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Abstract: Previously, a class of regular and asymptotically flat gravitating scalar solitons (scalarons)
has been constructed in the Einstein–Klein–Gordon (EKG) theory by adopting a phantom field with
Higgs-like potential where the kinetic term has the wrong sign and the scalaron possesses the negative
Arnowitt–Deser–Misner (ADM) mass as a consequence. In this paper, we demonstrate that the use
of the phantom field can be avoided by inverting the Higgs-like potential in the EKG system when
the kinetic term has a proper sign, such that the corresponding gravitating scalaron can possess the
positive ADM mass. We systematically study the basic properties of the gravitating scalaron, such as
the ADM mass, the energy conditions, the geodesics of test particles, etc. Moreover, we find that it
can be smoothly connected to the counterpart hairy black hole solutions from our recent work in the
small horizon limit.

Keywords: gravitating; scalarons; Einstein–Klein–Gordon; scalar solitons

1. Introduction

Recently, the detection of gravitational waves resulting from the merger of binary
compact objects by the LIGO-VIRGO-KAGRA collaboration [1–6] and the imaging of
shadows cast by two supermassive black holes by the Event Horizon Telescope [7–14] are
the major astrophysical events that provide an exciting prospect to search for the existence
of the hairy black holes and other compact objects without the event horizon such as
boson stars, gravitating scalarons, and wormholes from these astrophysical signatures in
the future [15–19]. The ultralight bosonic fields with a mass of 10−20 eV could possibly
explain phenomena such as the halo surrounding a supermassive black hole, leading to
the formation of a hairy black hole at the center of the galaxy. Ref. [15] found that the areal
radius of the shadow cast by such hairy black holes is compatible with the observations by
the EHT on the supermassive black hole M87, where such quantity could only be weakly
constrained due to the current precision of EHT. Furthermore, Ref. [16] found that the effect
of gravitational lensing from a rapidly rotating vector-boson star, namely the Proca star and
its counterpart hairy black hole, is compatible with the observations about supermassive
black holes in M87 and Sgr A* by EHT. On the other hand, the scalar, axial [17], and
polar quasinormal modes [18] of the Bronnikov–Ellis (BE) wormhole have been studied.
These findings indicate that, when the mass of the wormhole is sufficiently small, it may
be feasible to differentiate the wormhole from the Schwarzschild black hole during the
ringdown phase of gravitational waves. Similarly, the study of the optical image of the
BE wormhole reveals that the shadow on each asymptotic region may exhibit different
behavior. This is due to the presence of a light ring on one side of the asymptotic regions,
which could mimic the Schwarzschild black hole, while the absence of a light ring on the
other side could provide a unique feature for distinguishing the wormhole [19].

In general relativity (GR), a localized gravitating soliton supported by a scalar field is
known as the scalaron, a classic example of which would be the Fisher–Janis–Newman–
Winicour (FJNW) spacetime, which is static, spherically symmetric, and asymptotically
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flat but which possesses a naked singularity at r = 0 in the radial coordinate r in its
spacetime [20–23]. It can be obtained by analytically solving the EKG system with a
massless real scalar field ϕ. In addition, the rotation curve of a galaxy measures the radial
velocity of visible matter such as stars, dust, and gas as a function of their distance from the
galaxy’s center. If a galaxy only consists of visible matter, then the rotation curve is expected
to show that the stars closest to the center of the galaxy would move faster than the stars
near the galaxy’s outer edge. However, the observations favor the idea that the inner and
outer stars move at roughly the same velocity. Hence, a potential explanation is that the
galactic halo affects the motion of the stars. If we consider a gravitating scalaron as one of
the candidates for the dark matter, some review papers [24–27] have pointed out that some
research works can fit well the rotation curve when they consider a gravitating scalaron
as dark matter. Meanwhile, the “core–cusp” problem describes the tension between the
observations and numerical simulations of the profile for the central density of the galaxy.
The numerical simulations predict that the central density of a galaxy possesses a cusp-like
profile typically described by the Navarro–Frenk–White (NFW) density function, which
behaves as 1/r at small radii, but whose observations favor the flattened central core.
Several research works have resolved this tension by considering that the gravitating
scalaron resides at the galactic core, which can provide a good fit for the observational
data [24–26]. Additionally, to the best of our knowledge, the Milky Way halo has grown by
merging with other galaxies, such as Gaia–Sausage–Enceladus, around 10 billion years ago.

However, it is feasible to remove the naked singularity at r = 0 such that a regular
gravitating scalaron can be obtained where the metric and scalar field with their derivatives
are finite at r = 0. Therefore, in this paper, we employ a scalar potential V(ϕ) minimally
coupled with Einstein gravity, wherein the introduction of V(ϕ) could cause a scalar field
to possess a nonzero effective mass meff =

√
2µ, since we can assume that V(ϕ) contains

a quadratic term, i.e., µϕ2.1 For instance, Ref. [28] employed a phantom field with the
Higgs-like V(ϕ), where its kinetic term possesses a reversed sign. As a consequence, the cor-
responding gravitating scalaron possesses the negative ADM mass. They also considered
various configurations of compact objects such as phantom balls, phantom wormholes, etc.,
in the EKG system with the interaction of two massive real scalar fields [29–31].

