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Abstract: A major limitation of most metabolomics datasets is the sparsity of pathway annotations
for detected metabolites. It is common for less than half of the identified metabolites in these
datasets to have a known metabolic pathway involvement. Trying to address this limitation, machine
learning models have been developed to predict the association of a metabolite with a “pathway
category”, as defined by a metabolic knowledge base like KEGG. Past models were implemented
as a single binary classifier specific to a single pathway category, requiring a set of binary classifiers
for generating the predictions for multiple pathway categories. This past approach multiplied
the computational resources necessary for training while diluting the positive entries in the gold
standard datasets needed for training. To address these limitations, we propose a generalization of the
metabolic pathway prediction problem using a single binary classifier that accepts the features both
representing a metabolite and representing a pathway category and then predicts whether the given
metabolite is involved in the corresponding pathway category. We demonstrate that this metabolite–
pathway features pair approach not only outperforms the combined performance of training separate
binary classifiers but demonstrates an order of magnitude improvement in robustness: a Matthews
correlation coefficient of 0.784 ± 0.013 versus 0.768 ± 0.154.

Keywords: metabolism; metabolite; metabolic pathway; machine learning; deep learning; XGBoost;
multilayer perceptron; supervised learning; binary classification; kyoto encyclopedia of gene and
genomes (KEGG)

1. Introduction

Metabolism is the set of biochemical processes within cells and organisms that sustain
life. Metabolites are chemical compounds that take part as the reactants and/or products of
chemical reactions involved in metabolism. The products of one reaction can act as reactants
in another, resulting in chains of reactions occurring in different parts of a cell or organism,
diverging in different directions and serving different metabolic purposes. These reaction
chains are organized into networks of connected reactions known as biochemical pathways.
These pathways are grouped into broader pathway categories, classified by the types of
reactants and products involved, cellular location, metabolic purpose, etc. Since metabolites
are the reactants and products of metabolic reactions and reactions are the building blocks
of pathways, certain metabolites are necessarily involved in certain pathway categories.
However, the entirety of metabolic pathways are not known, because not all of the chemical
reactions performed in cellular metabolism have been discovered. This results in a recurring
problem faced by biologists, biochemists, and bioinformaticians, which is encountering
metabolites and lacking information related to their pathway involvement.

Knowledge bases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) [1–3]
and BioCyc, particularly via their database called MetaCyc [4], have made tremendous
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contributions to creating databases containing metabolites with pathway annotations. How-
ever, due to the costly and laborious nature of experimentally determining the pathway
involvement of metabolites, many of the metabolites in such metabolic knowledge bases
are still not annotated or are only partially annotated to metabolic pathways. For example,
as of 3 July 2023, a total of 19,119 compounds existed in the KEGG database with only 6736
of them having an annotated pathway involvement [5]. Because of the lack of annotation,
several machine learning methods have been proposed to predict the pathway categories
that a metabolite is involved in given information about the metabolite’s chemical struc-
ture. There have been several publications in particular that have trained supervised
learning models, most notably graph neural networks [6], on compounds in the KEGG
database. The models were trained and evaluated on datasets with metabolites as entries,
with the features being the chemical structure information of these metabolites and the
labels being the high-level metabolic pathway categories. Specifically, KEGG provides a
hierarchy of broader pathway categories branching into more granular pathway categories
as seen here: https://www.genome.jp/brite/br08901 (accessed on 3 April 2024). There
are 12 categories under metabolism, namely, 1. amino acid metabolism; 2. biosynthesis
of other secondary metabolites; 3. carbohydrate metabolism; 4. chemical structure trans-
formation maps; 5. energy metabolism; 6. glycan biosynthesis and metabolism; 7. lipid
metabolism, 8. metabolism of cofactors and vitamins; 9. metabolism of other amino acids;
10. metabolism of terpenoids and polyketides; 11. nucleotide metabolism; 12. xenobiotics
biodegradation and metabolism. Several past publications trained models to predict 11 out
of the 12 categories, excluding ‘Chemical structure transformation maps’, likely due to its
difficulty to predict. Since some of these publications were proven to be invalid, using a
dataset that contained duplicate entries in both the train and test sets [7], Huckvale et al.
developed a new KEGG-derived benchmark dataset for the task of developing models for
predicting the pathway category involvement for all 12 of the aforementioned categories
based on the metabolite chemical structure [5]. Huckvale et al. also demonstrated a set
of binary classification models trained on this benchmark dataset for predicting pathway
category involvement.

