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Abstract: With the development of large-scale sky surveys, an increasing number of stellar pho-
tometric images have been obtained. However, most stars lack spectroscopic data, which hinders
stellar classification. Vision Transformer (ViT) has shown superior performance in image classifi-
cation tasks compared to most convolutional neural networks (CNNs). In this study, we propose
an stellar classification network based on the Transformer architecture, named stellar-ViT, aiming
to efficiently and accurately classify the spectral class for stars when provided with photometric
images. By utilizing RGB images synthesized from photometric data provided by the Sloan Digital
Sky Survey (SDSS), our model can distinguish the seven main stellar categories: O, B, A, F, G, K, and
M. Particularly, our stellar-ViT-gri model, which reaches an accuracy of 0.839, outperforms traditional
CNNs and the current state-of-the-art stellar classification network SCNet when processing RGB
images synthesized from the gri bands. Furthermore, with the introduction of urz band data, the
overall accuracy of the stellar-ViT model reaches 0.863, further demonstrating the importance of
additional band information in improving classification performance. Our approach showcases the
effectiveness and feasibility of using photometric images and Transformers for stellar classification
through simple data augmentation strategies and robustness analysis of training dataset sizes. The
stellar-ViT model maintains good performance even in small sample scenarios, and the inclusion of
urz band data reduces the likelihood of misclassifying samples as lower-temperature subtypes.

Keywords: deep learning; vision transformer; stellar classification

1. Introduction

Stellar spectral classification plays a crucial role in astronomical research, aiding as-
tronomers not only in understanding the fundamental physical properties of stars but also
serving as a key tool in exploring stellar evolution, the structure of the Milky Way galaxy, and
cosmic evolution [1]. Through spectral classification, stars can be categorized into different
types, such as O, B, A, F, G, K, and M types under the Morgan–Keenan (MK) system that
subdivides the range of possible stellar temperatures, from the coolest, M, to the hottest, O [2].
This classification helps astronomers organize and systematize their studies of stars, leading
to a better comprehension of the properties and evolutionary processes of stars.

Stellar spectral classification endeavors require extensive data on stellar spectral types.
However, due to the high cost and time-consuming nature of acquiring spectral data, even one
of the most significant sky survey projects to date, the Sloan Digital Sky Survey (SDSS) [3], has
only conducted spectral observations on 1.02 million stars, which is less than one-thousandth
of the total number of stars that have photometric (imaging) data captured by SDSS.

Therefore, spectral type classification based on photometric images is more suitable for
large-scale research. Since photometric images can provide information on the luminosity
and color of stars, these data can be utilized for stellar classification [4]. While this method
may not offer information identical to spectral types, it allows for the rapid and efficient
acquisition of classification information for a large number of celestial bodies.
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With the development of machine learning algorithms, deep learning is currently one
of the most commonly used methods for image classification and has been widely applied
in astronomical research in recent years. In recent years, many astronomical studies have
utilized deep learning and achieved many successes in celestial classification, detection,
and parameter measurement. For classification, convolutional neural network (CNN) and
residual network (ResNet) are applied for classification of galaxies [5,6], CNN is applied
for classification of TESS planet candidates [7], and a model based on the convolutional
feature and support vector machine algorithm (CFSVM) is applied for classification of
spectral types of stars [8]). For detection, Mask R-CNN is used for detection, segmentation,
and morphological classification of galaxies [9], Faster R-CNN is used for detection and
classification of astronomical targets [10], and astronomy photometric source classification
network (APSCnet) is used for detection and classification of sources [11]). For mea-
surement of celestial parameters, CNN is applied for prediction of the redshift probability
density functions (PDFs) [12], CNN is applied for prediction the gas-phase metallicity (Z) of
galaxies [13], and also used for prediction of the photo-z based on galaxy images [14]). The
deep convolutional neural network named the stellar classification network (SCNet) was
first applied to the classification of SDSS photometric images, achieving good performance,
with an accuracy of 0.86 [15].

