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Abstract: The estimation of galactic component masses can be carried out through various approaches
that involve a host of assumptions about baryon dynamics or the dark matter model. In contrast,
this work introduces an alternative method for predicting the masses of the disk, bulge, stellar, and
total mass using the k-nearest neighbours, linear regression, random forest, and neural network (NN)
algorithms, reducing the dependence on any particular hypothesis. The ugriz photometric system
was selected as the set of input features, and the training was performed using spiral galaxies in
Guo’s mock catalogue from the Millennium simulation. In general, all of the algorithms provide
good predictions for the galaxy’s mass from 109 M⊙ to 1011 M⊙, corresponding to the central region
of the training domain. The NN algorithm showed the best performance. To validate the algorithm,
we used the SDSS survey and found that the predictions of disk-dominant galaxies’ masses lie within
a 99% confidence level, while galaxies with larger bulges are predicted at a 95% confidence level. The
NN also reveals scaling relations between mass components and magnitudes. However, predictions
for less luminous galaxies are biased due to observational limitations. Our study demonstrates
the efficacy of these methods with the potential for further enhancement through the addition of
observational data or galactic dynamics.

Keywords: galactic systems; neural network; scaling relations

1. Introduction

The bulge–disk decomposition of galactic systems is useful for understanding the
evolutionary processes of galaxies. Specifically, the disk and bulge masses can be inferred,
given that their stellar population has different dynamic or even chemical features. There
are plenty of schemes for classifying galaxies; one of the most popular corresponds to
the morphological classification proposed by Edwin Hubble [1], which distinguishes four
different types of galaxies: elliptical, spiral, barred spiral, and irregular. Another method
involves the isophotal radius measurement [2], determining the size attributed to a galaxy
component according to the corresponding surface brightness level. A way to characterise
the light distribution independent of the light profile is through the concentration measure,
defined by the ratio of two geometrical regions, each containing a fixed fraction of the total
luminosity of the galactic system [3].

Another approach for reconstructing the visible mass of galactic components involves
using standardised fitting functions. Ideally, these functions should be derived from the
fundamental principles governing galactic evolution. However, due to the intricate nature
of the physics involved, models based on these principles often become complex, with a
substantial number of parameters. Then, commonly used functions are empirically derived.
For instance, the disk components are well-fitted by an exponential law, while for the
elliptical galaxies and the bulges in the spiral ones, the relations that are typically considered
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are King’s model [4] and de Vaucouleurs’s law [5]. Sometimes, the bulges associated with
late-type galaxies are best fitted by exponential laws [6,7]. However, implementing these
methods demands high-quality observational data to obtain reliable results.

Furthermore, it is possible to single out the galactic components through the light
distribution of a galaxy. This decomposition is derived by fitting the light profile to a power
law, adhering to a specific empirical or analytical model. In the conventional photometric
technique, the one-dimensional case is considered. On the other hand, when multiple
wavelengths in the spectrum are taken, spectroscopic methods come into play [8].

On the other side, numerical simulations play an important role in exploring predictions
of galaxy evolution within the standard ΛCDM prescription [9–11]. Semi-analytical models
have gained popularity when identifying the structural components of galactic systems.
These models employ a simplified representation of baryonic physics, coupled with Markov
chain Monte Carlo methods for reconstructing merger trees [12].

For dark matter-only simulations, a common technique to infer information about the
baryonic components is to assume the halo abundance matching (HAM), which relates the
halo potential well to the star formation rate in such a way that more luminous galaxies are
associated with more massive halos. During the evolution of both components, material
exchange occurs between the baryonic elements through various processes. For example,
forming a galactic bulge may result from major or minor mergers [13]. In these processes,
pre-existing and newly formed stars play a crucial role; after a merger, stars from the
progenitors contribute to the bulge component of the resulting galaxy. The gas within the
progenitors becomes part of the resulting galaxy disk, and the specific angular momentum
of this component equals that of the halo in which it is embedded [14–16].