However, these benchmark models involved training a separate model for each path-
way category. This approach complicates the design, implementation, and maintenance
of the model training, evaluation, and deployment pipeline. The amount of compu-
tational resources required are multiplied by the number of models needed, which is
one for each pathway category. These shortcomings are exacerbated further when it is
proposed that the models are trained on more granularly defined pathway categories,
compared to the most high-level pathway categories. For example, KEGG defines 12 top-
most pathway categories but defines 184 in total when descending one level down the
hierarchy. The current benchmark dataset includes 5683 metabolites with pathway an-
notations and chemical structure representations, which is adequate to train 12 pathway
category-specific models but is woefully inadequate to train 184 separate models, due to
the diminishingly small number of positive entries for each pathway. Additionally, the
resulting models are only equipped to predict the specific pathway category they were
trained on. There are several other databases and use cases that may not organize the
pathway category in the exact same way as the hierarchy found in KEGG. For exam-
ple, we see that MetaCyc provides an entirely different pathway hierarchy as seen here:
https://metacyc.org/META/class-tree?object=Pathways (accessed on 3 April 2024). This
suggests the need for a more generic model.

In this work, we present a single binary classifier for predicting the pathway involve-
ment of metabolites. The dataset provided by the work of Huckvale et al. [5] uses an atom
coloring technique [8] to represent the substructures of molecules, with the features of a
metabolite being the count of such molecular substructures that are present in the molecule.
Every pathway category has certain metabolites associated with it, so a pathway category
can be generically represented by aggregations of the features of the metabolites associated
with the pathway category. Given the chemical structure information of the metabolites,
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along with structured informational representations of the pathway categories, we have
constructed a dataset where the entries consist of metabolite features paired with pathway
features. With a dataset of these metabolite–pathway features pairs, we have trained and
evaluated the models to predict whether the metabolite of the pair is involved in the path-
way category of the pair. This approach uses just one model that can effectively predict the
original 12 pathway categories and paves the way for a generic classifier that can predict
the presence of metabolites in arbitrary pathway categories. We demonstrate that not only
does the metabolite–pathway pairs approach perform well compared to training a separate
model per classifier, but our best model (a multilayer perceptron) has even exceeded the
combined performance of the prior benchmark models (Random Forest, XGBoost, and
multilayer perceptron models), not just in the average Matthews correlation coefficient
(MCC) but also with a significantly lower standard deviation.

2. Materials and Methods
2.1. Generating the Feature Vectors

Huckvale et al. [5] previously generated a dataset of 5683 entries, with each entry
containing a vector of the atom color [8] features corresponding to a metabolite. Building
off of this dataset of metabolite features, we constructed pathway features via the pro-
cess in Figure 1. Each of the 12 pathway categories have a subset of the 5683 available
metabolites that are associated with it (e.g., ‘Amino acid metabolism’ contains 611 out of
the 5683 metabolites, ‘Biosynthesis of other secondary metabolites’ contains a different
subset of 1486 metabolites, etc.). With each subset, we created vectors that are sums of the
features of the metabolites associated with the corresponding pathway category. While
the features of a single metabolite are the counts of the atom colors within it, the resulting
summed features are the number of occurrences of the atom colors across all the metabolites
within the entire pathway category. However, we could not simply use these raw counts
for the pathway features, because different pathway categories have different amounts
of metabolites within them. To correct this, we applied a bond inclusivity-specific soft
max normalization by calculating the proportion of each atom color within each pathway
category and dividing the raw counts by the total count of the other atom colors within the
same pathway category and of the same level of bond inclusion (Figure 1). For example,
for the elemental atom colors (0-bond-inclusion), if the total count of elemental atom colors
for a given pathway category was 10,000 but the count for the carbon atom was 1000, then
the feature value for the carbon atom color in that pathway category would be 0.1. This
effectively normalizes the pathway categories, such that they become comparable to each
other despite one category having more metabolites than another. For consistency, we also
normalized the metabolite features in the same way. The resulting metabolite features were
the proportion of occurrences of each atom color compared to every other atom color of the
same bond inclusion level within a single compound and the resulting pathway features
were likewise the proportion of occurrences of that atom color across the compounds within
the entire pathway category (Figure 1).