Astronomical observation data possess characteristics such as a large data scale, uneven
samples, and high labeling costs, which pose challenges for stellar image classification. Tradi-
tional CNN models struggle to capture the dependencies between multiple channels when
processing multi-channel data. SCNet includes two branches in stage 1, each designed to
receive RGB images converted from the gri and urz bands. In stage 2, an attention module
merges the feature maps obtained from the two branches, and the final prediction results
are output through fully connected layers [15]. The Transformer model [16], utilizing self-
attention mechanisms and positional encoding techniques, effectively captures long-range
dependencies and has achieved significant success in the field of natural language processing
(NLP). The Vision Transformer (ViT) model [17] introduces patch embedding to divide images
into a series of small patches, thereby incorporating self-attention mechanisms from NLP into
image processing. The ViT model, based on attention mechanisms, excels in image classifica-
tion tasks, demonstrating the ability to capture both global information and local details [18],
making it suitable for handling multi-channel stellar photometry image data. Leveraging the
ViT model for stellar image classification can enhance the utility of astronomical observation
data, providing more precise and efficient data analysis tools for astronomical research [19,20].

2. Data

The SDSS project is an initiative aimed at mapping the universe. As the last data release
of the fourth phase of SDSS, SDSS DR171, provides observational data covering more than
one-third of the celestial sphere [3]. The stellar classification dataset we utilized is based on
the stellar image data from SDSS DR17, which includes multi-band photometric images
and spectral information, offering a rich data resource for our stellar classification task.
This dataset is sourced from [15], encompassing 46,245 stars with magnitudes exceeding
the limiting magnitudes (22, 22.2, 22.2, 21.3, and 20.5) in five bands (u (center wavelength
λ = 355 nm), g (λ = 477 nm), r (λ = 623 nm), i (λ = 762 nm), and z (λ = 762 nm)), with
1812, 6359, 7083, 8163, 6991, 7365, and 8472 stars classified as O, B, A, F, G, K, and M types,
respectively. Due to the scarcity of O-type stellar observations, there exists an imbalance in
the dataset that could potentially impact the classification performance. The stellar images
in the dataset have been preprocessed, including cropping using SDSS ImageCutout2 and
adaptively adjusting the cropping range to obtain images containing the target sources
and rescale them into 64 × 64 pixels. The gri and urz bands are converted to RGB channels
using the algorithm described in [21]. The dataset is divided into training, validation, and
test sets in proportions of 70%, 10%, and 20%, respectively, for use in the training and
evaluation processes of the model [22].
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To handle synthesized RGB images, we developed a data loading module. For indi-
vidual gri images, we first adjusted the grayscale values to a range of 0 to 255 and then
resized the images from 64 × 64 to 224 × 224. For combined gri and urz images, the same
grayscale adjustment strategy was applied, followed by merging the two images into one
and padding zeros at the top and bottom to adjust the final merged image size to 224 × 224.

3. Methods
3.1. Introduction to Vision Transformer

Traditional CNN models struggle to capture long-range dependencies. By incorporat-
ing attention modules into the convolutional layers of CNN, this issue can be addressed,
leading to improved performance in stellar classification [15]. However, this approach has
not fully utilized the potential of attention mechanisms. In contrast, Transformers are built
entirely on attention modules, utilizing self-attention mechanisms and techniques such as
positional encoding to effectively capture long-range dependencies. Transformers have
achieved significant success in the field of NLP. ViT, introduced by Google Research in
2020, is a model architecture based on the Transformer framework [17]. By introducing
patch embeddings to divide images into small patches, ViT addresses spatial relationships
between image pixels and integrates self-attention mechanisms from NLP into image pro-
cessing. In the domains of deep learning and computer vision, ViT has emerged as an
innovative and powerful model architecture, particularly excelling in image classification
tasks. The introduction of ViT signifies a shift from traditional CNN towards models
based on self-attention mechanisms. The core advantage of this approach lies in its ability
to capture long-range dependencies within images, a task that traditional CNN models
struggle to accomplish.