As can be seen, various approaches exist for describing galactic components, includ-
ing purely morphological observations or photometric and/or spectroscopic techniques,
either being synthetic catalogues. Conversely, obtaining information about total mass often
involves making strong assumptions about either a specific dark matter model or about
the overall kinematics of the system. In this sense, it has been shown that ML methods can
reduce the dependence on such assumptions [17]. For example, in [18], the authors propose
a random forest-based approach to predict the total and dark matter masses of galaxies
using simple observations from photometric and spectroscopic studies, while [19] presents a
supervised ML method to display multidimensional information on stellar populations and
kinematics in the MaNGA study in a 2D plane. Additionally, in [17], a sample of galaxies
from the Illustris TNG simulation was used to predict the stellar and total masses using a
convolutional neural network.

In this work, we propose an artificial intelligence (AI)-based method to isolate the
bulge and disk components of both baryonic and total galaxy mass. This is accomplished
using the information on luminosity and features inferred from stellar dynamics encrypted
in Guo’s synthetic catalogue [14]. Our goal is to perform the decomposition of the galactic
components without including additional information about baryons in the training stage
beyond the patterns the AI methods can infer from the catalogue1. This method can be
useful to predict the mass of the components of observed galaxies whose baryonic dynamics
cannot be easily obtained using conventional techniques.

In this context, we will consider the following components: the bulge, the disk, and the
stellar and total mass. Because the mass values range between several orders of magnitude, it
is well suited for predicting the logarithm base 10. Here, the bulge mass Mbulge is computed
in terms of the disk mass Mdisk and total mass M⋆ from the following expression2 [12,14]

M⋆ = Mbulge + Mdisk. (1)

We are interested in the strengths and weaknesses of the machine learning (ML) algo-
rithms when keeping the features set as simple as possible. For that reason, we proposed
as input data the photometric information in different colour bands and the maximum
rotational velocity of the halo, constructed directly from the simulation and independently
of baryonic dynamics3. We will compute an estimation of the percent error of the pre-



Universe 2024, 10, 220 3 of 15

dictions given by the AI methods with respect to the actual value of the simulated data.
Additionally, the SDSS database [20] will be considered to assess how well the predictions
match observations. This will allow us to identify the ranges of luminosity and mass where
the algorithms show the best accuracy and explore the properties of the corresponding
galaxies. This analysis is particularly important if we want to implement this method in
other surveys.

This paper is structured as follows: Section 2 presents and analyses the content of
Guo’s galaxy catalogue to determine the correlation between input features and output pre-
dictions, emphasising their importance during the training stage. Following this, Section 3
introduces the ML algorithms considered in this work and explores their dependency on
variations in different parameters. Subsequently, in Section 4, we analyse the performance
of each algorithm and the percent error of the predictions. Then, in Section 5, we apply
the trained methods to predict masses of components in observed galaxies from the Sloan
Digital Sky Survey [20] database. We derive various scaling relations commonly studied in
the literature and identify the regions where the predictions are more accurate. Finally, we
draw some conclusions in Section 6.

2. The Data

To train our ML algorithms, we have used Guo’s galaxy catalogue [14] derived from
the Millennium simulation, selecting only galaxies with non-zero bulges or disk compo-
nents, leading to a set of 833,491 galaxies. This dataset was split randomly, assigning a
common selection where 75% of total data was defined for training and 25% was defined to
evaluate the performance of the algorithms. The Millenium simulation is a dark matter-only
simulation, carried out under the ΛCDM prescription [21] using a customised version of
the Gadget 2 code [22], with 21603 particles within a box of L = 500 Mpc/h. This catalogue
provides information about the merger history of each halo and the baryon content, split
into five components: the stellar bulge, the stellar disk, a gas disk, a halo, a black hole, and
an ejecta reservoir [10].

