1 (8)
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3. Wheel–Rail Adhesion Characteristics Model Parameters Identification Approach

This section began with a brief introduction to the basic principles of the Teaching-
Learning-Based Optimization (TLBO) algorithm, followed by a detailed presentation of
the proposed wheel–rail adhesion characteristic identification algorithm based on Polach’s
model, along with its engineering implementation methodology.

3.1. Teaching-Learning-Based Optimization Methodology

TLBO algorithm, also known as ‘teaching and learning’, was first introduced by
Professor R.V. RAO in 2011 [37]. It is a novel swarm intelligence search algorithm similar
to Particle Swarm Optimization (PSO). With its advantages of fast convergence, strong
adaptability, and search precision independent of parameter settings, TLBO has been
widely applied in various fields within just a few years [38–40]. The inspiration for the
TLBO algorithm is derived from classroom teaching activities, where the feasible solution
set for problem-solving was abstracted as a ‘student’ population. The objective function
values corresponding to each set of solutions were abstracted as students’ grades, and the
iterative search process is divided into two phases: teacher and student.

3.1.1. Teacher Phase

The teaching process by the teacher is illustrated in Figure 4. Before the teacher imparts
knowledge to the students, the teacher possesses the highest level of understanding of
the course. Therefore, the best-performing ‘student’ individual, which represents the best
solution of the current iteration, is selected as the ‘teacher’ (marked as Ti) for this stage.
According to the level of mastery of the course, the grades of the ‘students’ in the class
vary greatly. Aiming to improve the overall class average grade, the “teacher” designs the
teaching content based on the difference between the class average performance and its
own performance. If the average grade of the class at the i-th iteration step is denoted as
Mi, then the teaching content of the teacher for the j-th student at the i-th iteration step
could be expressed by the following equation:

Xdiff,j = rj(Ti − TF Mi); j = 1, 2, · · · , class_size (9)

where rj is a random number in the range [0, 1], representing the learning ability of the
student; TF = round[1 + rand(0, 1)] is the teaching coefficient for this phase, which is used
to simulate the teacher’s teaching ability; class_size is the class size, i.e., the population
size. After completing the teacher’s teaching process, the student who has received new
knowledge can be represented by:

Xnew,j = Xold,j + Xdiff,j (10)

If Xnew,j is better than Xold,j, replace Xnew,j with Xold,j; otherwise, retain Xold,j.
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3.1.2. Learner Phase

In addition to learning from the teacher, students can also improve their grades by
engaging in peer-to-peer exchanges. For each student Xj, another classmate Xk can be
selected from the class. The two students can engage in mutual learning by comparing
their grades with each other:{

Xnew,j = Xold,j + rj(Xj − Xk) if f (Xj) < f (Xk)
Xnew,j = Xold,j + rj(Xk − Xj) if f (Xj) ≥ f (Xk)

(11)

If Xnew,j is better than Xold,j, replace Xnew,j with Xold,j; otherwise, retain Xold,j.

3.2. An Improved TLBO Algorithm for Wheel–Rail Adhesion Characteristic Identification

As described in the previous section, the teacher phase aims to improve the class’s av-
erage grade, essentially guiding the population toward the current global optimal solution,
which determines the algorithm’s search speed. The learner phase utilized mutual learning
among the population to ensure search diversity and prevent convergence to a local opti-
mal. The purpose of employing the TLBO algorithm in this study is to identify wheel–rail
adhesion characteristics based on onboard signals. Considering that minor parameter ad-
justment has little effect on the slip-adhesion curve of the Polach’s model, random changes
in wheel–rail conditions would dynamically and significantly affect the parameters of the
Polach’s model. Therefore, when utilizing the TLBO algorithm for the identification of
wheel–rail adhesion characteristic parameters, corresponding improvements are required
to enhance the algorithm’s search breadth and convergence speed.