Finally, upon creating the 12 pathway feature vectors, there were duplicate pathway
features across the 12 vectors. We created a copy of the set of pathway features with the
duplicate features removed. The original set (containing the duplicate features) was used to
make the encoded features using an autoencoder (Figure 1) while the de-duplicated set was
used to train the models directly. While autoencoders [9] have been known to improve the
classification performance via feature reduction, particularly reducing redundant features,
they generally reduce training time and other computational resources. We created encoded
counterparts of the metabolite and pathway feature sets to determine whether our models
would perform at least as well after passing through an autoencoder. While we initially
normalized entry-wise, we additionally normalized feature-wise prior to training the
autoencoder via min–max scaling (Figure 1). The autoencoder was trained on both the
metabolite and pathway features since they had the same atom colors (the original set of
pathway features was used by the autoencoder while the de-duplicated set of pathway
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features was used downstream). We performed the min–max scaling again after passing the
non-encoded data through the autoencoder to create the final encoded features (Figure 1).
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Figure 1. Feature engineering. The starting metabolite atom coloring feature vectors are summed and
normalized into the pathway feature vectors. Then, both the metabolite and pathway feature vectors
are used to train an autoencoder and to generate encoded feature vectors with a reduced number of
embedded features.

Table 1 provides the characteristics of the individual metabolite feature sets and path-
way feature sets before they were paired together. Since we developed the work of Huckvale
et al. [5], the number of metabolite entries and features were the same as with their work,
with the metabolite features having already been de-duplicated. Since the pathway features
were derived from the metabolite features, the number of pathway features was initially
the same as that of the metabolite features. De-duplicating the pathway features removed
9220 duplicate features from the original 14,655. Such a large proportion of the features
were duplicates likely because we were considering just 12 pathway categories compared
to 5683 metabolites. Since the pathway features were not de-duplicated before passing
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through the autoencoder, the autoencoder could encode both the pathway features and
metabolite features (autoencoders expect their input to always be the same size). Encoding
the features to one-tenth their original size resulted in both sets having 1465 encoded
features (Table 1).

Table 1. Characteristics of the individual feature sets.

Feature Type Encoded Number of Entries Number of Features

Metabolite No 5683 14,655
Metabolite Yes 5683 1465
Pathway No 12 5435
Pathway Yes 12 1465

2.2. Dataset Engineering of the Metabolite–Pathway Features Pair Dataset via Cross Join

Once all four feature sets were complete, we fed the data to the machine learning
models as a cross join between the metabolite feature vectors and the pathway feature
vectors (i.e., every metabolite feature vector was joined with every pathway feature vector).
Concatenating the two vectors together resulted in sets of metabolite–pathway features
pair entries (Figure 2). The corresponding label of each entry was a binary label indicating
whether the given metabolite was part of the given pathway category (a positive entry) or
not (a negative entry).

Metabolites 2024, 14, x FOR PEER REVIEW 6 of 21 
 

 

 

Figure 2. Dataset engineering. In total, 5683 metabolite and 12 pathway feature vectors were cross-

joined to create 68,196 metabolite–pathway features pair vectors. 

Table 2 shows that the characteristics of the non-encoded metabolite–pathway fea-

tures pair dataset were all the same as the encoded counterpart except for the number of 

features, which, of course, were one-tenth the amount of the non-encoded. The resulting 

number of entries was the number of metabolite entries (5683) multiplied by the number 

of pathway entries (12). The number of positive entries was the sum of the number of 

metabolites associated with each of the 12 pathway categories. While each pathway cate-

gory had a different number of metabolites associated, the combination of them all re-

sulted in an overall proportion of about 10.6% positive entries (Table 2). 

Table 2. Characteristics of the metabolite–pathway features pair datasets after the cross join. 

Encoded Number of Entries Number of Features Number of Positive Entries 

No 68,196 20,090 7246 

Yes 68,196 2930 7246 

2.3. Hyperparameter Tuning and Model Evaluation 

While the XGBoost [10] model previously performed best overall in the work of 

Huckvale et al. [5], we suspected that a neural network approach may perform better, 

considering the increase in the data as a result of the cross join (68,196 entries compared 

to 5683). Therefore, we ran experiments using both an XGBoost model as well as a multi-

layer perceptron (MLP) [11]. Figure 3 shows an overview of the hyperparameter tuning, 

model training, and model evaluation using both the non-encoded and encoded features. 

This included performing 100 trials of hyperparameter tuning for each of the four combi-

nations of model and feature sets, using the Optuna Python library [12]. For each trial, we 

performed up to 20 cross-validation (CV) iterations (some trials had less than 20 if they 

were pruned due to not showing promise), creating a stratified train–test split [13] for each 

Figure 2. Dataset engineering. In total, 5683 metabolite and 12 pathway feature vectors were
cross-joined to create 68,196 metabolite–pathway features pair vectors.