As shown in Figure 1, the architecture of ViT mainly consists of three parts: the input
embedding layer, Transformer encoder, and output head. The original image is divided into
equally sized patches. These patches are linearly projected into a high-dimensional space
by the input embedding layer and supplemented with positional encoding to retain their
spatial information. These processed patches are then ready to be fed into the Transformer
encoder. The Transformer encoder is composed of multiple identical layers, each containing
a multi-head self-attention (MHSA) module and a simple multi-layer perception (MLP)
module. The MHSA allows the model to consider information from all other patches while
processing each patch, thereby capturing the complex relationships and structures within
the image. The output from the Transformer encoder is passed to an output head (usually
one or more fully connected layers) for the final classification task.

The embedding layer consists of two parts: input embedding and position embedding.
The input embedding linearly maps patches to a high-dimensional space, enabling the
model to capture more complex features and patterns. In the high-dimensional space, the
relative positions and distances between data points can more richly represent different
semantic and syntactic relationships, thereby enhancing the model’s understanding of the
input data. The position embedding maps pixel positions to specific embedding vectors,
position information is encoded into the model to capture spatial relationships between
pixels. Position embedding allows the model to accept inputs of arbitrary sizes without
affecting the effectiveness of the position embedding.

The Transformer encoder is a core component of the ViT network, which achieves the
mapping of variable-length vector sequences to sequences of the same length by stacking
Transformer layers. Each Transformer layer consists of multi-head self-attention, multi-
layer perceptron, and layer normalization modules. The MHSA mechanism divides the
input sequence into multiple heads, computes various attention mechanisms in parallel,
and then, concatenates the results to capture different information within the input se-
quence. Each head independently calculates attention weights, enabling the model to
learn richer information representations. MLP enhances the model’s expressive power
and performance by introducing a feedforward neural network that maps input sequences
to a high-dimensional space, and then, undergoes a series of nonlinear transformations.
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The feedforward neural network lacks recurrent structures, thus avoiding the issues of
gradient vanishing/exploding, making it easier to train and optimize. Layer normalization
normalizes the input at each position to reduce internal covariate shift, making the model
easier to train and converge. It can also improve the stability and convergence speed of the
model, making the training process more stable and reliable. The outputs of the MHSA
and MLP layers undergo residual connections and layer normalization.
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Figure 1. ViT for stellar classification with image of gri or with image of combination of gri and urz.
The red “O” indicates the model’s final prediction for the stellar type being examined. The details of
the workflow of the network are given in Section 3.2.

The fundamental architecture of the Transformer relies solely on self-attention mecha-
nisms, excluding recurrent and convolutional layers. The self-attention mechanism typically
models the internal correlations within a sequence as follows:

Q = WqX, K = W kX, V = WvX. (1)

The matrix representation of the input vector sequence is denoted as X. According to
Equation (1), X is linearly projected to generate the query matrix Q, key matrix K, and
value matrix V , where Wq, W k, and Wv are weight matrices.

Subsequently, the attention scores are computed by performing scaled matrix product
operations on Q and K, where dk is the number of dimensions of the attention query and
key vector. This is followed by a softmax operation, and the resulting values are multiplied
by V to produce the output matrix.

Att(Q, K, V) = softmax(QKT/
√

dk)V . (2)

A more common approach is to employ multi-head self-attention, mapping Q, K,
and V h times to enable parallel computation to obtain Equation (2). The outputs are
concatenated, and then, linearly projected. The fully connected feedforward network
comprises fully connected layers activated by ReLU. Finally, a fully connected layer is
applied for classification, with the output vector dimension matching the number of
categories. During the training process, gradients are backpropagated to each individual
encoder to update their parameters.