From the prototype TLBO algorithm, it can be observed that the teaching coefficient in
the teacher phase can only take values of 1 and 2. This not only reduces the precision of
the search, but also affects the convergence speed. To address this problem, an adaptive
teaching coefficient is introduced in this paper:

TF =
Mi,D

Ti,D
(12)

where D = 1, 2, · · · Dn represents the dimension of the optimization parameters. In
Equation (12), the teaching coefficient varies with the difference between the class’s average
level and the teacher’s level, thereby achieving adaptive adjustment of the weight between
search precision and convergence speed during the search process.

In order to quickly eliminate poorer solutions, this paper introduces a remedial session
phase for underperforming students following the learner phase. In this phase, both teacher
tutoring and student self-study operations are performed on the bottom 20% of students
based on class rankings:

⌢
Xnew = Xold + [0.5 + rand(0, 1)/2](Ti − Xold) (13)

X̃new = Xold + Xlim × [rand(0, 1)− 0.5] (14)

where
⌢
Xnew represented the knowledge level of students after teacher tutoring, and this

operation aimed to accelerate the convergence speed of the search; X̃new represented the
knowledge level of students after self-study, and this operation aimed to enhance the search
breadth of the algorithm; Xlim represented the optimization of the search interval size, i.e.,
the difference between the upper and lower search limits of the optimization parameters.

Finally, the optimal solution among Xold, X̃new, and
⌢
Xnew is retained as the knowledge level

of students after remedial session phase.
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3.3. Design of the Fitness Function for Identification

According to the characteristics of the Polach’s creep model, kA, ks, A, B, and µ0 are
selected as the optimization parameters for the improved TLBO, with a search parameter
dimension Dn of 5. The following objective function is designed to evaluate the fitness of
the solution set:

f itness =
1
N

N

∑
i=1

|Polach(kA, kS, A, B, µ0, vs,i, vc,i)− µ̂a,i| (15)

where N is the length of the measured data sequence; vs,i is the wheel slip velocity of the
i-th measured data point; vc,i is the vehicle speed at the i-th measured data point; and µ̂a,i
is the observed adhesion coefficient at the i-th measured data point.

However, the actual adhesion coefficient between the wheel and rail of rail vehicles is
difficult to directly measure through sensors. In order to observe the wheel–rail adhesion
coefficient from the measurement data of onboard sensors, a disturbance observer based
on a kinematic model is employed in this paper. According to theoretical mechanics, the
relationship between wheelset velocity and traction/braking forces, as well as the actual
adhesion force, can be expressed as follows:

J
.
vw

rw
= TT − Tadh (16)

where J is the wheelset moment of inertia; vw is the wheelset linear velocity; rw is the rolling
circle radius of the wheelset; TT is the traction/braking force; Tadh = µaQgrw is the actual
adhesion force, where µa represents the adhesion coefficient between the wheel and rail.

Taking the Laplace transform of Equation (16) gives:

Tadh(s) = TT(s)− sJ
Vw(s)

rw
(17)

To reduce the interference introduced by the differential operation in the observer, a
first-order low-pass filter is applied to the differential term as follows:

s = (1/T0) · (1 − 1/(1 + sT0)) (18)

By combining Equations (16)–(18), the adhesion coefficient observer is obtained
as follows:

µ̂a = (TT − (1/T0) · (1 − 1/(1 + sT0)) · J · Vw)/(Q · rw) (19)

where T0 is the time constant of the observer.

3.4. Model-Based Engineering Identification Method for Wheel–Rail Adhesion Characteristics

Based on the principles described above, the design of the wheel–rail adhesion charac-
teristics identification algorithm is illustrated in Figure 5. The algorithm initially generates
an initial set of solutions randomly within the search domain. By utilizing Equation (19), the
observed adhesion coefficient values are generated as a fitting dataset for the Polach’s model
based on the input measured data sequence. The wheel–rail adhesion characteristics corre-
sponding to the parameters of the solution set are simulated by Equations (3), (6) and (8).
The fitness of the initial solution set is then evaluated through Equation (15). Subsequently,
the algorithm enters an iterative loop of the ‘teacher phase’, ‘learner phase’, and ‘remedial
session phase’, continuing until the termination condition is met. Finally, the model-based
identification of wheel–rail adhesion characteristics is completed, and the optimized Po-
lach’s model parameters obtained during the search are outputted.
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4. Algorithm Verification and Results Discussion

