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Abstract: There is a notable correlation between mitochondrial homeostasis and metabolic disruption.
In this review, we report that obesity-induced disruption of mitochondrial homeostasis adversely
affects lipid metabolism, adipocyte differentiation, oxidative capacity, inflammation, insulin sensi-
tivity, and thermogenesis in thermogenic fat. Elevating mitochondrial homeostasis in thermogenic
fat emerges as a promising avenue for developing treatments for metabolic diseases, including en-
hanced mitochondrial function, mitophagy, mitochondrial uncoupling, and mitochondrial biogenesis.
The exerkines (e.g., myokines, adipokines, batokines) released during exercise have the potential
to ameliorate mitochondrial homeostasis, improve glucose and lipid metabolism, and stimulate
fat browning and thermogenesis as a defense against obesity-associated metabolic diseases. This
comprehensive review focuses on the manifold benefits of exercise-induced exerkines, particularly
emphasizing their influence on mitochondrial homeostasis and fat thermogenesis in the context of
metabolic disorders associated with obesity.

Keywords: obesity-associated metabolic disorder; thermogenic fat; mitochondrial homeostasis; ex-
erkines

1. Introduction

Obesity has evolved into a pervasive global epidemic, with its prevalence steadily
increasing on a worldwide scale [1]. According to estimates from the World Health Organi-
zation (WHO), approximately 13% of adults globally grapple with obesity. Importantly,
obesity serves as a precursor to metabolic syndrome, giving rise to a spectrum of com-
plications, including but not limited to diabetes, hypertension, non-alcoholic fatty liver
disease (NASH), cardiovascular disorders, neuropathic diseases, and cancer [2–6]. In the
COVID-19 pandemic, the increased mortality in patients with obesity is a noteworthy ex-
ample. Hence, there is urgent need for effective treatment methods to prevent and mitigate
obesity-associated metabolic disorders and their related complications.

Mitochondria play a pivotal role in preserving energy metabolism in adipose tissues.
However, obesity leads to the pathological remodeling of mitochondrial morphology and
dysfunction in adipocytes [7,8]. Dysfunction of mitochondria has adverse effects on glucose
and lipid metabolism, oxidative capacity, insulin sensitivity, adipocyte differentiation, and
thermogenesis in adipocytes, ultimately contributing to metabolic diseases [8–10]. Enhanc-
ing mitochondrial function, achievable through various approaches such as mitochondria-
targeted antioxidants, thiazolidinedione, dietary natural compounds, controlled caloric
restriction, and regular exercise, plays a crucial role in maintaining metabolic homeosta-
sis [11,12]. This contribution is evidenced by the promotion of thermogenesis in brown
and beige adipocytes. As a secure, effective, and cost-efficient approach, regular exercise is
widely embraced by individuals dealing with obesity and overweight [13,14]. Exerkines,
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induced by exercise, play pivotal roles in maintaining mitochondrial homeostasis, facili-
tating fat browning and thermogenesis as a defense against obesity-associated metabolic
diseases [15,16]. In this review, our emphasis is on elucidating the advantages of regular
exercise concerning fat thermogenesis and mitochondrial homeostasis in the context of
metabolic diseases associated with obesity. We explore the role of exercise in stimulating
the secretion of exerkines and its potential significance in preventing obesity-associated
metabolic disorders.