Universe 2024, 10, 214 5 of 15

3.2. ViT for Stellar Classification

In the field of astronomy, the classification of stellar spectral types from images is an
important and challenging task, involving the categorization of stellar spectral types from
a large amount of astronomical observation data. Due to the difficulty in classifying stellar
spectra from images and the limited number of stellar samples containing spectral data,
traditional CNN models may encounter performance bottlenecks when processing such
images. The Transformer model possesses powerful feature extraction capabilities and has
begun to be utilized in the field of astronomy [23–25].

Considering the characteristics of stellar images and the performance of the ViT network
in image classification tasks, the traditional CNN is replaced with the ViT network. By utilizing
the properties of the Transformer module in the ViT network, the image is processed with
self-attention mechanism to capture the image features. In the model design, it is necessary to
take into account the characteristics of stellar images, such as the 5 different bands of stellar
images, and convert them into learnable inputs for the ViT network (Figure 1).

As show in Figure 1, the process of stellar-ViT is as follows:

1. The image is resized from 64 × 64 to 224 × 224.
2. The image is then divided into 9 patches and transformed into patch embedding

vectors through a linear projection layer.
3. The patch embedding vectors are added to the position embedding vectors to obtain

new embedding vectors, which serve as the input for the Transformer encoder.
4. The Transformer encoder processes the embedding vectors based on self-attention,

including steps such as normalization (Norm), multi-head attention, and multi-layer
perceptron (MLP), to produce output embedding vectors.

5. The output embedding vectors are fed into a classification head (MLP head) to obtain
the predicted probabilities for each category of the sample.

3.3. Training Strategy for ViT

We employed a transfer learning strategy by initializing the Vision Transformer (ViT)
with pre-trained weights from ImageNet, followed by fine-tuning on the stellar image
classification data. ImageNet, which is presently the largest database for natural image
recognition worldwide, comprises over 14 million images and 20,000 categories3 [26],
and is commonly used for pre-training in transfer learning [27]. Image augmentation is
performed by randomly rotating the images with a probability of 50% within the range of
0–30 degrees. In contrast to SCNet, we use the ordinary cross-entropy loss function instead
of the weighted cross-entropy loss function. The Adam optimizer [28] is employed with a
learning rate of 1 × 10−5, a batch size of 64, and a total of 50 training epochs. Additionally,
a combination of warm-up and cosine annealing algorithms is employed to update the
learning rate [29].

In this study, the training and test codes were based on Python 3.8.0 (Creator: Python
Software Foundation, Location: Beaverton, OR, USA) and PyTorch 1.13.1 (Creator: Face-
book, Inc., Location: Menlo Park, CA, USA). The training process was terminated within
20,000 iteration. We ran it on a graphics workstation with an Ubuntu 18.04.1 LTS OS, an
Intel(R) Xeon(R) Platinum 8160 CPU, 256 GB RAM and an 24 GB NVIDIA GeForce RTX
3090 GPU. The corresponding versions of NVIDIA CUDA (Creator: NVIDIA Corporation,
Location: Santa Clara, CA, USA) and cuDNN (Creator: NVIDIA Corporation, Location:
Santa Clara, CA, USA) are 11.6 and 8.3.2, respectively.
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4. Results and Analysis
4.1. Evaluation Metrics

In order to explore the classification performance of the model, we use accuracy to
evaluate the overall performance of the model, and use F1 score to measure the model’s
ability to predict different classes.