Nevertheless, in this paper, we consider inverting the Higgs-like V(ϕ) in the EKG
system to construct a class of globally regular gravitating scalarons that possess the positive
ADM mass, such that the kinetic term of a scalar field can possess a proper sign, and we
demonstrate that the existence of gravitating scalarons depends crucially on the profile
of V(ϕ), which cannot be strictly positive but has to be negative in some regions. Thus,
the usage of the phantom field is not necessary and can be avoided. This implies that the
negativity of V(ϕ) in some regions can replace the role of the phantom field to sufficiently
violate the energy conditions. We propose this idea because we are inspired by our recent
work [32], which has employed the corresponding inverted Higgs-like V(ϕ) to evade the
no-hair theorem to construct the regular and asymptotically flat hairy black hole that can be
bifurcated from the Schwarzschild black hole when the scalar field ϕH is non-trivial at the
horizon.2 The properties of the hairy black holes in our recent work [32] are briefly described
here. As shown in Appendix B, ϕH can assume any positive real value in principle; the
hairy black hole possesses the positive ADM mass; the mass and the Hawking temperature
increase with an increase in ϕH (as shown in Figure A1); its solution and the corresponding
derivatives (as shown in Equations (A18)–(A20)), the Ricci scalar (Equation (A25)), and
the Kretschmann scalar (Equation (A26)) are regular at the horizon; and the violation of
the weak energy condition becomes more serious with the increase in ϕH (as shown in
Figure A2).

On the other hand, to the best of our knowledge, the properties of gravitating scalarons
in this paper with the inverted Higgs-like V(ϕ) have not been reported yet. We have only
noticed recently that these gravitating scalarons have been considered in the anti-de Sitter
space, where it is relevant to the context of AdS/CFT [34]. Therefore, we intend to study
the properties of gravitating scalarons and then report the results in this paper.
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Furthermore, the existence of hairy black holes could be connected smoothly by the
existence of the gravitating scalarons in the small horizon limit. For instance, the hairy
black hole can be connected smoothly with the gravitating scalaron in the EKG with V(ϕ)
containing two asymmetric vacua [35,36]. Analogously, we also want to study the possible
connection of the hairy black hole in the small horizon limit from our recent work [32]
along with the gravitating scalaron in this paper.

Other classes of asymptotically flat gravitating scalarons can also be obtained from
the occurrence of the tachyonic instability, which is induced by the anticipation of an
additional object with a scalar function f (ϕ) in a non-minimally coupled way. For instance,
one can non-minimally couple f (ϕ) with a source, which can be in the form of a matter
field, such as the Maxwell field in the Einstein–Maxwell scalar theory [37], or can be in
the form of a geometrical term, such as the Gauss–Bonnet term within the framework of
the Einstein-scalar–Gauss–Bonnet (EsGB) theory [38,39]. However, their solutions are not
completely regular at r = 0. For instance, the scalar field in the EsGB theory diverges at
the origin, while other functions are regular [38,39]. Other constructions of gravitating
scalarons in GR include the Goldstone model [40] and so on [41–44].

This paper is organized as follows. In Section 2, we briefly introduce our basic
theoretical setup, which consists of the profile of V(ϕ) in the EKG system and the form
of the metric ansatz. Then, we briefly address the existence of gravitating scalarons by
performing simple analysis using the Klein–Gordon (KG) equation. We also derive a set
of coupled differential equations and study the asymptotic behavior of the functions at
the origin and infinity. Moreover, we briefly derive the effective potentials for the test
particles from the geodesics equation against the background of gravitating scalarons.
In Section 3, we present and discuss our numerical findings. Finally, in Section 4, we
summarize our work.

2. Theoretical Setting
2.1. Theory and Ansätze

Here, we begin our construction of the gravitating scalaron in the EKG system by con-
sidering a scalar potential V(ϕ) of a scalar field ϕ that is minimally coupled
with gravity,

S =
∫

d4x
√
−g
[

R
16πG

− 1
2
∇µϕ∇µϕ − V(ϕ)

]
, (1)

where the scalar potential V(ϕ) takes an explicit form as a sum of polynomials in ϕ,3

V(ϕ) =
∞

∑
i=0

kiϕ
i , (2)

and ki is an arbitrary constant with real value. If we consider truncating V(ϕ) until i = 4,
then V(ϕ) reads as follows:

V(ϕ) = k4ϕ4 + k3ϕ3 + k2ϕ2 + k1ϕ , (3)

with k0 = 0 such that ϕ = 0 at the spatial infinity. V(ϕ) could take the asymmetric profile
with two asymmetric vacua as shown in Figure 1a when k3 ̸= 0, such that V(ϕ) has been
utilized to obtain solutions for hairy black holes [35,36] and for the fermionic solitonic
star [46]. When the coefficients of terms with odd powers become zero, i.e., k1 = k3 = 0, then
V(ϕ) can be symmetric with two degenerate minima that look like Higgs-like potentials,4

such that V(ϕ) has been considered with a phantom field to construct the globally-regular
gravitating scalaron with negative ADM mass [28].
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Figure 1. The illustration of V(ϕ): (a) V(ϕ) with asymmetric vacua (ϕ = 0 and ϕ = ϕ1) has been
utilized in constructing hairy black holes and gravitating scalaron [36]. (b) The inverted Higgs-like
V(ϕ), which contains two degenerate global maxima at ϕmax = ±

√
µ/(2Λ), has been considered in

our recent work for constructing hairy black holes [32].