2. Mitochondrial Homeostasis in Thermogenic Fat

Mitochondrial homeostasis encompasses the balance and regulation of various pro-
cesses within mitochondria, including mitochondrial oxidative phosphorylation, mitochon-
drial dynamics, mitochondrial biogenesis, mitophagy, and mitochondrial uncoupling. This
delicate equilibrium plays a pivotal role in sustaining energy metabolism, particularly in
brown and beige adipocytes, distinguished by a heightened abundance of mitochondria.
Disruption of mitochondrial homeostasis results in adverse effects on lipid metabolism,
adipocyte differentiation, oxidative capacity, inflammation, insulin sensitivity, and thermo-
genesis, culminating in metabolic diseases [8,15,17,18]. Enhancing mitochondrial home-
ostasis in thermogenic fat emerges as a potential avenue for developing treatments for
metabolic diseases (Figure 1).
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Drp-1, dynamin-related protein 1; Fis-1, mitochondrial fission protein 1; TFAM, mitochondrial tran-
scription factor A; TFB2M, mitochondrial transcription factors B2; mtRNAP, mitochondrial RNA 
polymerase; TEFM, transcription elongation factor of mitochondria; MTERF1, mitochondrial tran-
scription termination factor 1; MAPP1LC3, microtubule-associated protein 1 light chain 3; BCL2L13, 
Bcl-2-like protein 13; FUNDC1, FUN14 domain-containing protein 1; BNIP3, BCL2 interacting pro-
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Figure 1. Mitochondrial homeostasis in thermogenesis fat. Obesity results in the disruption of
mitochondrial homeostasis in thermogenesis fat, affecting mitochondrial oxidative phosphorylation,
dynamics, biogenesis, and mitophagy. This is evidenced by the increased mitochondrial reactive
oxygen species (mtROS), mitochondrial fragmentation, mitochondrial DNA (mtDNA) damage, and
the accumulation of dysfunctional mitochondria. Mfn1/2, mitofusin 1 and 2; Opa1, optic atrophy
1; Drp-1, dynamin-related protein 1; Fis-1, mitochondrial fission protein 1; TFAM, mitochondrial
transcription factor A; TFB2M, mitochondrial transcription factors B2; mtRNAP, mitochondrial RNA
polymerase; TEFM, transcription elongation factor of mitochondria; MTERF1, mitochondrial tran-
scription termination factor 1; MAPP1LC3, microtubule-associated protein 1 light chain 3; BCL2L13,
Bcl-2-like protein 13; FUNDC1, FUN14 domain-containing protein 1; BNIP3, BCL2 interacting protein
3; FKBP8, FK506 binding protein 8. Red arrows indicate an increase (up arrow).

2.1. Mitochondrial Function in Thermogenic Fat

Mitochondria play a crucial role in metabolism of adipose tissue, as evidenced by
their involvement in crucial metabolic pathways, such as lipolysis and lipogenesis. These
functions of mitochondrial are essential for supporting energy metabolism in thermogenic
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adipocytes. Dysfunction of mitochondrial function in brown and beige adipocytes is
associated with disrupted thermogenesis and energy balance in obesity and aging. Given
that the metabolism of thermogenic fat is primarily oxidative, the effective regulation of
thermogenesis in these cells involved manipulating the rate-limiting steps in mitochondrial
respiration and oxidative phosphorylation [9]. Furthermore, recent studies have revealed
that mitochondria can be exchanged between cells, such as adipocytes and macrophages,
to regulate metabolism, homeostasis, and thermogenesis in brown and beige adipocytes.
This exchange is facilitated through the release of extracellular vesicles (EVs) carrying
oxidatively damaged mitochondrial components, thereby preventing the breakdown of the
thermogenic program [7,19,20]. Additionally, mitochondria-derived EVs have been shown
to decrease the expression of peroxisome proliferator-activated receptor-γ and uncoupling
protein 1 (UCP1). Phospholipid cardiolipin (CL) and phosphatidic acid (PA) play pivotal
roles in regulating mitochondrial morphology and mitochondrial function [21]. Lipocalin 2,
a protein that binds to PA, assumes a crucial role in the remodeling of acyl-chain remodeling
in phospholipids and in regulating mitochondrial function within thermogenic fat. This
process is particularly significant during inflammation induced by obesity and metabolic
stimulation resulting from cellular aging [22].

A recent study has indicated that there is a sex-based difference in the impact on
adipose mitochondrial function and the development of metabolic syndrome. In females,
adipose mitochondrial function shows heightened activity, encompassing elevated mito-
chondrial oxidative phosphorylation, mitochondrial DNA content, and augmented produc-
tion of mitochondrial reactive oxygen species. These factors are closely linked to adiposity,
insulin resistance, and plasma lipid levels [23]. Several studies have underscored the piv-
otal role of mitochondrial metabolism in the pro-inflammatory activation of adipose tissue
macrophages in response to obesity [7,8]. The application of a near-infrared fluorophore
with a preferential accumulation in the mitochondria of adipose tissue macrophages has
been shown to mitigate pro-inflammatory activation by enhancing the levels of mitochon-
drial complex and oxidative phosphorylation [8]. Additionally, the respiratory chains of
mitochondria in interscapular brown adipose tissue depend on UCP1 [24].