To validate the effectiveness of the proposed algorithm, the identification experiments
using measured data from different rail conditions are conducted in this section. Based
on the results of identification experiments, a comparative analysis of the identification
efficiency and accuracy between the proposed algorithm and other conventional methods
is performed.

4.1. Experimental Design for Algorithm Verification

To validate the proposed model-based wheel–rail adhesion characteristic identification
algorithm, experiments were conducted to identify the adhesion characteristics of the South
African 22E dual-mode locomotive under the scenarios of dry rails, wet rails without
sanding, and wet rails with sanding. The South African 22E locomotive adopts a C0-C0
bogie structure with an axle load of 21.5 tons and a new wheel diameter of 1220 mm (semi-
worn: 1180 mm, fully worn: 1140 mm). In addition, the South African 22E locomotive
can provide a starting traction force of 480 kN and a continuous traction force of 405 kN.
Detailed parameters of the adopted locomotive are shown in Table 1.

In consideration of the primary goal of the experiment, which is to validate the
adhesion characteristic identification algorithm, the adhesion identification module does
not participate in the implementation of vehicle traction control. Hence, as shown in
Figure 6, the adhesion characteristic identification part is independent of the vehicle traction
control. The input data for the adhesion characteristic identification module are derived
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from onboard sensors. Specifically, the wheelset velocity is obtained from the speed sensors,
the wheel slip velocity is synthesized by the traction control unit (TCU), and the torque
signal is observed by the TCU through motor current and speed signals. The output result
of the adhesion characteristic identification module is the model parameters of the Polach’s
model. In addition, only the adhesion characteristics of the first wheelset is identified in
this paper, for two reasons: (1) all the wheelsets of the locomotive pass through the same
rail surface successively, and there is no significant difference in the wheel rail contact
surface situation; (2) the rolling of the wheelset has a certain cleaning effect on the rail
surface. Hence, the adhesion conditions of the following wheelsets are slightly better than
those of the first wheelset.

Table 1. Parameters of adopted locomotive.

Parameters Values Parameters Values

Supply power AC 25 kV/50 Hz and
DC 3000 V Maximum operating speed 100 km/m

Axle arrangement C0-C0 Maximum test speed 110 km/h

Rail gauge 1065 mm Continuous speed 40 km/m

Total weight 129 t Starting traction force 480 kN

Axle load 21.5 t Continuous traction force 405 kN

Wheel diameter
1220 mm (new)
1180 mm (Semi wear)
1140 mm (Wear)

Maximum braking force 300 kN

Continuous output power 4500 kW Transmission ratio 6.0588
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4.2. Results Discussion and Performance Comparison

To validate the algorithm developed in this paper, this subsection will compare the
results of the performance of the particle swarm optimization (PSO) algorithm, the origi-
nal TLBO algorithm, and the proposed algorithm for wheel–rail adhesion characteristic
identification. Due to the suboptimal performance of the PSO algorithm in wheel–rail
adhesion characteristic identification, it was introduced only in the dry rails scenario for
comparative purposes.