The analytical model implemented in Guo’s catalogue considers that galaxies form
within the central region of dark matter halos. The fitting function, which describes the
average baryon fraction of a halo given the total mass, can be written in terms of its mass
and redshifts [23]

fb(z, Mtot) = f cos
b

(
1 + (2α/3 − 1)

[
Mtot

Mc(z)

]−α
)−3/α

, (2)

where the universal baryon fraction is usually taken as f cos
b =

Ωb
Ω0

∼ 17%. Here, Mc

represents the characteristic mass objects, which can retain 50% of the gas components
to form stars. The reionisation and cooling depend on the baryon fraction in a given
halo and on its mass and redshift. The disk and bulge formation are correlated with
star formation and supernova feedback processes, as well as with the black hole growth
and AGN feedback. Additionally, mergers between the central and satellite galaxies are
described through simulations and play an important role in the disk and bulge evolution.
This catalogue accurately reproduces the population and clustering mechanisms observed
at z ∼ 0. However, it exhibits inconsistencies for high-redshift populations.

In this work, we consider galaxies at z = 0. Our goal was to investigate spiral galaxies
hosting both bulges and disks. Then, we imposed this strong filter when selecting our sample
from the mock catalogue. It is crucial to note that our selection encompasses diverse galaxy
types without accounting for age or metallicity. The purpose is to explore the capabilities
of the algorithms to get information about the systems by exclusively using photometric
information.

The resolution of the simulation delimits the range of masses for each component.
Once the selection of bulge–disk galaxies has been performed, the range of the total mass
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is between 1010M⊙/h and 1013M⊙/h. Notably, the selected total mass range excludes
galaxies of both low and high masses. Indeed, massive galaxies tend to exhibit an elliptical
morphology rather than spiral [24].

Features Importance

It is well known that the physical and photometric properties of the stellar popu-
lation of a galaxy are closely related to its dynamics and the spatial mass distribution of
different components within the system. Specifically, this behaviour is reflected in the colour–
magnitude relation. For instance, it has been shown that bulge-dominant galaxies have a
color–magnitude diagram mainly described by red galaxies [25]. Additionally, in [26], it
has been shown that the bulge is redder than the disk in galaxies within a cluster. A similar
conclusion was reported in [27].

In ML, the training data are defined as the feature vector X = (X1, X2, . . . , Xn) and
their corresponding label or associated output y = (y1, y2, . . . , yn), where n is the sample
size, with unknown distribution P(X, y) as follows

D =

{
(X1, y1), . . . , (Xn, yn)

}
⊆ Rd × I , (3)

here Rd denotes the d−dimensional feature space and I is the label space. In this work, we
consider two sets of features, XI and XI I . The first corresponds to the absolute magnitudes
XI = (u, g, r, i,z), which we hereafter refer to as Set I. Such magnitudes are also available
in the SDSS dataset; therefore, there is an observational counterpart. Within a second set
(Set II), the same features as Set I are considered in addition to the maximum rotational
velocity of the halo XI I = (u, g, r, i, z, Vmax). In both cases, the predictions (labels) are
y = (Mdisk, M⋆, Mtot), as it is displayed in Table 1. An exploration of the data for each set
was conducted using Pearson’s correlation ratio,

rX,y =
∑n

i=1(Xi − X̄)(yi − ȳ)
(n − 1)SXSy

, (4)

where barred symbols represent the mean values and SX,y is the standard deviation. When
this quotient is rX,y = ±1, we have a perfect positive (negative) correlation, whereas for
rX,y = 0, the parameters are not correlated at all.

Table 1. Input and output features considered for the ML algorithms in this work. Set I corresponds
to the photometric information derived from Guo’s catalogue using semi-analytical models. Set II
includes information about the dynamics of all components.

Input u r g i z Vmax

Set I (XI) ✓ ✓ ✓ ✓ ✓
Set II (XI I) ✓ ✓ ✓ ✓ ✓ ✓

Output (y) log10(Mdisk) log10(M⋆) log10(Mtot)