Table 2 shows that the characteristics of the non-encoded metabolite–pathway features
pair dataset were all the same as the encoded counterpart except for the number of features,
which, of course, were one-tenth the amount of the non-encoded. The resulting number of
entries was the number of metabolite entries (5683) multiplied by the number of pathway
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entries (12). The number of positive entries was the sum of the number of metabolites
associated with each of the 12 pathway categories. While each pathway category had a
different number of metabolites associated, the combination of them all resulted in an
overall proportion of about 10.6% positive entries (Table 2).

Table 2. Characteristics of the metabolite–pathway features pair datasets after the cross join.

Encoded Number of Entries Number of Features Number of Positive Entries

No 68,196 20,090 7246
Yes 68,196 2930 7246

2.3. Hyperparameter Tuning and Model Evaluation

While the XGBoost [10] model previously performed best overall in the work of Huck-
vale et al. [5], we suspected that a neural network approach may perform better, considering
the increase in the data as a result of the cross join (68,196 entries compared to 5683). There-
fore, we ran experiments using both an XGBoost model as well as a multilayer perceptron
(MLP) [11]. Figure 3 shows an overview of the hyperparameter tuning, model training,
and model evaluation using both the non-encoded and encoded features. This included
performing 100 trials of hyperparameter tuning for each of the four combinations of model
and feature sets, using the Optuna Python library [12]. For each trial, we performed up to
20 cross-validation (CV) iterations (some trials had less than 20 if they were pruned due to
not showing promise), creating a stratified train–test split [13] for each iteration. With a
fairly low proportion of positive entries (Table 2), we decided to duplicate the positive en-
tries in the training sets until the proportion of positive entries was equal or just under 50%.
The test sets, however, retained the same proportion of positive entries, since duplicate
entries in a test set can lead to overly optimistic and otherwise misleading results. Upon
training the model, we obtained predictions on the test set and compared them against the
labels of the same, calculating the Matthews correlation coefficient (MCC) [14,15] of each
train–test split. The median MCC value across the CV iterations was used to determine the
most successful hyperparameter tuning trial. Table S1 shows the hyperparameters selected
from the best trial for each model–feature set combination.

Using the best hyperparameters for each model, we trained the models over 1000 CV
iterations, performing train–test splits similar to those made during the hyperparameter
tuning but performing 1000 iterations instead of 20 for the final evaluation. Pragmatically,
we only used 20 iterations for the hyperparameter tuning to save time, expecting that 20
would provide a reasonable estimate of the overall model performance. We calculated five
model performance metrics on the test set for each CV iteration including the accuracy,
precision, recall, F1 score, and MCC. Additionally, we measured the importance of each
input feature, but only for the XGBoost when trained on the non-encoded feature set. We
stored the model performance scores and the feature importance scores in a database file to
summarize and visualize the results downstream (Figure 3).

For tuning the hyperparameters and the final CV analyses of both the XGBoost and
MLP, we used high-performance computing (HPC) machines with a system capacity of
187 GB of RAM and 32 cores per node, with the CPUs being ‘Intel® Xeon® Gold 6130
CPU@2.10GHz (Santa Clara, CA USA)’. Using the SLURM HPC job manager, no more than
72 h of compute time was allocated for each of the four hyperparameter tunings and CV
analyses. The XGBoost runs allocated 10 cores with 17 gigabytes of RAM allocated per core.
The MLP runs allocated 16 cores with 6 gigabytes of RAM per core. Both of the XGBoost
runs used a GPU with 12 GB of GPU memory, with the name of the GPU card being ‘Tesla
P100 PCIe 12 GB (Santa Clara, CA USA)’.
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All scripts for the data processing and analysis were written in the Python program-
ming language [16], and the results were stored in an SQL [17] database managed by the
DuckDB Python package [18]. The summarization and visualization of these results were
performed using the Tableau business intelligence software [19] and the Seaborn [20] Python
package (built on the MatPlotLib [21] python package) within Jupyter notebooks [22]. The
data processing was facilitated by the NumPy [23], Pandas [24], and H5Py [25] Python pack-
ages. The evaluation metrics were computed using the Sci-Kit Learn [26] Python package.
Pearson and Spearman correlation coefficients were computed using the SciPy [27] Python
package. The XGBoost model was implemented using the XGBoost Python package [10],
while the autoencoder and MLP were implemented using the Pytorch Lightning [28] and
Torch Geometric [29] packages built on top of the PyTorch [30] package. The computational
resource profiling was performed using the gpu-tracker Python package [31].