4.2.1. Scenario 1: Dry Rail

A traction acceleration test is conducted on a 22E locomotive in this test scenario,
under a dry and straight track surface. Actual traction torque, wheel axle speed, locomotive
speed, and other vehicle operational data are collected through the TCU. As shown in
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Figure 7, the locomotive operates in traction acceleration condition, with an average speed
of about 2.2 km/h and a maximum creep speed of 1.65 km/h (corresponding to a real-time
creep rate of about 0.8). The distribution range of the adhesion coefficient observed online
during the test is [0.23, 0.42], with an average adhesion coefficient of about 0.36, and more
than 90% of the adhesion coefficient is distributed in the range above 0.33.
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The adhesion coefficient distribution of the 22E locomotive under dry rail conditions
is obtained using the adhesion coefficient observer designed in this paper, as illustrated in
Figure 8. Based on the observed adhesion coefficient, the adhesion characteristics of the
22E locomotive under dry rail conditions are identified using PSO, the TLBO algorithm,
and the proposed algorithm, respectively.
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As shown in Figure 9a, the algorithm proposed in this paper converges to a model
error of 0.0108 at the 31st iteration, while PSO converges to 0.0117 at the 890th iteration,
and TLBO converges to 0.0114 at the 724th iteration. The convergence patterns of various
model parameters indicate that the introduction of adaptive teaching coefficients can
provide a smooth continuity to the parameter search gradients in the proposed algorithm.
The teaching coefficient adapts continuously from larger to smaller values based on the
convergence trend of parameters, enhancing both the early-stage search speed and the
late-stage search precision of the algorithm. Utilizing the proposed algorithm, the final
identification of the dry rail adhesion characteristics parameters for the 22E locomotive is
determined as kA = 0.4288, kS = 1, µ0 = 0.3555, A = 0.3575, and B = 0.1316. As depicted
in Figure 9, the adhesion characteristic curve based on this parameter configuration exhibits
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a high level of fitting with a faster convergence speed and more stable convergence process.
Hence, through targeted improvements made to the TLBO algorithm, the wheel–rail
adhesion characteristic identification algorithm proposed in this paper achieves faster
convergence to smaller model errors within a shorter number of iterations compared to the
other two algorithms used for comparison. Less computational burden and time consuming
is required for the proposed method.
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4.2.2. Scenario 2: Wet Rail without Sanding

In this test scenario, a traction acceleration test without sanding is conducted on a 22E
locomotive on a straight track section with an application of a water–detergent mixture to
simulate wet-rail conditions. As shown in Figure 10, the locomotive operates in traction
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acceleration conditions, with an average speed of about 5.5 km/h and a maximum creep
speed of 2.1 km/h (corresponding to a real-time creep rate of about 0.4). The distribution
range of the adhesion coefficient observed online during the test is [0.16, 0.28], with an
average adhesion coefficient of about 0.22, and more than 90% of the adhesion coefficient is
distributed in the range above 0.195.
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Figure 10. Real-time obtained data from adhesion control system under wet rail without sand-
ing condition.

As illustrated in Figure 11, based on the measured operational data, the adhesion
coefficient distribution of the 22E locomotive under the wet rail without sanding conditions
is observed. Based on the observed adhesion coefficient, the adhesion characteristics of
the 22E locomotive under the wet rail without sanding conditions are identified using the
TLBO algorithm, and the proposed algorithm.
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As shown in Figure 12, the proposed algorithm achieves a model error of 0.01194 at
the 28th iteration, which is comparable to the error value of 0.01193 obtained by TLBO
at the 981st iteration. Moreover, the proposed algorithm converges to a model error of
0.01188 at the 421st iteration. The adhesion characteristic parameters identified for the 22E
locomotive under the wet rail without sanding conditions are denoted as kA = 1, kS = 1,
µ0 = 0.2610, A = 0.6858, and B = 0.2251 using the algorithm proposed in this paper. Hence,
the proposed method still requires much fewer iterations compared with TLBO, which
demonstrates that the proposed identification algorithm can achieve a creep characteristic
model with the same error, showing promising prospects for engineering applications.
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4.2.3. Scenario 3: Wet Rail with Sanding