To achieve the positive ADM mass of gravitating scalarons in the EKG theory, in
this paper, we propose to “invert” the Higgs-like V(ϕ) such that V(ϕ) contains a local
minimum at ϕ = 0 and two degenerate global maxima at ϕmax = ±

√
µ/(2Λ), as depicted

in Figure 1b. The explicit form of the potential is given by:

V(ϕ) = −Λϕ4 + µϕ2 , (4)

where Λ and µ are constants. The above V(ϕ) has been considered recently in our previous
work [32] to construct and then systematically study the basic properties of hairy black
hole. Hence, we also want to inspect the possible connection between the hairy black hole
and the gravitating scalaron in this paper.

Subsequently, we derive the Einstein equation and the KG equation by varying the
action with respect to the metric and scalar fields as follows:

Rµν −
1
2

gµνR = 8πG
(
−1

2
gµν∇αϕ∇αϕ − gµνV +∇µϕ∇νϕ

)
, (5)

∇µ∇µϕ =
dV
dϕ

. (6)

Then, we employ the following ansatz with a spherically symmetric property to describe
the gravitating scalaron,

ds2 = −N(r)e−2σ(r)dt2 +
dr2

N(r)
+ r2

(
dθ2 + sin2 θdφ2

)
, (7)

where N(r) = 1 − 2m(r)/r with m(r) is the Misner–Sharp mass function [50], which yields
the ADM mass of gravitating scalarons with m(∞) = M at infinity. The scalar field is also
assumed to be stationary and spherically symmetric with ϕ ≡ ϕ(r).

2.2. Remarks on the Existence of the Scalaron

Here, the existence of gravitating scalaron solutions is briefly discussed by following
the discussion from our previous paper [32]. In the introduction part, we have mentioned
that, when the scalar field exists in spacetime but the corresponding scalar potential
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vanishes (V = 0), the solution to the EKG system is the FJNW spacetime [20–23] (see
Appendix A), which is given by

ds2 = −
(

1 − b
r

)γ

dt2 +

(
1 − b

r

)−γ

dr2 + r2
(

1 − b
r

)1−γ(
dθ2 + sin2 θdφ2

)
, (8)

ϕ(r) =
q
b

ln
(

1 − b
r

)
, (9)

where q is the scalar charge, M is the ADM mass, and γ is restricted to the range 0 ≤ γ ≤ 1.
These parameters can be related to each other by

γ =
2M

b
, b = 2

√
M2 + q2 . (10)

Note that, in the limit γ = 1 with b = 2M, the Schwarzschild black hole can be recovered
from the FJNW metric, where ϕ(r) vanishes due to q = 0. When 0 ≤ γ < 1, the spacetime
and the scalar field contain a naked singularity in the radial coordinate r = b. Hence, it
is necessary to properly introduce a non-trivial scalar potential V(ϕ) in the EKG system
so that the spacetime of gravitating scalarons and the corresponding scalar field can be
regular everywhere.

Therefore, in this paper, we employ V(ϕ) with an inverted Higgs-like profile to
regularize the gravitating scalaron at the origin, so that they are regular everywhere in the
spacetime and, most importantly, so that they possess the positive ADM mass. Recently, we
employed the corresponding V(ϕ) to construct the hairy black hole, which can be scalarized
from the Schwarzschild black hole when the scalar field is non-trivial at the horizon [32].
Thus, according to [32], we briefly justify our introduction of V(ϕ) in the EKG system,
which can indeed guarantee the existence of gravitating scalarons by simply referring to the
KG equation in performing a few simple analyses without using the Einstein equation [51].
First, we multiply both sides of the KG equation (Equation (6)) by ϕ and integrate it by
parts from the origin to infinity. Subsequently, the following integral is obtained, given that
the boundary term vanishes at both the origin and infinity:∫ ∞

0
d4x
√
−g
[
∇µϕ∇µϕ + ϕ

dV
dϕ

]
= 0 . (11)

Since ϕ is spherically symmetric and stationary, then the term ∇µϕ∇µϕ = (∂rϕ)2 ≥ 0. We
further presume that ϕ is always positive and nodeless; hence, the condition ϕ dV

dϕ ≤ 0 can

be fulfilled if dV
dϕ = −4Λϕ3 + 2µϕ < 0.

Moreover, both sides of Equation (6) are multiplied by dV
dϕ , and we repeat the above

procedure to obtain

∫ ∞

0
d4x
√
−g

[
d2V
dϕ2 ∇µϕ∇µϕ +

(
dV
dϕ

)2
]
= 0 . (12)

The integral above clearly indicates that the condition d2V
dϕ2 < 0 must be fulfilled to ensure

non-trivial vanishing of the integral. This suggests that the profile of V(ϕ) needs to be
concave-down and possibly feature at least one local maximum. Therefore, the condition
d2V
dϕ2 < 0 can be satisfied if d2V

dϕ2 = −12Λϕ2 + 2µ < 0.
On the other hand, the existence of gravitating scalarons in the EKG system some-

how requires the slight violation of energy conditions. We can examine the weak energy
condition (WEC), as it may be violated with V(ϕ) < 0 in certain regions of ϕ,

ρ = −Tt
t =

N
2

ϕ′2 + V . (13)
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Violating the weak energy condition could entail a violation of the strong energy condition,
but the reverse relationship may not necessarily hold true.