In Figure 1, the correlation matrix illustrates how the features contribute to the algo-
rithm’s predictions. For completeness, the mass of the bulge and the mass of the central
black hole Mbh have been included to analyse the whole set of masses of the mock catalogue.
The matrix displays the absolute values of Pearson’s correlation ratio, focusing solely on
the strength of the correlation parameter. As anticipated, M⋆ exhibits a high correlation
with the magnitudes, particularly with the z and i bands, corresponding to the infrared
and near-infrared regions of the spectrum, respectively. Observationally, the determination
of luminous mass is significantly influenced by dust, with emissions in the optical band
experiencing reddening. Conversely, this effect is negligible in the near infrared [28]. On
the other hand, Mdisk shows less correlation with the magnitudes compared with M⋆ and
exhibits a weak relation with the remaining quantities. Furthermore, Mtot exhibits a strong
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correlation with M⋆ due to the HAM relation implemented in the mock catalogues. The
correlation between Mtot and vmax, which encapsulates information about the dynamics
of all components, surpasses that of other masses. Notably, the correlations with Mdisk
are weak, suggesting that the dark matter component influences the stellar component
as a whole rather than each component individually. Regarding Mbulge, this quantity is
less correlated with the magnitudes than Mdisk; instead, it is more linked to Mbh. This last
one also shows a strong correlation with Mtot and a weak link with the rest of the features.
From here, we define our features as the more correlated ones, that is, the magnitudes, the
masses Mdisk, M⋆, Mtot and, additionally, vmax, in agreement with Table 1.

Figure 1. Heat map of the absolute value of the Pearson correlation coefficient between the galaxy
parameters presented in Guo’s catalogue. The redder the square, the higher the correlation. As
expected, stronger correlations occur between different bands’ stellar mass and magnitudes. However,
a relation exists between the total mass and the magnitudes, although to a lesser extent.

3. Implementation of the ML Algorithms

We employed a set of widely used supervised algorithms that are known for their
effective predictions, listed as follows. These methods were implemented using the scikit-
learn library [29,30] and the Keras API [31].

• KN-Neighbours (KNN). This algorithm relies on the idea that the set of k nearest data
points Cx ⊂ D, where |Cx| = k have similar values among them; here, D is defined in
Equation (3). To consider two points as neighbours, they should fulfill

dist(x, x′) ≥ distmax(x, x′′), with (x′′, y′′) ∈ Cx, (x′, y′) ∈ D. (5)

This distance is defined in the hyperspace of features using the Euclidian metric, and
the final value is the average of their outputs. In this case, the number of neighbours is
a free parameter, and we found that the highest accuracy is achieved when the number
of neighbours is close to 18; the error starts to increase beyond that value.

• Linear regression (LR). The traditional linear regression minimises the sum of the
squared differences between the predicted and actual values. We are considering this
method to compare it with more sophisticated techniques.

• Random forest (RF). This algorithm is subject to the number of trees and their depth.
Each tree contains decision nodes Nm that split the data (Xnode, ynode) (in the parent
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node) into smaller (left and right) subsets in new child nodes CL
m and CR

m until the
branch finds a homogeneous group according to the set of hyperparameters. Splitting
each node in regression is conducted following the minimisation of the residual Rm as

argmin(Rm) = ∑
m∈Nm

(ym − ȳm)
2 −

 ∑
m∈CL

m

(y−ȳL
m)

2 + ∑
m∈CR

m

(y−ȳR
m)

2

, (6)

where ȳL
m and ȳR

m are the mean of the target values in the child nodes. In this case,
the algorithm identifies patterns in the masses of the galaxies, and it is capable of
categorising them into groups ym where certain requirements between the luminosities
are fulfilled. The split is performed if the minimum Rm is below a defined threshold.
Because of how the trees are built, it is easy to overfit. Therefore, it is strongly recom-
mended to use a set of trees instead. We used nearly 150 trees for the training. The
minimum number of samples required for splitting was four; below this number, the
branches reach the maximum depth and are considered as pure.