3. Results
3.1. Model Performance

Table 3 provides the average and standard deviation of the MCC for each combination
of model (MLP and XGBoost) and feature set (encoded by the autoencoder or not) and for
each of the 12 pathway categories. See Table S2 for all metrics in addition to the MCC.

Table 3. Model performance by pathway category.

Model Pathway Category Average
MCC

Standard
Deviation

MLP Amino acid metabolism 0.6712 0.0518
Biosynthesis of other secondary metabolites 0.8268 0.0268

Carbohydrate metabolism 0.7736 0.0504
Chemical structure transformation maps 0.3879 0.0696

Energy metabolism 0.5707 0.1035
Glycan biosynthesis and metabolism 0.7560 0.0589

Lipid metabolism 0.9029 0.0320
Metabolism of cofactors and vitamins 0.7403 0.0481

Metabolism of other amino acids 0.5937 0.0813
Metabolism of terpenoids and polyketides 0.8867 0.0251

Nucleotide metabolism 0.7680 0.0816
Xenobiotics biodegradation and metabolism 0.8677 0.0305

MLP Amino acid metabolism 0.6327 0.0520
with Biosynthesis of other secondary metabolites 0.8110 0.0296

Encoding Carbohydrate metabolism 0.7694 0.0467
Chemical structure transformation maps 0.4789 0.0621

Energy metabolism 0.5814 0.0982
Glycan biosynthesis and metabolism 0.7650 0.0565

Lipid metabolism 0.8930 0.0292
Metabolism of cofactors and vitamins 0.7001 0.0517

Metabolism of other amino acids 0.5733 0.0812
Metabolism of terpenoids and polyketides 0.8741 0.0275

Nucleotide metabolism 0.7571 0.0856
Xenobiotics biodegradation and metabolism 0.8339 0.0347

XGBoost Amino acid metabolism 0.6110 0.0525
Biosynthesis of other secondary metabolites 0.7803 0.0293

Carbohydrate metabolism 0.7857 0.0454
Chemical structure transformation maps 0.4221 0.0722

Energy metabolism 0.5578 0.1090
Glycan biosynthesis and metabolism 0.7701 0.0599
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Table 3. Cont.

Model Pathway Category Average
MCC

Standard
Deviation

Lipid metabolism 0.8938 0.0276
Metabolism of cofactors and vitamins 0.7157 0.0491

Metabolism of other amino acids 0.5042 0.0856
Metabolism of terpenoids and polyketides 0.8628 0.0271

Nucleotide metabolism 0.7729 0.0807
Xenobiotics biodegradation and metabolism 0.8226 0.0309

XGBoost Amino acid metabolism 0.4342 0.0628
with Biosynthesis of other secondary metabolites 0.6897 0.0344

Encoding Carbohydrate metabolism 0.6723 0.0542
Chemical structure transformation maps 0.2580 0.0803

Energy metabolism 0.4312 0.1211
Glycan biosynthesis and metabolism 0.7040 0.0653

Lipid metabolism 0.8045 0.0387
Metabolism of cofactors and vitamins 0.5504 0.0594

Metabolism of other amino acids 0.3589 0.0990
Metabolism of terpenoids and polyketides 0.7717 0.0338

Nucleotide metabolism 0.5465 0.1184
Xenobiotics biodegradation and metabolism 0.6800 0.0428

Figure 4 provides a violin plot of the MCC obtained over the 1000 CV iterations for the
MLP models for each pathway category. The distribution of the performance of the model
trained on the non-encoded feature set is shown side-by-side with that of the corresponding
model trained on the encoded feature set. We see that for most pathway categories, the
model trained on the non-encoded set outperformed the encoded counterpart. However,
for a few pathway categories, namely, ‘Chemical structure transformation maps’, ‘Glycan
biosynthesis and metabolism’, and ‘Energy metabolism’, the MLP trained on the encoded
set performed better.

Figure 5 provides the same as Figure 4 but for the XGBoost models. We see that the
XGBoost consistently performs significantly worse when trained on the encoded feature set.

Table 4 compares the average and standard deviation MCC of each model and feature
set combination. When compared to the previous work of Huckvale et al. [5], which
trained a separate binary classifier for each pathway category, we see that the MLP greatly
improved when training a single binary classifier on the metabolite–pathway features pairs.
The MLP trained on the encoded data performed well compared to the XGBoost model
trained on the non-encoded data, which likewise performed well compared to the XGBoost
of the previous work. The XGBoost trained on the encoded data performed significantly
worse than all other models and is included for completeness. While only the MLP trained
on the non-encoded feature set significantly exceeded the average MCC of the best model
in the previous work, the standard deviation of all metabolite–pathway pair models were
lower by an order of magnitude from those of the previous work.