2.3. Ordinary Differential Equations (ODEs)

Substituting Equation (7) into the Einstein equation gives rise to a series of nonlinear
ODEs for the functions m(r), σ(r), and ϕ(r):

m′ = 2πGr2
(

Nϕ′2 + 2V
)

, σ′ = −4πGrϕ′2 ,
(

e−σr2Nϕ′
)′

= e−σr2 dV
dϕ

, (14)

where the prime denotes the derivative of the functions with respect to the radial coordinate
r. Although the form of the ODEs looks very simple, it can be very challenging to obtain
an analytical solution. Therefore, we numerically integrate the ODEs from the origin
(r = 0) to infinity to compute the numerical results, utilizing the professional ODE solver
COLSYS [52] and MATLAB package bvp4c [53].

To construct a globally regular gravitating scalaron solution, all functions are required
to be finite at r = 0 by assuming their derivatives vanish at the origin in order to satisfy
this regularity condition. The asymptotic behavior of the functions at the origin can be
described by the power series expansion, where a few leading terms are given by:

m(r) =
4πG

3
V(ϕc)r3 + O(r5) , (15)

σ(r) = σc −
πG
9

(
dV(ϕc)

dϕ

)2

r4 + O(r8) , (16)

ϕ(r) = ϕc +
1
6

dV(ϕc)

dϕ
r2 + O(r4) , (17)

where σc and ϕc are the values of σ(r) and ϕ(r) at the origin, respectively, while the
condition of asymptotic flatness is imposed at infinity (r → ∞) by setting the scalar field
to vanish. Subsequently, the leading terms for the corresponding series expansion are
expressed as follows:

m(r) = M + m̃1
exp (−2

√
2µr)

r
+ . . . , (18)

σ(r) = σ̃1
exp (−2

√
2µr)

r
+ . . . , (19)

ϕ(r) = ϕ̃H,1
exp (−

√
2µr)

r
+ . . . , (20)

where m̃1, σ̃1, and ϕ̃H,1 are constants, and M is the total mass of the configuration. Moreover,
the effective mass of the scalar field is indicated as

√
2µ. Note that there are a few free

parameters, such as σc, ϕc, M, m̃1, σ̃1, Λ, and µ, in the calculation, where the parameters σc,
ϕc, M, m̃1, and σ̃1 are determined exactly when all functions satisfy the boundary conditions
on both ends. Hence, the following dimensionless parameters are introduced to the ODEs:

r → r
√

µ
, m → m

√
µ

, ϕ → ϕ√
8πG

, Λ → 8πGΛµ , (21)

such that we are only left with Λ as the single input parameter in the calculation. For the
sake of numerical calculation, we could also map the one-to-one correspondence of
the origin and infinity into [0, 1] with the introduction of the compactified coordinate
r = x/(1 − x).

In addition, we generate the hairy black hole solutions in this EKG system from
our previous work by solving the same set of ODEs in Equation (14) with appropriate
boundary conditions (refer to [32] for more detail) using COLSYS and MATLAB in order to
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observe the connection between the hairy black hole and gravitating scalaron in the small
horizon limit.

2.4. Geodesics of Test Particles Around the Gravitating Scalaron

The geodesics of test particles in the vicinity of the gravitating scalaron are studied
to understand how the gravitating scalaron could influence the motion of test particles.
This investigation could prove useful for future studies aiming to image the shadow of the
gravitating scalaron. Nevertheless, we start with the Lagrangian L, defined as follows:

2L = ẋµ ẋµ = ϵ . (22)

Here, ϵ = 0 corresponds to the massless particle, while ϵ = −1 corresponds to the massive
particle. It is worth noting that the dot represents the derivative of a function with respect
to an affine parameter.

As the gravitating scalaron is static and stationary, two conserved quantities arise,
namely, the energy E and the angular momentum L:

E = −∂L
∂ṫ

= e−2σ Nṫ , L =
∂L
∂φ̇

= r2 φ̇ . (23)

Moreover, we focus on the motion of test particles within the equatorial plane (θ = π/2),
and the radial equation for ṙ is as follows:

e−2σ ṙ2 = E2 − Veff(r) , (24)

where the effective potential Veff(r) is given by

Veff(r) = e−2σ N
(

L2

r2 − ϵ

)
. (25)

We can extract information on the possible appearance of the orbits for the test particles by
analyzing Veff(r).