• Neural network (NN). NN is an interconnected group of nodes stored in a layer and
is connected to other nodes in the network by unidirectional connections of different
weights. Patterns learned in a layer are transferred to the next activated nodes. We
implement the early stopping-based method as a regularisation technique to avoid
overfitting, stopping the training once the performance no longer improves. This is
measured by the loss function, which quantifies the discrepancy between the predicted
error and true values. For a regression, it can be taken as the squared loss function

L =
1
n

n

∑
i=1

(
h(Xi)− yi

)2
, (7)

here, h(X) is the function that minimises the loss associated with the target value of the
i-th class, h = argmin(L). A common assumption is to take h(x) = BTXi + b, where
instances of B are considered as the weights coefficients and b is a constant. In this
case, we also considered the Lasso regularisation method. This technique penalises the
model’s coefficients, shrinking or setting them directly to zero, giving rise to a sparse
model. Some neurons are turned off randomly, and the information is not transferred
to the next layer. This technique is used to avoid overfitting. Then, the Equation (7) is
transformed into

L =
1
n

n

∑
i=1

(
BTXi + b − yi

)2
+ λ

p

∑
j=1

∣∣∣Bj

∣∣∣ , (8)

where the last term is subject to ∑
p
j=1

∣∣∣Bj

∣∣∣ < c. The best NN architecture was also
obtained by varying the model’s hyperparameters, such as hidden layers between 1
and 3; the number of neurons between 32 and 512 per layer; and adjusting the learning
rate across values of 10−2, 10−3, and 10−4. The best configuration has three hidden
layers, with 256, 224, and 352 neurons, respectively, and a learning rate of 10−4.

4. Testing the Algorithms Performance
Relative Percentage Difference

In Figure 2, we present the relative percentage difference between the logarithm of the
actual mass Mactual in the mock catalogue and the logarithm of the mass predicted by each
algorithm, Mpred. The algorithm dispersion is estimated by using the parameter ∆ [32],
which can be computed as follows

∆ = 100 ×
(

log Mpred

log Mactual
− 1

)
. (9)
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Relative percentage difference for the predictions of different ML algorithms concerning
the actual values in the mock catalogues. Set I is displayed on the left, and Set II is displayed on the
right. From the top to the bottom, the prediction for the output labels Mdisk, M⋆ and Mtot are shown
along with different color bands associated to each algorithm (KNN in green, LR in blue, RF in red
and NN in yellow green). In general, the bands follow a similar behavior and can be overlapped in
certain regions. The histograms in the figures represent the distribution of the data. As expected, the
predictions are better where the data density is higher. The lines represent the mean value µ, and the
bands are one standard deviation from the mean value µ ± σ.

The results were plotted into bins for which the mean value is shown in dashed lines,
whereas the standard deviation corresponds to the width of the shaded regions around the
mean value µ ± σ. The left panel shows the result when the training was carried out using
Set I, while the right side corresponds to Set II.

The uncertainty bands in the histogram noticeably narrow as data counts increase,
indicating a more accurate prediction. The highest errors for Mdisk and M⋆ predictions
(Figure 2a,c) lie below 109M⊙/h and arise due to the low amount of data. Indeed, ML
algorithms may encounter challenges in converging effectively when dealing with sparsely
populated regions of the sample [33].

In contrast, for Mtot in Figure 2e,f, the error increases for larger mass values, signifying
reliable predictions in the central region around 1011–1012, M⊙. Notably, the distribution
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of Mtot is narrower compared with Mdisk, as depicted in Figure 2a,e. This can be because
the sample of galaxies chosen from the mock catalogue satisfies the condition of having a
bulge, a criterion fulfilled only by sufficiently massive galaxies.

Most of the predictions exhibit statistical errors centred around zero. Figure 2c,d M⋆

displays the smallest percentage difference in both cases, owing to a linear correlation
between magnitudes and luminous mass [34–36]. The LR model shows the best score as it
was trained by directly fitting a scaling relation. In some algorithms like NN and RF, the
error increases by around 1% for masses that are 1010M⊙/h in Set II.

In the context of disk mass, as shown in Figure 2a,b, the percentage difference is higher
compared with the M⋆ case. Nevertheless, it remains within an acceptable prediction range
for medium and high masses. Interestingly, predictions for both sets of features exhibit
similar trends. In contrast to the linear fit used for M⋆, the LR method is no longer the
optimal choice due to the nonlinear nature of this relationship. Instead, the NN and RF
algorithms demonstrate superior training performance for Set I.