2.2. Mitochondrial Biogenesis in Obesity

Previous studies have suggested that obesity leads to a decline in mitochondrial bio-
genesis, a reduction in the expression of genes responsible for mitochondrial respiratory
complex components, and a decrease in respiration/mitochondrial oxidative phosphoryla-
tion (OXPHOS) in adipose tissue [25,26]. Specifically, the cardiotrophin-like cytokine factor
1 (CLCF1) has been identified as a key player in inducing the whitening of brown adipose
tissue and impeding thermogenesis. This effect is achieved by suppressing mitochondrial
biogenesis through the activation of the STAT3/PGC1α signaling pathway in response to
obesity [26]. It is important to observe that enhancing mitochondrial biogenesis is critical
for addressing metabolic diseases associated with obesity.

A recent study has identified that the thyroid hormone triiodothyronine (T3) triggers
thermogenesis by uncoupling electron transport from ATP synthesis in BAT mitochondria.
T3 enhances fatty acid oxidation, autophagic flux, mitophagy, mitochondrial respiration,
and mitochondrial biogenesis [27]. Additionally, Parkin plays a role in maintaining mito-
chondrial homeostasis in white adipocytes by orchestrating a balance between mitophagy
and Pgc1alpha-mediated mitochondrial biogenesis. This suggests a promising therapeu-
tic target within adipocytes to address obesity and obesity-associated disorders. CL, a
phospholipid located in the inner membrane of mitochondria, exerts a major role in main-
taining mitochondrial metabolism and structural integrity. It is essential for the well-being
of various organs, including fat, liver, heart, skeletal muscle, brain, and kidney [28–32].
Furthermore, CL acts as a pivotal regulator in the thermogenic programs, connecting with
mitochondrial biogenesis and function in response to regular exercise [15]. Lifelong exercise
has been identified as a beneficial factor, mitigating age-related changes in mitochondrial
biogenesis, inflammation, and lipolysis in perirenal fat and liver tissues. This positive
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impact may involve the inhibition of inflammation through activating the c-Jun N-terminal
kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and AKT pathways in adipose
tissue [33].

2.3. Mitophagy in Thermogenic Fat

Autophagy is necessary for the efficient turnover of damaged organelles, including
mitochondria (mitophagy). Mitophagy refers to a selective process in which damaged mi-
tochondria are isolated and subsequently eliminated through autophagic degradation [34].
The adipose-specific deletion of autophagy-related 7 results in a large volume of cytosol and
contained more mitochondria in mutant white adipocytes [35]. Furthermore, exposure to
cold induces adaptive thermogenesis by enhancing the autophagy of lipids and mitophagy
in brown and beige adipocytes [36,37]. Recent studies have revealed that T3 not only
regulates mitochondrial homeostasis by inducing lipophagy and mitophagy in the liver
and skeletal muscle [38,39], but also triggers thermogenesis. This involved inducing the
expression of mitochondrial UCP1, promoting autophagy-dependent fatty acid oxidation,
and regulating autophagy, activity, and turnover of mitochondria in BAT and aging skeletal
muscle [27,40]. In contrast, BAT primarily relies on upregulated mitophagy and mito-
chondrial biogenesis to ensure mitochondrial quality control. Consequently, promoting
autophagy to induce mitochondrial turnover in BAT could hold therapeutic potential for
enhancing thermogenesis and addressing obesity and associated metabolic conditions.

Nevertheless, diminished mitophagy may also prove essential in the browning of
white adipose, allowing for a substantial increase in mitochondrial mass during this remod-
eling process. Furthermore, even with the suppression of p62 and optineurin, rosiglitazone
continued to promote UCP1 expression, endorsing the idea that a reduction in mitophagy
machinery facilitates beige remodeling [41]. Deficiency in FUNDC1, a mediator of mi-
tophagy, triggered a retrograde response in muscle, leading to the upregulation of fibroblast
growth factor 21 (FGF21) expression. This, in turn, facilitated the thermogenic remodeling
of adipose tissue in response to obesity [42]. The tumor suppressor p53 enhances insulin
sensitivity in aged adipose tissue by triggering mitophagy [43].