Accuracy =
∑k TPk

Nsamples
(3)

Precisionk =
TPk

TPk + FPk
(4)

Recallk =
TPk

TPk + FNk
(5)

F1k =
2 × Precisionk × Recallk

Precisionk + Recallk
(6)

where Nsamples is the number of total samples; TPk (true positive) is the number of sources
predicted to be the k-th class that actually are the class; FPk (false positive) is the number
of sources predicted to be the k-th class that actually are not the k-th class; and FNk (false
negative) is the number of sources predicted to not be the k-th class when actually they
are the k-th class. Accuracy is the ratio of correctly predicted samples to the total samples,
reflecting the model’s classification ability for the entire sample set. The precision of the
k-th class, Precisionk, is the ratio of TPk to the total number of samples predicted to be the
k-th class, which reflects the correctness of the model’s prediction result of the k-th class.
The recall of the k-th class, Recallk, is the ratio of TPk to the total number of samples of the
k-th class, which reflects the ability of the model to find positive samples of the k-th class.
The F1 score of the k-th class, F1k, is the harmonic mean of Precisionk and Recallk, with a
larger value indicating better classification performance of the model for that category. The
F1 score, as well as the precision and recall, are calculated separately for each class.

4.2. Comparison of Classification Performance

In the classification task based on photometric images, typically only RGB images converted
from the gri band are used (e.g., [6–8,30,31]). For the classification task of RGB images in the gri
band, we constructed a network (stellar-ViT-gri) for processing individual RGB images, with
its network architecture shown in Figure 1. We compared it with several typical classification
convolutional neural networks, including VGGNet19 [32], ResNet34 [33], DenseNet169 [34],
EfficientNet-B3 [35], and SCNet-gri. All networks were trained on the same train set and
evaluated on the same test set. Table 1 shows the performance of the best training models of
each network in terms of F1 score and accuracy on the test set. From Table 1, it can be observed
that the classification accuracy of stellar-ViT-gri is higher than the other five networks. The F1
scores for the majority of star types are also higher than the other five networks, except for type
B, which is slightly lower than SCNet-gri by 0.015. Particularly for type O stars, the F1 score of
stellar-ViT-gri reaches 0.626, making it the only classification model relying solely on gri data to
exceed 0.6. This is quite similar to SCNet-gri, slightly higher by 0.04. The results indicate that
stellar-ViT-gri performs better when classifying stars based solely on RGB images synthesized
from the gri band.

The SDSS photometric images consist of five bands: g, r, i, u, and z. RGB images syn-
thesized by the stellar-ViT-gri using the g, r, and i bands does not utilize all the information
available. To incorporate the information from the u and z bands, one approach is to syn-
thesize RGB images using the u, r, and z bands, and input them into a convolutional neural
network separately from the RGB images synthesized using the g, r, and i bands. These
two sets of features are then fused through self-attention modules [15]. To fully leverage
the powerful performance of self-attention mechanisms, we concatenate the two synthe-
sized images and feed them into the stellar-ViT model constructed based on self-attention
modules. The structure of stellar-ViT is illustrated in Figure 1, where the RGB input images
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of the gri bands and urz bands are concatenated into a new input image. By utilizing the
long-range correlations of the Transformer self-attention module, the information from
the uz bands is fused with the information from the gri bands. The performance metrics
recorded in Table 1 demonstrate that stellar-ViT exhibits optimal accuracy. Compared to
stellar-ViT-gri, stellar-ViT shows a significant improvement in classification performance.
The overall classification accuracy increases from 0.839 to 0.863, as shown in Figure 2 and
Table 1. The improvement is most pronounced for O-type stars, with the F1 score increasing
from 0.626 to 0.709, as shown in Figure 3 and Table 1. The F1 score increases towards M-type
stars, as shown in Figure 3, possibly due to the shift in stellar radiation from ultraviolet to
visible light as temperature decreases, thereby covering more SDSS observation bands. The
enhanced classification performance indicates that the u and z bands provide more useful
information for stellar classification, and the effective fusion of this information is achieved
through the long-range correlations of the Transformer self-attention mechanism.
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Figure 3. Results for accuracy of the 8 classification networks against the test set.
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Table 1. Results for accuracy and F1 scores of the seven classification networks against the test
set. The bold entries in the table highlight the best results using gri + urz images in each column
and the underlined entries highlight the best results using only gri image in each column.