Finally, for Mtot, Figure 2e shows that Set I only gives unbiased predictions within
the range 10.7 < log Mtot < 12, while for Set II, Figure 2f, this is true in the range 10.7 <
log Mtot < 12.7. This makes sense physically as vmax should be more sensitive for probing
higher mass halos above Mtot = 1012M⊙/h. The correlation between the magnitudes
in Set I and Mtot is not straightforward. However, because mock catalogues follow the
HAM relation, a correlation exists between Mtot and M⋆, consequently influencing the
magnitudes. This correlation contributes to achieving favourable results in predicting the
total mass. In this context, NN yields the best performance for Set I, given the absence of
an explicit scale relation, while for Set II, all predictions are similar.

After analysing the performance of predictions for Set I and Set II, we concluded that
the latter does not significantly improve the results. As mentioned, the main enhancement
is observed for Mtot. Additionally, having information about the Vmax for galaxies can be
challenging due to the system’s dynamics. Therefore, in the interest of simplicity, we have
opted for Set I exclusively moving forward.

5. Predictions for Observational Data

Up to this point, we have assessed the training performance using synthetic data. In
this section, we will apply the trained NN to predict masses of different components in real
galaxies from the SDSS survey [20]. It is crucial to note that galaxies from the mock catalogue
have specific limits for the ugriz magnitudes, which are directly tied to the resolution of the
simulations. This dependence arises from the halo masses and, consequently, stellar masses,
influenced by the ability of the semi-analytical models to assign magnitudes. In contrast,
observed galaxies from SDSS exhibit limitations in the low surface brightness regime due to
challenging observational features [37,38].

Figure 3 shows the distribution for each magnitude for both SDSS and Guo’s galaxy
catalogue. As previously mentioned, observed galaxies exhibit high luminosity, causing
a shift in the mean value of each magnitude compared with synthetic galaxies. Because
both samples do not fall within the same ranges, we will focus on regions where we have
information about both observations and simulations. Indeed, the literature has reported
that NN behaves as interpolators [39,40]. Therefore, the sample of observed galaxies to
be assessed by the algorithm should have input features within the same domain of the
training and test mock datasets.

We selected a galaxy catalogue from the SDSS database, with information about
660,000 galaxies and their morphological components [41]. The masses listed there were
determined by fitting a broadband spectral energy distribution. This process involved
making assumptions about the initial mass function, extinction law, and stellar evolution. In
that catalogue, the bulge–disk brightness profiles were reconstructed using the photometric
decomposition method with the Sersic profile

I(R) = Ie exp

−bn

[(
R
Re

)1/n
− 1

], (10)
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where Re is the half-light radius and Ie is the intensity at that radius. Here, n is known as
the Sersic index and controls the curvature of the profile.

(a) (b)

(c) (d)

(e)

Figure 3. Histograms for the photometric magnitudes u, g, r, i and z are displayed in the panels (a–e),
respectively. Both synthetic (in blue) and observational (in orange) catalogues have been considered.
Vertical dashed lines represent the mean value of each distribution dataset. We observe that the
observational case is shifted to the left in comparison with the synthetic data, in all cases. These
histograms clearly show that, within the mock sample, the distribution of magnitudes for galaxies
significantly differs from that for the SDSS sample. This suggests that the algorithms will explore the
SDSS sample and a different combination of the features from the training set.

The magnitudes used in the prediction stage were obtained from the SDSS DR7 [20].
We converted the apparent magnitude (m) to absolute magnitude (M) using [42]

M = m − 5
(

log10 d − 1
)

, (11)

where d is the distance to the source in units of 10 parsecs. The distances were computed
using the Python library Astropy [43], with the redshift reported in NED4 and assuming the
cosmological parameters from Planck 2018 [44], H0 = 67.66 km/Mpc/s and Ωm0 = 0.26.
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Our analysis focused on about 70% of the total dataset, concentrating on galaxies with the
u-, g-, r-, i-, and z-magnitudes.