Figure 6 provides violin plots showing the distribution of the models across all path-
way categories. We see that the distributions for the XGBoost trained on the non-encoded
data do not even overlap with those trained on the encoded data. For the MLP, the two
distributions do overlap, but the MLP trained on the non-encoded data is clearly the
highest performing.
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coded metabolite–pathway features pair vectors are in orange and the models using the unencoded
metabolite–pathway features pair vectors are in blue.

Table 4. Performance by model.

Model Average
MCC

Standard
Deviation

Weighted Average MCC
of Huckvale et al. [5]

Weighted
Standard
Deviation

MLP 0.7844 0.0129 N/A N/A
MLP with
Encoding 0.7695 0.0139 0.7240 0.1615

XGBoost 0.7637 0.0126 0.7677 0.1540
XGBoost with

Encoding 0.6567 0.0152 N/A N/A
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Figure 6. Overall performance by model. The models using the autoencoded metabolite–pathway
features pair vectors are in orange and the models using the unencoded metabolite–pathway features
pair vectors are in blue.

To measure the computational resource usage of each model and for each feature set,
we performed a subset of the CV iterations, this time while profiling the maximum RAM
usage, the maximum GPU RAM, and the real compute time over 50 CV iterations. Table 5
details this information. For example, we see it took about 129 min for the MLP to complete
the 50 iterations when training on the encoded data, while taking about 90 min to do the
same on the non-encoded data. The XGBoost took less time than the MLP when training
on the same data. The non-encoded data moderately increased the GPU RAM and RAM
utilization compared to the encoded. The XGBoost required significantly more RAM and
an order of magnitude more GPU RAM.

Table 5. Computational resource usage.

Model Computational Resource Amount

MLP
RAM (gigabytes) 2.507

GPU RAM (gigabytes) 0.848
Compute time (minutes) 89.706

MLP with Encoding
RAM (gigabytes) 1.764

GPU RAM (gigabytes) 0.42
Compute time (minutes) 129.130

XGBoost
RAM (gigabytes) 23.878

GPU RAM (gigabytes) 11.052
Compute time (minutes) 70.098

XGBoost with Encoding
RAM (gigabytes) 5.307

GPU RAM (gigabytes) 5.776
Compute time (minutes) 27.297
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3.2. Feature Importance

Using the XGBoost model trained on the non-encoded feature set, we were able to
compute the importance of each feature for each CV iteration. The softmax of the feature
scores provided each feature importance relative to every other feature, rather than the raw
feature importance values. Taking the average relative feature importance across all CV
iterations, every feature obtained an overall score indicating its feature importance. Those
features scoring 0 were excluded from this analysis (Figure 7).
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Figure 7. Average relative feature importance scores in descending order. Plot (a) includes all features,
while plot (b) only includes features with a relative feature importance of 0.0017 or greater.

Table 6 shows the atom colors [8] of the top 10 most important features, specifying
whether the atom color corresponds to the pathway features or to the metabolite features.
We see that most of the top 10 were pathway features. Associated pathways are defined
by the atom color corresponding to a metabolite that exists in the pathway category. For
example, the most important feature (rank 1) is associated with the ‘Biosynthesis of other
secondary metabolites’, ‘Metabolism of terpenoids and polyketides’, and ’Xenobiotics
biodegradation and metabolism’ pathway categories. The rank of the feature is provided
with 1 being the single most important feature down to the 10th most important feature. If it
is a pathway feature, its pathway rank is the same as its rank. However, the corresponding
metabolite feature (the same atom color but representing metabolites instead of pathway
categories) has its own rank. Both the pathway and metabolite ranks are not always
available, either because the pathway feature corresponding to a metabolite feature may
have been excluded from the feature set, having duplicate values as another feature, or
because one of the features may have been a part of the feature set, not being a duplicate
but consistently scoring 0, and was not considered for feature importance. We see that for
every pathway feature, the rank of its corresponding metabolite feature differs significantly.
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Table 6. Top 10 most important features.