2.4. Mitochondrial Uncoupling in Obesity

Mitochondrial uncoupling is characterized by a dissociation between the generation
of mitochondrial membrane potential and its utilization for ATP synthesis, a process vital
for mitochondria-dependent energy production. Recent research has revealed that mi-
tochondrial uncoupling extends beyond its association with mitochondrial dysfunction
and is also implicated in various biological processes, including the production of ROS,
autophagy, cell death, protein secretion, and metabolic adaptation in brown and beige
adipocytes [44]. The subtle uncoupling of oxidative phosphorylation achieved through
numerous mitochondria-targeted penetrating cations plays a role in the reported therapeu-
tic benefits by inducing autophagy and mitophagy [45]. The initiation of mitochondrial
uncoupling, whether through synthetic or natural uncoupling agents or by activating UCPs,
sets in motion multiple cellular mechanisms [46,47].

Mitochondria uncoupling can serve a dual role, offering protection against cell death
and apoptosis in certain instances while potentially promoting them, contingent upon
factors such as cell type, the specific mitochondrial uncoupler employed, and the intensity
of mitochondrial uncoupling [48,49]. The mitochondrial uncouplers like carbonyl cyanide
p-trifluoromethoxyphenylhydrazone (FCCP) or 2,4-dinitrophenol (DNP) may disturb the
equilibrium of various, including Ca2+, Na+, and K+ at cytosolic, mitochondrial, or lyso-
somal levels [47,50,51]. A recently identified mitochondrial uncoupler, BAM15, improves
body fat mass, inflammation, and insulin resistance in obese mice [49]. The recognition of
UCP1′s involvement is pivotal in understanding the thermogenic processes within brown
and beige adipocytes [52]. More recently, thermogenic processes that are independent of
UCP1 have been observed in thermogenic fat [53,54].
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3. The Impact of Exercise on Thermogenic Fat
3.1. Exercise-Induced Browning of White Adipocytes

Consistent exercise training (e.g., 11 days of wheel cage running, swim training per-
formed for 90 min daily, 5 days/week) substantially reduces adipocyte size, enhances
mitochondrial biogenesis and glucose uptake, stimulates adipokine secretion, and im-
proves overall metabolic health in WAT [55,56]. Four-week wheel-running exercise training
dramatically curtails body weight gain, promotes energy expenditure, and increases UCP1-
dependent thermogenesis [57]. Prolonged treadmill-running exercise training (3 m/min for
5 min, increased to 4.8–5 m/min for 5 min, and then reaching a maximum of 7.2–8 m/min
for 20 min; 0% slope) induces adaptability in white adipose depots, as demonstrated
by increasing free fatty acid (FFA) oxidation, reduced inflammation, and diminished
macrophage infiltration in aged obese female mice [58]. Prolonged exercise (e.g., treadmill
with 10 m/min for the first 60 min, followed by 1 m/min increment increases at 15-min
intervals or treadmill with a fixed 10% slope at a constant 18 m/min speed for 60 min daily
for 5 d/wk (8 wk) before test) leads to mitochondrial biogenesis and beiging in WAT by
regulating myokines, including IL-6, FGF21, apelin, meteorin-like protein (Metrnl), lactate,
beta-aminoisobutyric acid (BAIBA), brain-derived neurotrophic factor (BDNF), musclin,
myostatin, and irisin [59–62]. The activation of the Wnt/β-catenin signaling pathway and
PGC-1α-related pathways drives the adipocyte population necessary for beiging, which is
involved in mitochondrial biogenesis and function [63] (Figure 2).
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Figure 2. The effect of myokines on white adipose tissue browning. Exercise training promotes
the browning of WAT by triggering the secretion of various myokines from skeletal muscle. This is
substantiated by reductions in adipocyte size, heightened lipid and glucose metabolism, increased
FFA oxidation and uptake, enhanced mitochondrial biogenesis, improved insulin sensitivity, brown
adipogenesis, and thermogenesis. Myokines are secreted from skeletal muscle in response to exercise.
Red arrows indicate an increase (up arrow) or a decrease (down arrow).

3.2. Exercise Modulates Brown Adipose Tissue

The efficacy of BAT has been reported to be blunted by metabolic diseases [64], car-
diovascular diseases [65], and aging [66–69]. While traditionally recognized as a ther-
mogenic tissue, BAT communicates with distant organs, such as the heart, through its
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endocrine function. Remarkably, four weeks of swimming exercise (90 min twice per
day) induce the release of the small extracellular vesicles (sEVs) from BAT, conferring
cardioprotection by delivering the cardioprotective miRNAs to the heart during myocardial
ischemia/reperfusion (MI/R) injury [65]. Meanwhile, the augmented exercise capacity
induced by BAT is mediated through mitochondrial biogenesis, antioxidant defense, and
enhanced hindlimb perfusion. Therefore, BAT serves as a mediator for heightened ex-
ercise capacity, a mechanism further potentiated by the disruption of the regulator of G
protein signaling 14 (RGS14) [70]. Mitochondrial homeostasis in BAT plays a pivotal role
in the thermoregulatory and metabolic processes. Voluntary physical exercise promotes
thermogenesis, insulin sensitivity, mitochondrial activity, and biogenesis in BAT [70–72].
CL is a key effector of brown/beige adipocytes’ thermogenic programs and is linked to
mitochondrial biogenesis and function in response to regular exercise [15].