3. Results and Discussion

Here, we present and discuss our numerical results. Figure 2 exhibits the ADM mass M
of gravitating scalarons versus the scalar field at the origin ϕc. Analogous to the gravitating
scalaron supported by V(ϕ) with asymmetric vacua [36], our gravitating scalarons also
bifurcate from the Minkowski space by gaining the mass M when ϕc increases where M
is positive. Hence, we demonstrate that the construction of globally-regular gravitating
scalarons with a phantom field can be avoided [28], since the profile of V(ϕ) is more crucial
to determining the existence of gravitating scalarons. It has been systematically discussed in
Section 2.2. Hence, our gravitating scalaron is less exotic if compared with [28]. Meanwhile,
the color bar in Figure 2 depicts the size of horizon rH of the hairy black hole solutions
with a fixed scalar field at the horizon generated from our previous work [32]. We observe
that the hairy black hole is connected smoothly with the gravitating scalaron in the small
horizon limit (rH → 0).
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Figure 2. The basic properties of gravitating scalarons: the ADM mass versus the value of the scalar
field at the origin ϕc. Note that the color bar indicates the size of the horizon of the hairy black holes.

Analogous to the counterpart hairy black hole [32], Figure 3a shows that the coefficient
of the quartic self-interaction term Λ can assume any positive real value and that it is
inversely proportional to ϕc. Hence, it is infinitely large when ϕc approaches zero but
decreases monotonically with the increasing of ϕc. Similarly, Figure 3b illustrates that the
profile of V(ϕ) initially contains two closely spaced degenerate global maxima with very
small heights for small ϕc (large Λ). However, their separation and height increase as ϕc
increases. Additionally, V(0) corresponds to the asymptotic flatness of the functions at
infinity (r → ∞), and the black dot on the yellow curve in Figure 3b represents the value of
V(ϕc), which is negative and decreases with the increase in ϕc.
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Figure 3. (a) The value of Λ in the logarithmic scale versus ϕc. (b) The profiles of V(ϕ) with several
values of Λ. The black dot on the yellow curve (Λ = 941.23) represents the value of V(ϕc).

If we consider a supermassive black hole as a hairy black hole with mass MBH, im-
mersed in a dark matter halo near a galactic center, then the corresponding density profile
ρDM could be described in the form of the power law, ρDM = ρ0(r0/r)γ, with the core
density ρ0, center radius r0, and power-law index γ [54–56]. This gives rise to the existence
of the dark matter spike with a radius Rsp(γ, MBH),

Rsp(γ, MBH) = αγr0

(
MBH

ρ0r3
0

) 1
3−γ

, (26)

where the normalization constant αγ can be calculated numerically for each γ. The dark
matter spike is formed as a consequence of an adiabatic growth of the hairy black hole,
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which increases the central density of the dark matter halo. The distribution of dark matter
in the vicinity of the spike region is described by

ρ
sp
DM(r) = ρsp

(
Rsp

r

)γsp

, (27)

where γsp = (9 − 2γ)/(4 − γ), and Rsp = 2MBH ≈ 2.95(M⊙/MBH) is the Schwarzschild
radius of a hairy black hole. Note that this dark matter density profile differs from the NFW
density profile, which is motivated by the numerical simulations of the collisionless dark
matter particles in the galactic halos for γ = 0, 1 and MBH = 105 or 106M⊙.

Although dark matter has not been detected yet, several theoretical studies on the
observational signatures for dark matter have been carried out [15,16,55,56]. As we have
mentioned in the introduction part, if a galaxy could be described by a galactic halo that
harbors a supermassive black hole at its galactic center, and if the corresponding supermas-
sive black hole could form a hairy black hole that is immersed in the ultralight bosonic field
with the mass 10−22 eV, then it can cast a shadow when a hot gas from a disk is accreted
into it, where the optical image could be detected by the EHT. Similarly, the spinning Proca
star and its counterpart hairy black hole could be detected from their effect of gravitational
lensing [16]. Additionally, Ref. [55] studied the emission of gravitational waves from the
dark matter spike that was formed by a primordial black hole, and they found that the
direction of the emission originated from the galactic center and has little correlation with
the position in the galaxy. Their results could account for the characterization of primordial
black holes as dark matter within a specific mass range, as detected by the LVK collabora-
tion. Ref. [56] found that, when the density of the dark matter spike is not static but evolves
with time, the orbits of the inspirals for a stellar-mass compact object around a black hole
immersed in dark matter could be reduced during the emission of a gravitational wave,
which might be detected by LISA in the near future.

We show the profiles of gravitating scalaron solutions in the compactified coordinate
x in Figure 4. Overall, they behave quite similarly to the counterpart hairy black hole [32].
Figure 4a shows that the profile of mass function m(x) behaves similarly to the profile
of m(x) of the counterpart hairy black hole [32], where it possesses an almost constant
function that is extended from the origin to an intermediate point in the spacetime and then
develops a sharp boundary near that intermediate point so that it is changed to another set
of almost constant function indicated as the ADM mass at infinity. Note that the almost
constant function at infinity corresponds to the local minimum of V(ϕ), which is V(0) = 0,
while another almost constant function at the origin corresponds to V(ϕc).