Method F1 Accuracy
O B A F G K M

stellar-ViT 0.709 0.733 0.770 0.842 0.883 0.954 0.99 0.863
SCNet [15] 0.714 0.737 0.767 0.824 0.877 0.96 0.99 0.861
stellar-ViT-gri 0.626 0.709 0.727 0.812 0.849 0.949 0.983 0.839
SCNet-gri [15] 0.586 0.684 0.746 0.794 0.836 0.94 0.98 0.830
VGGNet19 [32] 0.585 0.675 0.711 0.782 0.836 0.95 0.98 0.823
ResNet34 [33] 0.577 0.685 0.692 0.795 0.844 0.94 0.98 0.822
DenseNet169 [34] 0.563 0.686 0.679 0.797 0.835 0.94 0.97 0.819
EfficientNet-B3 [35] 0.577 0.688 0.679 0.781 0.815 0.94 0.98 0.814

Figure 2. Results for F1 score of the 8 classification networks against the test set.
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Table 1. Results for accuracy and F1 scores of the seven classification networks against the test set.
The bold entries in the table highlight the best results using gri + urz images in each column and the
underlined entries highlight the best results using only gri images in each column.

Method F1 Accuracy
O B A F G K M

Stellar-ViT 0.709 0.733 0.770 0.842 0.883 0.954 0.99 0.863
SCNet [15] 0.714 0.737 0.767 0.824 0.877 0.96 0.99 0.861
Stellar-ViT-gri 0.626 0.709 0.727 0.812 0.849 0.949 0.983 0.839
SCNet-gri [15] 0.586 0.684 0.746 0.794 0.836 0.94 0.98 0.830
VGGNet19 [32] 0.585 0.675 0.711 0.782 0.836 0.95 0.98 0.823
ResNet34 [33] 0.577 0.685 0.692 0.795 0.844 0.94 0.98 0.822
DenseNet169 [34] 0.563 0.686 0.679 0.797 0.835 0.94 0.97 0.819
EfficientNet-B3 [35] 0.577 0.688 0.679 0.781 0.815 0.94 0.98 0.814

4.3. Performance on Training Datasets of Varied Sizes

For the stellar-ViT model, we constructed different sizes of training sets containing
98, 196, 392, 784, 1568, 3136, and 6272 samples. For each group, a corresponding number
of training samples was randomly selected to conduct 10 experiments, the average accu-
racy was calculated, and the impact of the training data size on the stellar classification
performance was tested (see Figure 4). By employing this method, the potential impact
of the data imbalance in the training set can be alleviated. For SCNet, the accuracies are
as follows: 0.62, 0.595, 0.636, 0.727, 0.743, 0.774, and 0.779. For stellar-ViT, the accuracies
are 0.714, 0.743, 0.769, 0.792, 0.811, 0.822, and 0.834. When the training dataset contains
1568 or more samples, the average accuracy of stellar-ViT is greater than 0.8. Most samples
in the test set are correctly classified. Even when the training dataset size is reduced to
392 samples, stellar-ViT maintains a relatively high classification accuracy (>0.76). With
only 98 samples, the classification accuracy noticeably decreases (approximately 0.7). When
the number of samples in the training set is small, the classification accuracy improves
as the training data size increases. As the training set size increases from 98 to 784, the
accuracy rises from 0.7 to nearly 0.8. We conducted small-sample experiments on SCNet
with the same configuration. The results indicate that, under the same number of samples,
the accuracy of the stellar-ViT model is significantly higher than that of the SCNet model;
especially, showing an increase of 0.15 in accuracy when the sample size is very small (192).