A valuable piece of information for describing the evolution and structure of galaxies is
the scaling relations between physical quantities of a galaxy sample. We analyse the scaling
relation between mass components and the r-magnitude, as reported in other works [45–47].
This is best correlated with the stellar mass among SDSS filters. The relations for magnitudes
in other colours are similar. We also study the Mbulge − Mdisk relation as well as the M⋆ −
Mtot. We only employ the NN algorithm to obtain the results presented in this section,
given that it performs better with fewer errors and its construction involves a more complex
architecture than the other AI algorithms.

5.1. Mass–Magnitude Relation

In Figure 4, we present distributions projected onto the M⋆− rmag and Mdisk− rmag
planes and the Mbulge− rmag relation for completeness. In each case, distributions up to
2σ for three datasets are shown: firstly, from the original mock catalogue in blue; then,
from the original SDSS catalogue in green; and the third corresponds to NN predictions for
the SDSS galaxies in red. The contours represent the 99% and 95% confidence levels. For
plotting these figures, we are using the whole data of spiral galaxies in the mock catalogue;
nevertheless, the masses reported in the observed catalogue fall within the regions depicted
in Figure 2.

First, Figure 4 Panel (a) illustrates the scaling relation between M⋆ − rmag. The NN
predictions agree with the real values up to 95% C.L. However, as we approach more
massive galaxies, the resolution limit for simulations increases the error. Overall, the NN
exhibits accurate predictions for M⋆, consistent with Figure 2c. Indeed, the best-fit slopes
for each dataset only show slight differences. The best fits for the mock catalogue, SDSS,
and NN predictions, respectively, are

M⋆ = −0.427rmag + 1.370, (12)

M⋆ = −0.461rmag + 0.916, (13)

M⋆ = −0.457rmag + 0.954. (14)

For Mdisk in Figure 4 Panel (b), we distinguish a possibly bimodal distribution with
two regions for simulations laying inside the range of mass between 7 < log Mdisk < 9.
There is a separation between both blobs due to the lack of information at rmag ∼ −19.
We report an acceptable agreement within the 95% C.L. for galaxies in the low-surface
brightness region.

Here, it is worth mentioning that in all cases, the masses predicted by the NN fall
within the region of the simulated masses, as expected. However, for Mdisk, we observe
that the red two-sigma curve moves outside the blue and green regions for masses below
109M⊙/h and above 5 × 1010M⊙/h. This is related to the fact that the output masses are
distributed in a three-dimensional space (disk-bulge-stellar), and we are showing the
projections over a single input parameter.

Bulge masses for most brilliant galaxies within the same mass range are not well
predicted and are excluded by the NN architecture. This region corresponds to quasi-
elliptical systems with large masses but small disks (see Figure 4b). The NN predicts that
this type of system is unlikely, and in fact, it would be challenging to distinguish the disk
from the bulge without an accurate numerical method. This conclusion is supported by
Panels (a) and (c), where the prediction aligns with the expected result for more than 95%
of the data. However, the missing points in Panel (b) are compensated by the excess in
Panel (c). This suggests that purely elliptical systems provide a better description of these
cases. This behaviour is also reflected in Figure 2a, where the error increases for masses
below 109 M⊙/h.

Additionally, the fact that the neural network (NN) predicts the stellar mass of SDSS
galaxies well (Figure 4a) serves as a consistency test. However, the predictions for small
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disk components deviate from the SDSS catalogue, which can suggest that the features are
insufficient for training the NN or that the catalogue needs further precise information about
the components. The values for Mbulge in Figure 4 Panel (c) are derived from Equation (1)
and from values of M⋆ and Mdisk directly inferred by the NN. We can observe an acceptable
agreement between observations and simulations up to a 95% C.L.

(a)

(b)

(c)

Figure 4. Kernel density estimation (KDE) plots of the stellar (a), disk (b), and bulge (c) mass
components versus the r-magnitude for the simulated data in blue and the observational data in
green. The red lines are the {95,99}% confidence level (C.L.) contours of the NN predictions. It can
be noticed that the NN prediction is more accurate for the stellar mass and disk-dominant galaxies
as the agreement is achieved up to a 99% C.L. Even though the prediction for the bulge mass is less
precise than for other components, the NN archives a good agreement up to 95% C.L.