Meanwhile, Figure 4b,c depict the profiles of functions σ(x) and ϕ(x) in the compact-
ified coordinate x, where they are also regular at the origin but decrease monotonically
to zero at infinity. On the other hand, we find that the profiles of gravitating scalaron
solutions behave quite similar to the hairy black holes and gravitating scalarons, supported
by V(ϕ) with asymmetric vacua [36]. In addition, our solutions are completely regular
everywhere, but other classes of gravitating scalarons are not; for instance, only the scalar
field of ultra-compact gravitating scalarons diverges at the origin in EsGB theory [38,39],
but other functions and effective stress-energy tensors are regular everywhere.
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Figure 4. The profiles of gravitating scalaron solutions with several values of ϕc in the compactified
coordinate x: (a) m(x); (b) σ(x); and (c) ϕ(x).

Figure 5a shows the WEC of gravitating scalarons, which is described by ρ = −Tt
t

in the compactified coordinate x. The WEC is violated, particularly at the origin, and is
severely violated with the increase in ϕc. Conversely, another energy condition Tr

r, de-
picted by Figure 5b, is being satisfied with the increase in ϕc. Hence, this demonstrates
that the profile of Equation (4) is sufficient to violate the WEC for the existence of regular
gravitating scalarons; therefore, the usage of the phantom field for the construction of
gravitating scalarons is no longer necessary [28].
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Figure 5. The scaled energy conditions for the gravitating scalarons with various values of ϕc,
depicted as (a) 8πG

µ ρ and (b) 8πG
µ Tr

r.

We could also gain some insights into the possible appearance of the orbits for a
massive test particle in the spacetime of gravitating scalarons by analyzing its scaled
effective potential Veff(x)/µ in the compactified coordinate x in Figure 6a and Figure 6b for
ϕc = 0.5, 3.0, respectively. When L = 0, the massive test particle (black curve) is capable of
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moving radially from infinity to reach x = 0 with E2 ≥ Veff(0)/µ or just stays at x = 0 if it
is already at x = 0. When L ̸= 0, depending on E, it will move either in the bound orbit,
which is confined by a minimal radius and a maximal finite radius, or in an escape orbit,
which can be extended from a minimal radius to infinity [57]. However, it cannot reach
x = 0 regardless of the values of E and L, since Veff(x)/µ diverges on x = 0. Note that it
can move in the innermost stable circular orbit (ISCO) (magenta curve, L2 = 0.5) as shown
in Figure 6b, where the inner local minimum is indicated as the location of the ISCO. Since
no constraint has been applied to our model from the observations, if we want to estimate
the size of the ISCO, then we adopt a non-rigorous method, which assumes our scalar field
will behave similarly to the complex scalar field for the boson star. In particular, we pick
the constraint on the complex scalar field from the boson star with a quartic self-interaction
term, since we have it in our theory. Hence, if we assume the scalar field in our model is a
dilaton with mass 10−10 eV, then the radius of ISCO could be estimated to be on the scale of
103 km. If our scalar field is the Higgs particle with mass 125 Gev, then the radius of ISCO
can be estimated on the scale of 10−18 m [57,58].
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Figure 6. The scaled effective potential Veff(x)/µ of a massive particle in the compactified coordinate
x with several values of L2 for (a) ϕc = 0.5 and (b) ϕc = 3.0.

The scaled effective potential of the light ring Veff(x)/(µL2) in the compactified coordi-
nate x is depicted in Figure 7, where it diverges at x = 0 and monotonically decreases. Thus,
there is no light ring in the spacetime. Overall, we find that the types of orbits appearing in
the gravitating scalaron are quite similar to the case of the boson star, which is supported
by the superpotential and supersymmetry (SUSY) potential [57].
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Figure 7. The scaled effective potential for the light ring Veff(x)/(µL2) (They are not the units) in the
compactified coordinate x with several values of ϕc.

Finally, we briefly address the issue regarding the linear stability of the gravitating
scalaron. Ref. [36] reveals that the configurations of hairy black holes and gravitating
scalarons supported by V(ϕ) with asymmetric vacua are unstable against a small linear
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perturbation in the background. Since the hairy black hole supported by the inverted
Higgs-like potential is unstable against the linear perturbation [32], and since the hairy
black hole can be smoothly connected with our gravitating scalaron in the small horizon
limit, we therefore conjecture that our gravitating scalaron could inherit the unstable modes
from the hairy black hole in the small horizon limit and that our gravitating scalaron is
very likely to be unstable against the linear perturbation.

4. Conclusions

A few decades ago, a class of globally regular and asymptotically flat gravitating
scalarons was considered in the EKG system, where the Higgs-like potential with the
phantom field minimally couples with Einstein gravity. As a consequence, the correspond-
ing gravitating scalaron possesses the negative ADM mass [28]. Hence, in this paper, we
demonstrated that usage of the phantom field is not necessary and can be avoided by
inverting the Higgs-like potential to construct a gravitating scalaron where the scalar field
can possess the proper sign of the kinetic term. We explored such a scalar potential in our
recent work, where the scalar field is nontrivial at the horizon, leading to the formation of a
hairy black hole that bifurcated from the Schwarzschild black hole [32].