After comparing the performance of stellar-ViT on different sizes (98, 196, 392, 784, 1568,
3136, 6272) of datasets in predicting various types of stars on the same test set (Figure 5), we
observe that, under the condition of equal sample sizes for each category in the training set,
the size of the training dataset has little impact on the classification performance of M-type
stars. As the training dataset size increases, the classification F1 scores of B-type, A-type, F-type,
G-type, and K-type stars gradually improve, with the F1 score of G-type stars showing the
fastest improvement. The impact of changes in training set size on the performance of the SCNet
model in classifying O-type and M-type stars is relatively small (see Figure 6). The influence on
B, F, and K types is minimal, while it is significant for A and G types. When the training set
sample size decreases from 784 to 392, there is a noticeable sharp decline in the F1 scores for all
seven types of stars, indicating that the SCNet model is sensitive to small sample sizes.
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4.4. Discussion

Figure 7 shows the confusion matrix of stellar-ViT on the test set. The columns represent
the predicted categories, with the total in each column indicating the number of predictions
for that category. The rows represent the true categories, with the total in each row indicating
the actual number for that category. The main diagonal represents the correct predictions of
the model, while non-zero values outside the diagonal indicate incorrect predictions. Most
predictions in the confusion matrix fall along the main diagonal, indicating the model’s
good classification ability. The misclassified samples are mainly distributed among adjacent
categories. For example, out of 395 misclassified type A stars, 290 were misclassified as
type B and 105 as type F. This suggests that distinguishing between adjacent subcategories
remains a major challenge in stellar spectral type classification. Adjacent spectral types often
exhibit overlapping characteristics in their spectra. This overlap is due to the continuous
nature of stellar temperatures and the gradual changes in stellar atmospheres. As a result,
the photometric images that are used to classify stars can appear very similar in adjacent
types, making it challenging to assign a definitive classification. Comparing the confusion
matrices obtained from the predictions of stellar-ViT-gri on the test set (Figure 8) and stellar-ViT
(Figure 7), we observe that in comparison to stellar-ViT-gri, the number of misclassifications
into adjacent classes in the stellar-ViT classification results remains relatively constant, while
the number of misclassifications into classes with lower temperature decreases, as shown in
the bottom left corners of Figures 7 and 8.

This indicates that merging two channels for prediction can to some extent reduce the
occurrence of distant misclassifications. For type B stars, stellar-ViT cannot reduce the number
of samples misclassified as type O, but it can significantly reduce the number misclassified as
type A. For type F stars, stellar-ViT can notably reduce the number misclassified as type G. For
B-, A-, and F-type stars, incorporating u and z data into the stellar-ViT model can significantly
reduce the likelihood of misclassifying them as neighboring cooler types.
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When comparing the confusion matrices obtained from predicting on the same test set
after training on different sizes (98, 196, 392, 784, 1568, 3136, 6272, 31327) of the stellar-ViT
dataset (Figure 9), it is observed that, under the condition of equal sample sizes for each
class in the training set, the size of the training dataset has little impact on the classification
performance of O-type and M-type stars. The possible reason may be that the radiation
from O-type stars is primarily concentrated in the ultraviolet region, and the photometric
images we use are unable to capture most of the radiation energy emitted by O-type stars.
This affects the accuracy of classification based on color and brightness, and increasing
the sample size is insufficient to address this issue. In contrast, M-type stars have a lower
temperature compared to other stellar categories, resulting in more pronounced differences
in luminosity in photometric images, which allows for good classification results even
with a smaller sample size. However, continuing to increase the sample size yields limited
improvement. As the training dataset size increases, there is no significant improvement
in the classification accuracy of B-type stars, while the classification accuracy of A-type,
F-type, G-type, and K-type stars gradually improves. As for the misclassification issues
encountered with B-, A-, F-, and G-type stars, the likely cause is the spectral overlap between
these categories. This overlap means that luminosity images might not capture the subtle
features necessary for accurate differentiation, leading to poorer classification outcomes.
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Figure 9. Confusion matrices resulting from predictions on the test set by stellar-ViT trained on train
sets of various sizes: (a) 98, (b) 196, (c) 392, (d) 784, (e) 1568, (f) 3136, (g) 6272, and (h) 31,327.
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5. Conclusions