3.3. Exercise-Induced UCP1-Dependent Thermogenesis

Situated in the inner membrane of mitochondria, UCP1 induces a proton leak across
this membrane, facilitating the conversion of electrochemical energy into heat. Notably,
mice lacking UCP1 exhibit impaired thermogenesis, underscoring the pivotal role of UCP1
in nonshivering heat production. Given that UCP1 is a key regulator in the thermogenesis
of brown adipocytes and a subset of white adipocytes, various other functional thermogenic
elements exert their impacts in a UCP1-dependent manner. Beige adipocytes expressing
UCP1 can be activated through exposure to cold, administration of β-adrenergic agonists,
or engagement in exercise training to stimulate thermogenesis [55,73,74].

Exercise training is said to confer benefits, at least in part, by enhancing mitochondrial
uncoupling-driven thermogenesis. The global stimulation of mitochondrial uncoupling by
exercise training contributes to the restructuring of skeletal muscle cell physiology. Fur-
thermore, acute physical exercise training results in an upregulation of BAT UCP1 protein
expression in individuals with obesity [75]. The immediate impact of a single exercise
session on thermogenesis can be elucidated through the increase in leptin-induced hypotha-
lamic ERK1/2 phosphorylation. Indeed, a single exercise session elevates hypothalamic
sphingine-1-phosphate (S1P) levels and STAT3 phosphorylation events that ultimately
enhance UCP1-dependent BAT thermogenesis [76,77]. In WAT, the impact of exercise
training appears to be contrary. Specifically, exercise training (17 m/min, 45 min/day,
5 days, 8 weeks) is observed to diminish the protein expression of UCP1 and PGC-1α in
the subcutaneous WAT of mice subjected to a high-fat diet [78]. Additionally, exercise
training triggers the release of myokines by skeletal muscle. Among these myokines,
irisin holds particular significance. Irisin’s primary and extensively studied role is to in-
stigate the browning of WAT, consequently promoting UCP-1-dependent mitochondrial
uncoupling [79].

3.4. Exercise-Induced UCP1-Independent Thermogenesis

UCP1 has significantly advanced our comprehension of how these cells participate in
thermogenesis [52]. However, cold-acclimated Ucp1 knockout mice still display tolerance
to cold exposure, suggesting the presence of compensatory thermogenic mechanisms [80].
Subsequently, thermogenic processes independent of UCP1 have been elucidated, both
within thermogenic fat and in other tissues. A recent study has identified several UCP1-
independent thermogenic effectors using Ucp1 knockout mice, including creatine, Dio2,
calcium-ATPase, glycerol-3-phosphate shuttle, PGC-1α, and Cox II [81].

The voluntary wheel running exercise can mitigate cold-induced weight loss, and
in this process, UCP-1 does not appear to play a role [82]. Muscle, functioning as a ther-
mogenic organ, actively contributes to maintaining body temperature in cold conditions.
Sarcolipin (SLN), which uncouples calcium transport from adenosine triphosphate hy-
drolysis by sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), has been proposed as a
potential mechanism for oxidative metabolism and nonshivering thermogenesis in skeletal
muscle [83–86]. A recent study has provided additional evidence that Ca2+ cycling plays a
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regulatory role in thermogenesis within beige adipocytes and contributes to overall energy
homeostasis in the body [87]. In Ucp1 knockout mice, alterations in Ca2+ cycling were
observed, as evidenced by the increased fatty acid oxidation. These findings suggest that
Ca2+ cycling plays a role in Ucp1-independent thermogenesis in WAT. Furthermore, the
study indicates that myokine (leptin) triggers thermogenesis through a UCP1-independent
mechanism involving futile substrate cycling [88–90] (Figure 3).
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Figure 3. Exercise-induced thermogenesis in adipocytes. Exercise not only activates UCP1-dependent
thermogenesis but also induces UCP1-independent thermogenesis by increasing various futile cycles,
such as creatine futile cycling, Ca2+ futile cycling, and leptin-induced TAG-fatty acid cycling. The
mechanisms of UCP1-independent thermogenesis involve respiratory rate, fatty acid oxidation,
mitochondrial biogenesis, and function. Red arrows indicate an increase (up arrow).