In the presence of a non-trivial scalar field at the origin, the gravitating scalaron also
bifurcates from the Minkowski space by gaining the positive ADM mass analogous to the
existence of their counterpart hairy black hole. Hence, our gravitating scalaron can be
less exotic if compared to [28]. Our gravitating scalaron can be smoothly connected to the
hairy black holes in the small horizon limit. Then, we performed a systematic study of
the properties of gravitating scalarons. We found that the behavior of the profile solutions
qualitatively resembles that of their counterparts in hairy black holes. The coefficient of
the quartic term in the inverted Higgs-like scalar potential varies with positive real values
and is inversely proportional to the strength of the scalar field at the origin. In addition,
our gravitating scalaron solutions are completely regular everywhere, but other classes of
gravitating scalarons are not. For instance, only the scalar field of the gravitating scalaron
diverges at the origin in EsGB theory [38,39], but other functions and effective stress-energy
tensors are regular everywhere.

Furthermore, we found that, when the massive test particle possesses a zero angular
momentum, it can either move radially inward from infinity to the origin or simply remain
at the origin if it is already there. When its angular momentum is non-vanishing, it can
possess a bound orbit, an escape orbit, and also the ISCO. However, the gravitating scalaron
does not possess a light ring, since the effective potential of the light ring does not possess
an extreme point but decreases monotonically to zero.

Finally, we briefly address the linear stability of our gravitating scalaron. Since the
hairy black hole supported by the inverted Higgs-like scalar potential is unstable against
a small linear perturbation in the background [32] and is connected to our gravitating
scalaron in the small horizon limit, thus possibly inheriting the unstable mode from the
hairy black hole, we conjecture that it is also unstable against the linear perturbation. red
Finally, we conjecture that the gravitating scalaron may inherit the instability from the hairy
black holes, as they are related in the small horizon limit, implying the possible presence of
the instability against the linear perturbation.
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ADM Arnowitt–Deser–Misner
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Appendix A. FJNW Metric

To obtain the FJNW metric, we begin with the Einstein equation and the KG equation
by setting V(ϕ) = 0,

Rµν −
1
2

gµνR = 2
(
−1

2
gµν∇αϕ∇αϕ +∇µϕ∇νϕ

)
, ∇µ∇µϕ = 0 , (A1)

where we redefine the scalar field as ϕ →
√

4πGϕ. We employ the following ansatz in
order to directly obtain the metric of FJNW (Equation (8)):

ds2 = −F0(r)dt2 +
1

F0(r)

[
dr2 + r2F1(r)

(
dθ2 + sin2 θdφ2

)]
. (A2)

Hence, the substitution of the above metric into Equation (A1) yields a set of ODEs,

−
F′′

1
F1

+
1
4

F′2
1

F2
1
+

F′′
0

F0
+

F′
0F′

1
F0F1

− 5
4

F′2
0

F2
0
− 3

F′
1

rF1
+ 2

F′
0

rF0
− 1

r2 +
1

r2F1
= ϕ′2 , (A3)

1
4

F′2
1

F2
1
− 1

4
F′2

0
F2

0
+

F′
1

rF1
+

1
r2 − 1

r2F1
= ϕ′2 , (A4)

F′′
1

2F1
− 1

4
F′2

1
F2

1
+

1
4

F′2
0

F2
0
+

F′
1

rF1
= −ϕ′2 , (A5)(

r2F1ϕ′
)′

= 0 . (A6)

In particular, the last ODE yields a first-order differential equation,

ϕ′ =
q

r2F1
, (A7)

where q is identified as the scalar charge.
The addition of Equations (A4) and (A5) yields a simple ODE only for the function F1,

F′′
1

2F1
+ 2

F′
1

rF1
+

1
r2 − 1

r2F1
= 0 . (A8)

The direct integration of the above ODE yields a general solution for F1(r) using the
software Maple, (Maple 2023.1, Maplesoft, Waterloo)

F1(r) = 1 +
C1

r
+

C2

r2 , (A9)
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where C1 and C2 are the integration constants. Then, we can substitute F1(r) into
Equation (A5) to obtain the following ODE for F0(r) after some algebraic simplification
using Maple:

d
dr

ln F0 =

√
−4q2 + C2

2 − 4C1

r2 + C2r + C1
. (A10)

The above ODE can be integrated directly as follows:

F0(r) =

C3

1 − 2r+C2√
C2

2−4C1

1 + 2r+C2√
C2

2−4C1


√

−4q2+C2
2−4C1√

C2
2−4C1

, (A11)

where C3 is an integration constant. We also integrate ϕ′(r) directly to obtain ϕ(r) as

ϕ(r) = q

√
−4q2 + C2

2 − 4C1√
C2

2 − 4C1

ln

C4

1 − 2r+C2√
C2

2−4C1

1 + 2r+C2√
C2

2−4C1

 , (A12)

where C4 is an integration constant. When we fix C2 = 0 and C1 = −b, the solutions become

F0(r) =
(

C3
b − r

r

)√
b2−4q2

b
, ϕ(r) =

q
b

ln
(

C4
b − r

r

)
. (A13)

We fix C3 = C4 = −1 such that r > b, and hence we obtain

F0(r) =
(

1 − b
r

)√
b2−4q2

b
, ϕ(r) =

q
b

ln
(

1 − b
r

)
. (A14)

Note that the solutions diverge when r = b. In particular, the scalar field diverges as ln r
when r → 0. Then, one could expand the function F0(r) in the limit r → ∞,

(
1 − b

r

)√
b2−4q2

b
≈ 1 −

√
b2 − 4q2

r
+ O

(
1
r2

)
, (A15)

and then one could read off the ADM mass directly as

M =
1
2

√
b2 − 4q2 . (A16)

One can rewrite the solutions as

F0(r) =
(

1 − b
r

)γ

, ϕ(r) =
q
b

ln
(

1 − b
r

)
, (A17)

where we have introduced a constant γ = 2M/b. Finally, we have verified that the solutions
can satisfy Equations (A3)–(A5).