In this study, we propose a novel stellar classification network, stellar-ViT, based on
the Transformer architecture, aiming to classify stars solely relying on photometric images.
We utilize RGB images synthesized from the photometric data of SDSS for training and
testing the model, encompassing seven main categories: O, B, A, F, G, K, and M. Our
model, stellar-ViT-gri, demonstrates superior performance when processing RGB images
from the gri bands, outperforming classical CNN networks such as VGGNet19, ResNet34,
DenseNet169, and EfficientNet-B3, as well as SCNet-gri. Furthermore, our stellar-ViT model
excels in handling RGB images synthesized from the gri and urz bands, achieving an overall
accuracy of 0.863, surpassing classical CNN networks and the current state-of-the-art stellar
classification network, SCNet.

Our approach is simple and efficient, concatenating two RGB images composed of
five-band data for stellar classification. Furthermore, our data augmentation strategy
only involves random rotation, eliminating the need for other types of enhancements like
grayscale stretching, used in SCNet, or weighted cross-entropy to balance sample quantities.
These characteristics not only simplify the training process but also demonstrate the feasi-
bility of using photometric images and Transformer for stellar classification, particularly
maintaining good performance in small sample scenarios and effectively reducing the
likelihood of misclassifying samples into higher-temperature adjacent subclasses.

Through in-depth analysis, our research not only showcases the outstanding perfor-
mance of the stellar-ViT model in stellar spectral type classification tasks but also highlights
the high accuracy classification ability of our model, especially the variant stellar-ViT-
gri when processing gri band RGB images. Compared to several typical convolutional
networks and the latest stellar image classification networks, our model outperforms all
comparative models on the test set, particularly excelling in the classification of O-type
stars, where the F1 score of the stellar-ViT-gri model reaches 0.626, the only model sur-
passing an F1 score of 0.6, outperforming the state-of-the-art SCNet-gri model by 0.04.
The impact of additional band information on model performance is also emphasized.
By combining RGB images from the gri band with those from the urz band and utilizing
the self-attention mechanism of the Transformer model, our stellar-ViT model effectively
integrates this additional information, significantly enhancing classification performance.
Specifically, the overall classification accuracy improves from 0.839 to 0.863, and the F1
score for O-type stars increases from 0.626 to 0.709, underscoring the importance of u and z
band information in enhancing stellar classification performance.

We investigate the influence of training dataset size on model performance. The results
indicate that when the training dataset contains 1568 or more samples, the average accuracy
of the stellar-ViT model exceeds 0.8, enabling correct classification of most stars. Even
with a reduced training sample size of 392, the model maintains a high accuracy (>0.76).
This finding suggests that our model exhibits good robustness to training dataset size,
particularly in scenarios with fewer samples.

Through the analysis of confusion matrices, we further confirm the model’s clas-
sification ability, particularly in distinguishing adjacent subclasses. Compared to the
stellar-ViT-gri model using only the gri band, the stellar-ViT model incorporating u and
z band data performs better in reducing misclassifications, especially in decreasing the
likelihood of misclassifying stars as adjacent higher-temperature types.

In conclusion, our research not only demonstrates the exceptional performance of the
stellar-ViT model in stellar spectral type classification tasks but also underscores the impact
of additional band information and training dataset size on model performance, providing
valuable insights for future research in this field.

In future work, we plan to further enhance the model’s classification accuracy. Con-
sidering that Transformer networks are well-suited for unsupervised learning and the
SDSS data contains a substantial amount of unlabeled stellar data, we will explore utilizing
this unlabeled data for unsupervised learning with Transformers to further improve the
classification accuracy of the stellar-ViT model. Additionally, we believe the stellar-ViT
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model has the potential to be extended to classifying other types of astronomical survey
data, offering broader applications in the field of astronomy.
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