4. Potential Impact of Exerkines on Mitochondrial Homeostasis in Thermogenic Fat

Emerging evidence suggests that regular exercise is a widely recognized therapeutic
tool and highly effective intervention for mitigating obesity-associated metabolic syndrome.
It plays a crucial role in mitochondrial homeostasis as well as contributing significantly to
individual thermogenic activity [65,91–95]. Exercise-induced circulating factors, referred
to as exerkines, are implicated in the activation and metabolism of BAT and promote the
browning of WAT [65,96–98]. Exercise induces the secretion of exerkines from various
tissues, including skeletal muscle (myokines), white adipose tissue (adipokines), and brown
adipose tissue (batokines).

4.1. The Impact of Myokines on Mitochondrial Homeostasis

Exercise has been recognized as a therapeutic approach for managing obesity-related
metabolic diseases by mitigating abdominal adiposity and metabolic syndrome. De-
spite this acknowledgement, the underlying mechanisms of how regular exercise training
serves as a therapeutic modality for abdominal fat remain rudimentary. Exercise-induced
myokines have the potential to stimulate the browning of WAT by modulating lipid
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metabolism in response to obesity-associated metabolic diseases. Notably, the myokines
involved include IL-6 [99], FGF21 [100], apelin [101], Meteorin-like (Metrnl) [102–104],
lactate [105], β-aminoisobutyric acid (BAIBA) [106,107], BDNF [108], musclin [109], myo-
statin [16], and irisin-an exercise-induced myokine dependence PGC-1α [79] (Table 1).

Table 1. The benefits of exerkines in obesity-associated metabolic diseases.

Exerkines Main Mechanism Main Biological Action Main Target Tissue Refs.

Lactate Lactate/AMPK/
SIRT1/PGC-1α

Induces adipose browning, increases
mitochondrial biogenesis and thermogenesis AT, Skeletal muscle [110]

IL-6 IL-6/STAT3/
AMPK

Induces weight loss, alleviates
obesity-induced fatty liver and insulin

resistance
AT, Liver [99]

FGF21 FGF21/Adiponectin/ERK
Regulates glucose and lipid homeostasis,

alleviates hyperglycemia and insulin
resistance

AT [111]

Apelin Apelin/PRDM16
Promotes brown adipogenesis and
thermogenesis, prevents metabolic

dysfunction
BAT [101]

Metrnl Metrnl/PGC-1α/
PI3K/Akt/NF-κB

Regulates energy expenditure, promotes
beige fat thermogenesis and

anti-inflammatory
AT [102]

BAIBA BAIBA/PGC-1α/PPARα Induces browning of WAT, and promotes
glucose homeostasis and β-oxidation WAT [107]

BDNF BDNF/Adiponectin/CD80 Regulates inflammatory profile and arterial
thrombosis WAT [108]

Musclin Musclin/GLUT-4 Improves lipid metabolism and insulin
sensitivity Skeletal muscle [112]

TGF-β2 Lactate/TGF-β2 Promotes glucose and fatty acid metabolism AT [113]

Myostatin Follistatin/Myostatin/TGF-β Promotes adipose browning and increases
mitochondrial biogenesis AT [114]

Irisin Irisin/PGC-1α Increases UCP1 expression, promotes
brown-fat-like development WAT [79]

Adiponectin APPL1/SIRT1/
PGC-1α

Regulates mitochondrial biogenesis,
improves insulin resistance Skeletal muscle [115]

FSTL1 FSTL1/Apelin Increases glucose metabolism and insulin
sensitivity Skeletal muscle [116]

Omentin Omentin/Akt Has anti-inflammatory action, reduces
abdominal fat deposits AT, Skeletal muscle [117]