Appendix B. Hairy Black Hole

We briefly revisited the properties of the hairy black hole that was constructed recently in
our paper [32]. The solutions to the hairy black hole could be obtained numerically by solving
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Equations (5) and (6) with COLSYS and bvp4c. In the numerics, the solutions are required to
be regular at the horizon rH, which can be represented by the following series expansions:

m(r) =
rH
2

+ m1(r − rH) + O
(
(r − rH)

2
)

, (A18)

σ(r) = σH + σ1(r − rH) + O
(
(r − rH)

2
)

, (A19)

ϕ(r) = ϕH + ϕH,1(r − rH) + O
(
(r − rH)

2
)

, (A20)

where

m1 = 4πGr2
HV(ϕH) , σ1 = −4πGrHϕ2

H,1 , ϕH,1 =
rH

dV(ϕH)
dϕ

1 − 8πGr2
HV(ϕH)

. (A21)

Here, σH and ϕH denote the values of σ and ϕ at the horizon, respectively. It should be
emphasized that the denominator of ϕH,1 must fulfill the condition 1 − 8πGr2

HV(ϕH) ̸= 1
in order to maintain σ(r) and ϕ(r) as finite at the horizon. Meanwhile, the hairy black
hole shares the same asymptotic behavior with the gravitating scalaron, which is given by
Equations (18)–(20).

We can analyze the characteristics of the horizon for the hairy black holes using two
fundamental quantities: the horizon area AH and the Hawking temperature TH :

AH = 4πr2
H , TH =

1
4π

N′(rH)e−σH . (A22)

The Ricci scalar R and Kretschmann scalar K = RαβγδRαβγδ of the hairy black holes are
given as follows:

R = −N′′ +
3rσ′ − 4

r
N′ +

2
(
2rNσ′ − N + 1 + r2Nσ′′ − r2Nσ′2)

r2 , (A23)

K =
(

3σ′N′ + 2Nσ′′ − N′′ − 2Nσ′2
)2

+
2
r2

(
N′ − 2Nσ′)2

+
2N′2

r2 +
4(N − 1)2

r4 . (A24)

At the horizon, the finite functions of R and K with a few leading orders using series
expansion are:

R = −2m1(3rHσ1 − 2)
r2

H
+

3σ1 + 4m2

rH
+ O((r − rH)) , (A25)

K =
16m2

2
r2

H
− 8(−2 + 6m1σ1rH + 4m1 − 3σ1rH)

r3
H

+
1

r4
H

(
12 − 32m1 + 48m2

1σ1rH + 36m2
1σ2

1 r2
H + 32m2

1 + 9σ2
1 r2

H

+12σ1rH − 36σ2
1 r2

Hm1 − 48m1σ1rH

)
+ O((r − rH)) , (A26)

where m2 denotes the coefficient of the second-order term in Equation (A18). While the
Ricci scalar of the Schwarzschild black hole is zero, its Kretschmann scalar is expressed by
K = 12r2

H/r6.
We present several numerical results. A branch of hairy black holes bifurcates from

the Schwarzschild black hole when ϕH is nontrivial at the horizon. Figure A1a shows that
the ADM mass of the hairy black hole increases with the increase in ϕH . Figure A1b also
shows a similar feature for the Hawking temperature of the hairy black hole. In principle,
ϕH can take any positive real values. Figure A2 shows the violation of the weak energy
condition, which is described by the scaled energy density (8πG/µ)ρ = −(8πG/µ)Tt

t.
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Figure A1. The characteristics of the hairy black hole, with rH = 1, are illustrated by: (a) the ADM
mass versus ϕH ; and (b) the Hawking temperature versus ϕH . The orange dot signifies the value of
the Schwarzschild black hole.
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Figure A2. The violation of the weak energy condition of the hairy black hole in the compactified
coordinate x = 1 − rH/r for various values of ϕH with rH = 1.

Notes
1 The presence of a quadratic term µϕ2 in V(ϕ) causes a scalar field to decay as the Yukawa-type potential at infinity, ϕ ∼ e−

√
2µr/r;

thus, this gives rise to a scalar field that possesses an effective mass meff =
√

2µ.
2 Previously, Ref. [33] considered such hairy black holes but did not study the properties systematically.
3 Ref. [45] used Equation (2) in constructing a hairy black hole but did not systematically study its properties.
4 Note that the Higgs-like potential has been considered for constructing a class of traversable wormholes in the Einstein-3-Form

theory, where the corresponding kinetic term still can possess a proper sign [47], and where another class of static and rotating
traversable wormholes are supported by the complex phantom field [48,49].
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