5.2. Bulge–Disk Components

The relation between the luminous mass and the bulge–disk masses is described by
Equation (1). M⋆ can be determined by a scaling relation (see Figure 4). Thus, for a specific
value for Mbulge, the Mdisk will only take values within certain intervals and vice versa.
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Figure 5 shows the bulge and disk masses of galaxies within both datasets. The mock
catalogue shows a trimodal distribution. The most prominent region for Mdisk > 108M⊙/h
corresponds to low values for Mbulge, and it is associated with disk-dominated galaxies. The
second region for Mbulge > 1010M⊙/h is the bulge-dominated region [48]. These sorts of
galaxies are usually dubbed as cD-like galaxies (central-dominant) [14,49]. This behaviour
arises in both observed and simulated galaxies, although disk-dominant galaxies are more
abundant in both cases.

Figure 5. KDE plots of the bulge–disk decomposition. The distribution for simulated (blue) and
observed (green) data and the solid contour levels are shown. We observe a possible trimodal
distribution for the mock catalogue. In contrast, the observations show a unimodal distribution
similar to the predicted NN distribution for observational data (red contours).

The third region in the Mbulge − Mdisk plane corresponds to galaxies with both small
disks and bulges, and they are only shown for the mock data. This discrepancy suggests
that there may be an observational bias because current telescopes might not be able to
detect the low-luminosity galaxies that appear in the numerical simulations.

The NN prediction is also shown in Figure 5. For this last sample, the relationship
between disk and bulge is nonlinear and not readily fitted with an analytic function as it
happens with scaling relations derived in Section 5.1. This is related to the multimodal
distribution, suggesting that different scaling relations between bulge–disk mass compo-
nents might arise for different galaxies within the sample. Nevertheless, the ML algorithm
can make good predictions for disk-dominant galaxies. Furthermore, it is interesting that
the NN algorithm gives rise to mass predictions consistent with the SDSS distribution and
does not predict bulge-dominant galaxies as expected. Giving more accurate information
about larger bulges can involve more complicated dynamics.

6. Conclusions

It is well known that the bulge–disk decomposition and estimating the total mass
of galactic systems are complicated tasks tackled using different techniques. Regarding
ML algorithms, using synthetic catalogues derived from dark matter-only simulations
in the training stage is common. However, such catalogues are constructed following
specific prescriptions for the dark matter features as well as simplified models of the
baryon dynamics, where several assumptions are usually considered [10,12]. In this sense,
comparison with observations is crucial for determining the validity of the AI methods.
In this work, we showed that our NN could predict the masses of the observed galaxies
from the SDSS at z = 0 and the scaling relations between magnitudes and masses when the
training was carried out using Guo’s catalogue.

The NN could accurately estimate the components for disk-dominant galaxies. This
also corresponds to the region where we have more information from observational data.
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For this type of galaxy, only the photometric information is sufficient to separate the bulge
and the disk. However, additional information is needed to make a good prediction when
the bulge mass starts to dominate. This can be related to two main factors: first, Mbulge is
highly correlated with Mbh (see Figure 1), which means that in the central region of the
galaxy, the baryon dynamics play an important role. Second, the bulge-dominant galaxies’
population is smaller than those with larger disks; thus, more data are necessary for both
simulations and observations.

An additional feature of the NN is its capability to predict data in regions of low
luminosity, where the masses associated with the bulge and the disk are small. This is
particularly important in the era of precision cosmology, where we have more powerful
telescopes to observe galaxies with lower luminosities than in the past. Indeed, this study
can be contrasted with recent observations from the James Webb Space Telescope (JWST)
or the Dark Energy Spectroscopic Instrument (DESI) [50]. At the same time, these ML
tools can serve to impose constraints on the dark matter model when compared with more
precise observations.

In the meantime, we will continue this project by constructing ML algorithms trained
with features directly inferred from observational data to produce more accurate results in
bulge-dominant galaxies. We will also explore the HAM relation in real galaxies and its
possible dependency on the morphology or age of the systems using a catalogue derived
from the MaNGA database, which was reported in [51]. This will also allow us to infer
information about the halo mass in observed galaxies.
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