AMPK, AMP-activated protein kinase; TGF-β2, transforming growth factor-beta 2; FSTL1, follistatin-like 1; PPARα,
peroxisome proliferator-activated receptor alpha; PRDM16, PR domain containing; SIRT1, sirtuin 1; GLUT-4,
glucose transporter type 4. The plasma concentration of IL-6 is contingent upon exercise intensity and serve as a
pivotal role in maintaining mitochondrial homeostasis while regulating thermogenesis in BAT [99,118]. FGF21,
a key regulator of brown adipocyte differentiation, plays a major role in lipid and glucose homeostasis, insulin
sensitivity, and mitochondrial biogenesis by upregulating PGC-1α in adipose tissue and skeletal muscle [111,119].
Furthermore, maternal exercise not only promotes metabolic dysfunction but also facilitates mitophagy and
mitochondrial biogenesis. It enhances thermogenesis in offspring mice by increasing the expression of apelin,
an exerkine, and adipokine. This effect mirrors the beneficial impact of exercise on fetal BAT generation and
offspring metabolism, achieved through the heightened expression of PRDM16, a key transcription factor in brown
adipogenesis [101,120]. Exercise-induced Metrnl is linked to increased fat oxidation and insulin sensitivity, reduced
inflammation, modulation of mitochondrial homeostasis, and physiological effects associated with the browning
of WAT [121,122]. BAIBA, a small-molecule myokine released from PGC-1α-expressing myocytes, promotes
thermogenesis and induces WAT browning by increasing β-oxidation in hepatocytes by a PPARα-mediated
mechanism in response to 8 weeks of treadmill exercise (50–60% maximal intensity). Additionally, BAIBA
mitigates mitochondrial dysfunction and decreases cardiometabolic risk in individuals with obesity [107,123].
BDNF, a member of the neurotrophic factors, is expressed in skeletal muscle and functions as a myokine that
regulates lipid oxidation and mitochondrial quality control by activating AMPK signaling in WAT in response to
exercise [108,124]. Irisin, a PGC-1α-dependent myokine induced by exercise, plays a pivotal role in a brown-fat-like
development program by stimulating UCP1 expression and mitochondrial biogenesis to counteract obesity [79].
Myostatin deficiency contributes to increased WAT browning, leading to heightened energy expenditure, improved
insulin resistance, and stimulated mitochondrial biogenesis. This occurs through the regulation of irisin secretion
via a novel miR-34a-dependent post-transcriptional mechanism [16,125] (Table 1).



Metabolites 2024, 14, 287 9 of 17

4.2. The Impact of Adipokines on Mitochondrial Homeostasis

Adipokines secreted by exercise-trained white adipose tissue: their endocrine ef-
fects on enhanced glucose tolerance, fatty acid metabolism, and insulin sensitivity. Note-
worthy, adipokines include adiponectin, leptin, SFRP4, FGF21, TGF-β2, follistatin-like
1, omentin, and vaspin [111,113,115–117,126–130]. These contribute to the reduction in
inflammation through adipokines like SFRP5, TNF-α, IL-6, Wnt family member 5A, and
MCP-1 [74,131–133]. Moreover, exercise-trained WAT promotes the emergence of thermo-
genic brown-like adipocytes with adipokines such as apelin, TGF-β, follistatin, and myo-
statin [101,114,116]. This collective action not only supports mitochondrial homeostasis but
also enhances overall metabolic homeostasis in response to exercise [56,79,102,128,134–136]
(Figure 4, Table 1).
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Figure 4. The impacts of regular exercise-induced adipokines and batokines on obesity. Adipokines
and batokines induced by regular exercise play crucial roles in influencing glucose tolerance, fatty
acid metabolism, insulin sensitivity, inflammation, mitochondrial homeostasis, the sympathetic
neural network, as well as thermogenesis in both BAT and WAT. T3, thyroid hormone; IGFBP2,
insulin-like growth factor binding protein 2; IGF-1, insulin-like growth factor 1. Red arrows indicate
an increase (up arrow).