Feature/Type Associated Pathways Rank Pathway
Rank

Metabolite
Rank

Pathway
Score

Metabolite
Score

C0(C0(2_(C0.10))((C0.2-
1)))(C0((C0.10)))

(C0((C0.10))((C0.2-
1)))(C0(2_(C0.10))((C0.2-1)))

Pathway

Biosynthesis of other secondary
metabolites

Metabolism of terpenoids and
polyketides

Xenobiotics biodegradation and
metabolism

1 1 7042 0.206 5.225 × 10−5

C0(C0((C0.10)))(C0(2_(C0.10))
((O0.10)))
Pathway

Amino acid metabolism
Biosynthesis of other secondary

metabolites
Carbohydrate metabolismLipid

metabolism
Metabolism of cofactors and

vitamins
Metabolism of terpenoids and

polyketides
Xenobiotics biodegradation and

metabolism

2 2 6035 0.044 7.522 × 10−5

C0(C0((C0.10)))(C0((C0.10))
((C2.10))((O0.20)))

Pathway

Amino acid metabolism
Carbohydrate metabolism

Chemical structure
transformation maps

Lipid metabolism
Metabolism of cofactors and

vitamins
Metabolism of terpenoids and

polyketides

3 3 3905 0.0363 0.00014

O0(O0(2_(C1.10)))(C1((C0.11))
((C1.10))((O0.10)))

(C1((C1.10))((O0.10))((O0.16)))
Pathway

Amino acid metabolism
Biosynthesis of other secondary

metabolites
Carbohydrate metabolism

Chemical structure
transformation maps
Energy metabolism

Glycan biosynthesis and
metabolism

Lipid metabolism
Metabolism of cofactors and

vitamins
Metabolism of other amino acids

Nucleotide metabolism
Xenobiotics biodegradation and

metabolism

4 4 6265 0.02164 6.967 × 10−5

C0(C0((C1.10))((N0.10)))
Pathway

Amino acid metabolism
Biosynthesis of other secondary

metabolites
Carbohydrate metabolism

Chemical structure
transformation maps
Energy metabolism

Metabolism of cofactors and
vitamins

Metabolism of other amino acids
Nucleotide metabolism

5 5 3168 0.01598 0.00017
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Table 6. Cont.

Feature/Type Associated Pathways Rank Pathway
Rank

Metabolite
Rank

Pathway
Score

Metabolite
Score

C0(C0((C0.10))((C0.2-
1))((O0.10)))(C0((C0.10))

((C0.2-1)))
(C0((C0.10))((C0.2-

1))((O0.10)))(O0((C0.10)))
Pathway

Amino acid metabolism
Biosynthesis of other secondary

metabolites
Chemical structure

transformation maps
Lipid metabolism

Metabolism of cofactors and
vitamins

Metabolism of terpenoids and
polyketides

Xenobiotics biodegradation and
metabolism

6 6 4066 0.01134 0.00013

C0(C0((C0.10))((N0.10))
((O0.20)))(C0(2_(C0.10)))

(N0((C0.10))((C2.16)))
(O0((C0.20)))
Metabolite

Glycan biosynthesis and
metabolism 7 N/A 7 N/A 0.01046

C1(C1((C2.10))((O0.10))
((O0.16)))(C2(2_(C1.10))

((N0.16)))(O0((C1.10))((C2.10)))
(O0((C1.16))((P0.10)))

Metabolite

Glycan biosynthesis and
metabolism 8 N/A 8 N/A 0.00864

C0(C0((C0.20)))(C0(2_(C0.10))
((C0.20)))
Pathway

Amino acid metabolism
Biosynthesis of other secondary

metabolites
Carbohydrate metabolism

Chemical structure
transformation maps

Glycan biosynthesis and
metabolism

Lipid metabolism
Metabolism of cofactors and

vitamins
Metabolism of terpenoids and

polyketides
Xenobiotics biodegradation and

metabolism

9 9 1963 0.0083 0.000256

C0(C0((C0.10))((C0.21)))
(2_C0((C0.10))((C0.21)))
(C0((C0.10))((C0.21)))

(C0((C0.10))((C0.21))((O0.10)))
Pathway

Amino acid metabolism
Biosynthesis of other secondary

metabolites
Chemical structure

transformation maps
Metabolism of cofactors and

vitamins
Xenobiotics biodegradation and

metabolism

10 10 3636 0.00697 0.00015

Figure 8 shows examples of compounds that contain the atom color corresponding to
the top 10 most important features. The red highlighted portion contains the atoms and
bonds corresponding to the atom color. We see the most important feature is a hydroxyl
group connected to a methyl group by a ring structure.
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4. Discussion