In this test scenario, a traction acceleration test with continuous sanding is conducted
on a 22E locomotive under simulated wet rail conditions. As shown in Figure 13, the
locomotive operates in traction acceleration condition, with an average speed of about
5.3 km/h and a maximum creep speed of 1.6 km/h (corresponding to a real-time creep rate
of about 0.32). The distribution range of the adhesion coefficient observed online during
the test is [0.12, 0.34], with an average adhesion coefficient of about 0.29, and more than
90% of the adhesion coefficient is distributed in the range above 0.265.
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As illustrated in Figure 14, based on the measured operational data, the adhesion
coefficient distribution of the 22E locomotive under the wet rail with sanding conditions
is observed. Based on the observed adhesion coefficient, the adhesion characteristics of
the 22E locomotive under the wet rail without sanding conditions are identified using the
TLBO algorithm and the proposed algorithm, respectively.
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As shown in Figure 15, the proposed algorithm converges to a model error of 0.0167
at the 44th iteration, while the TLBO algorithm converges to a model error of 0.0180 at
the 958th iteration. The adhesion characteristic parameters identified for the 22E loco-
motive under the wet rail with sanding conditions are denoted as kA = 1, kS= 0.4089,
µ0 = 0.4205, A = 0, and B = 0.1554 using the algorithm proposed in this paper. Hence
the proposed method still has advantage in the convergence under wet rail with sanding
operating conditions.

In addition, the same adhesion characteristic parameters identified under the above
three scenarios, as shown in Figures 9, 12 and 15, have obvious difference. Hence, it is
significant in engineering to study the adhesion characteristic parameters identification
method and the proposed algorithm achieves a faster convergence speed and more stable
convergence process.
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Figure 15. Convergence of identification errors and model parameters for various algorithms in
scenario 3. (a) Model average error. (b) kA. (c) kS. (d) µ0. (e) A. (f) B.

4.2.4. Comparison of Time Consuming

The average computational time required for each iteration of the proposed method
and compared algorithm is as follows: PSO: 1.65 s/iteration, TLBO: 1.22 s/iteration,
proposed algorithm: 1.59 s/iteration. The calculation time for achieving the average
error of about 0.01 for each algorithm under different operating conditions is shown in
Table 2.

As can be seen in Table 2, although the average computational time of each iteration is
larger than TLBO algorithm, time consuming of the proposed algorithm converging to a
model error of 0.01 is much smaller than compared methods due to fewer iterations.
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Table 2. Comparison of time consuming for different algorithms.

Operating Conditions Dry Rail Wet Rail without Sanding Wet Rail with Sanding

Algorithm PSO TLBO Proposed
Algorithm TLBO Proposed

Algorithm TLBO Proposed
Algorithm

Error 0.0117 0.0114 0.0108 0.01193 0.01194 0.01188 0.0180 0.0167

Iterations 890 724 31 981 28 421 958 44

Time(s) 1469 884 50 1197 45 695 1169 70

5. Conclusions

In order to meet the practical engineering application needs of rapidly obtaining
wheel–rail adhesion characteristics under specific operating conditions, an engineering-
oriented identification method for the wheel–rail adhesion characteristic is proposed in
this paper based on a nonlinear model. The proposed method incorporates the TLBO
algorithm, utilizing swarm intelligence search to efficiently identify the characteristic
parameters of the wheel–rail adhesion characteristics model. In consideration of the
peculiarities of adhesion characteristic identification, an adaptive teaching coefficient is
introduced, adding a “remedial session phase” to make corresponding improvements to
the original TLBO prototype algorithm. The proposed algorithm exhibits a well-defined
continuity in parameter search gradients, adapting the search gradient based on parameter
convergence and improving both early-stage search speed and late-stage search accuracy.
Experimental data from a 22E locomotive tested in South Africa verifies that, compared
with traditional algorithms, the identification method proposed in this paper can obtain
model parameters with better optimization and significantly improve convergence speed.
The adhesion characteristic curve based on this parameter configuration exhibits a high
level of fitting with a faster convergence speed and more stable convergence process. The
test verification results demonstrate that the proposed identification algorithm can achieve a
creep characteristic model with an average error of approximately 0.01 within 50 iterations,
showcasing promising prospects for engineering applications. New wheel rail contact
algorithms will be explored in future research work.
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