A comprehensive meta-analysis study revealed that exercise, coupled with dietary
intervention, significantly modulates adiponectin and leptin levels in individuals who are
overweight or obese [126]. Adiponectin regulates mitochondrial biogenesis and insulin
resistance in individuals with obesity subjected to treadmill running exercise [115]. The
exercise-responsive transcript, SFRP4, emerges as a key mediator in facilitating long-
term exercise-induced enhancements in insulin resistance [129]. Additionally, TGF-β2, an
exercise-induced adipokine, mediates glucose homeostasis, improves insulin sensitivity,
increases FFA uptake and oxidation, and promotes mitochondrial function in response
to diabetes [113,137]. FSTL1 plays a significant role in inflammation, glucose metabolism,
and insulin sensitivity, particularly in the context of obesity and exercise [116]. A 12-week
aerobic exercise training increases the expression of adipokine omentin in visceral AT,
leading to the regulation of insulin sensitivity, glucose homeostasis, and anti-inflammatory
effects against type 2 diabetes mellitus [117]. Omentin also serves as a positive regulator
of mitochondrial biogenesis by activating AMPK-PGC1alpha pathway [138]. Prolonged
exercise treatment dramatically upregulates apelin, a key contributor to the presence of
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thermogenic brown-like adipocytes. This elevation is associated with increased glucose
uptake, mitochondrial biogenesis, and decreased insulin resistance in individuals with
diabetes [101,139,140]. Additionally, aerobic exercise training induces the activation of the
fat browning-related pathway (AMPK/Sirt1/PGC-1α), improves free fatty acid oxidation,
reduces inflammation, promotes mitochondrial biogenesis, and facilitates the synthesis and
secretion of exerkines, including irisin, TNF-α, IL-10, and MCP-1 [62,141,142] (Table 1)

4.3. The Impact of Batokines on Mitochondrial Homeostasis

Regular exercise-induced sympathetic nervous system (SNS) plays a significant role
in the thermogenesis of brown/beige adipocytes and the maintenance of mitochondrial
homeostasis by regulating the release of neurotrophic batokines [143–145]. These batokines
contribute to the remodeling of the sympathetic neural network and the promotion of ther-
mogenesis, including neuregulin-4 (NRG4) [146–148], nerve growth factor (NGF) [149,150],
and calcium-binding protein B (S100b) [143,151,152] (Figure 4). The neurotrophic batokines
further stimulate the formation of brown/beige adipocytes and enhance mitochondrial
biogenesis by uncoupling oxidative phosphorylation from ATP production.

NRG4 mitigates the onset of obesity and fosters metabolic well-being by increas-
ing BAT thermogenic activity in response to exercise (e.g., high-intensity interval train-
ing, circuit resistance training). This is substantiated by an upregulation in the expres-
sion of thermogenic markers (UCP1 and PRDM16), a decrease in the expression of li-
pogenic/adipogenic genes (Pparγ and Cd36), an increase in the number of brite/beige
adipocytes, neurite outgrowth, blood vessels, and improvements in glucose homeosta-
sis and mitochondrial homeostasis within adipose tissues [148,153–155]. S100b, on the
other hand, stimulates neurite production and addresses deficient sympathetic innervation
caused by Calsyntenin-3β deficiency, a mammal-specific endoplasmic reticulum mem-
brane protein. This deficiency is implicated in functional sympathetic innervation and the
maintenance of mitochondrial homeostasis in adipose tissues as a countermeasure against
obesity [143,151,156]. Nevertheless, the accumulation of oxidative stress-induced S100b
promotes the transition of myoblasts into brown adipocytes. This is substantiated by the
increased expression of PRDM16 [157,158], the upregulation of bone morphogenetic protein
7 (BMP-7), which enhances differentiation of brown preadipocytes, and the promotion of
mitochondrial biogenesis [159]. Furthermore, hormones are released from BAT in response
to cyclic AMP–mediated thermogenic activation. These hormones include adiponectin,
adipsin, fatty acid–binding protein 4 (FABP4), retinol-binding protein 4 (RBP4), chemerin,
clusterin, and macrophage migration inhibitory factor [148] (Figure 4)

5. Conclusions

Disruption of mitochondrial homeostasis induced by obesity has adverse effects
on lipid metabolism, adipocyte differentiation, oxidative capacity, inflammation, insulin
sensitivity, and thermogenesis. Elevating mitochondrial homeostasis in thermogenic fat
emerges as a promising avenue for developing treatments for metabolic diseases. The
exerkines (myokines, adipokines, batokines) released during exercise have the potential
to improve glucose and lipid metabolism, ameliorate mitochondrial homeostasis, and
stimulate fat browning and thermogenesis in response to obesity-associated metabolic
diseases. A thorough comprehension of the intricate interplay between mitochondrial
homeostasis and thermogenesis in adipose tissue, along with the advantageous effects of
exercise, could lead to the development of non-pharmacological therapeutic strategies to
prevent obesity-related metabolic diseases.
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