Past publications interested in predicting the pathway involvement of metabolites
have trained separate binary classifiers for each specific pathway category in question,
which has a number of shortcomings. In this work, we overcame those shortcomings
by training a single binary classifier that can predict the presence of a metabolite in a
generically described pathway category. The metabolite–pathway pair approach utilizes a
combination of feature and dataset engineering methods to increase the resulting dataset
over 10-fold from the original gold standard dataset, improving the model training and
evaluation, simplifying the deployment process to a single binary classifier, and enabling
the possibility of predicting involvement with arbitrarily defined pathway categories. From
a search of the literature, we found a prior publication that utilized this metabolite–pathway
pair approach for designing a generic binary classifier for a different but similar classifi-
cation problem predicting the metabolite pathway involvement based on protein–protein
interaction network data [32]. In our application predicting the metabolite pathway involve-
ment based on the chemical structure, not only does the resulting single classifier perform
well compared to the combined performance of the separate classifiers, our best model
even exceeded the performance of the prior benchmark models (Table 4). In particular,
our best model demonstrates a greatly improved performance robustness, as evidenced
by the significant reduction in the standard deviation by an order of magnitude: a mean
MCC of 0.784 ± 0.013 versus 0.768 ± 0.154. We can confidently conclude that the use of the
metabolite–pathway features pair entries is a superior method for predicting the pathway
involvement based on chemical structure-derived features.

While the XGBoost unsurprisingly performs relatively poorly when trained on the au-
toencoded features, we see that the XGBoost trained on the non-encoded features performs
well compared with the MLP trained on the encoded features. The MLP, when trained
on the non-encoded features, exceeds the performance of both, as well as the combined
performance of the prior benchmark models (Table 4). While the MLP requires a moderately
larger amount of time to train and evaluate than the XGBoost, it requires only a fraction of
the RAM and GPU RAM. Furthermore, while the MLP trained on the non-encoded features
requires a moderately larger amount of RAM and GPU RAM than that trained on the
encoded features, the encoded variant actually requires significantly more time (Table 5).
This is likely because, while the non-encoded MLP takes longer to complete an individual
epoch, the encoded MLP requires many more epochs to converge. Encoding the data
saved RAM, but even the non-encoded variant required less than 3 gigabytes of RAM and
less than 1 gigabyte of GPU RAM, an extremely minor amount for modern HPC systems.
With time being the more precious resource, we can confidently conclude that training
the MLP on the non-encoded data is the best pipeline for this machine learning task, and
it appears that the autoencoder did not meaningfully save computational resources, as
initially expected.

When considering the importance of the atom color features, there does not appear to
be any correlation between a pathway feature and the corresponding metabolite feature of
the same atom color, and vice versa (Figure S1). Most of the top 10 features were pathway
features, suggesting that pathway information is often more important when predicting
the pathway involvement of a metabolite, compared to information about the metabolite
itself, at least from the perspective of the XGBoost training.

Since the metabolite–pathway pair approach is designed to scale to an arbitrarily high
number of pathway categories, it paves the way for predicting more granular pathway
categories, compared to the topmost 12 categories in the KEGG hierarchy. Beyond that, a
model can be trained on the pathway categories from KEGG combined with those from
MetaCyc, any data source, or any collection of arbitrary pathway categories, since the
model is not tied to any particular category or restricted set of categories. This opens up
the possibility of combining the datasets derived from both KEGG and MetaCyc for future
model development. Moreover, due to the multiplicative effect of the cross join when
constructing the metabolite–pathway pairs, the dataset multiplies in size when adding
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more pathway categories. While this is typically a benefit for improving the performance
of the model, it may become impractical to train the XGBoost models, because they require
that the entire dataset fits into the memory. However, neural networks train in mini-batches,
making the MLP perhaps the more feasible model to use on larger datasets in the future,
especially considering that the MLP requires less RAM and GPU RAM and outperforms
the XGBoost when given sufficient data. For smaller datasets, such as the one in this work,
the XGBoost model may be preferred if analyzing the importance of the features is desired.

5. Conclusions

This work uses both feature and dataset engineering to create an over 10-fold larger
dataset of metabolite-pathway feature vectors and to train a single binary classifier for
predicting KEGG metabolic pathway involvement from chemical structure-derived features.
This metabolite–pathway features pair approach outperforms prior machine learning
approaches, demonstrating an order of magnitude improvement in robustness: MCC of
0.784 ± 0.013 versus 0.768 ± 0.154. Moreover, this approach paves the way for developing
models that can predict involvement with metabolic pathways defined at different levels of
metabolic granularity.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/metabo14050266/s1, Table S1: hyperparameters; Table
S2: all metrics and scores; Figure S1: feature importance scores of pathway features compared to
corresponding metabolite features.
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