
Citation: Nechushtai, L.; Frenkel, D.;

Pinkas-Kramarski, R. Autophagy in

Parkinson’s Disease. Biomolecules

2023, 13, 1435. https://doi.org/

10.3390/biom13101435

Academic Editor: Abdeslam

Chagraoui

Received: 30 August 2023

Revised: 14 September 2023

Accepted: 21 September 2023

Published: 22 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Review

Autophagy in Parkinson’s Disease
Lior Nechushtai, Dan Frenkel and Ronit Pinkas-Kramarski *

Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, Tel-Aviv University,
Ramat-Aviv, Tel Aviv 69978, Israel; lior.nech@gmail.com (L.N.); dfrenkel@tauex.tau.ac.il (D.F.)
* Correspondence: lironit@tauex.tau.ac.il; Tel.: +972-3-6406801; Fax: +972-3-6407643

Abstract: Parkinson’s disease (PD) is a devastating disease associated with accumulation of α-
synuclein (α-Syn) within dopaminergic neurons, leading to neuronal death. PD is characterized by
both motor and non-motor clinical symptoms. Several studies indicate that autophagy, an important
intracellular degradation pathway, may be involved in different neurodegenerative diseases including
PD. The autophagic process mediates the degradation of protein aggregates, damaged and unneeded
proteins, and organelles, allowing their clearance, and thereby maintaining cell homeostasis. Impaired
autophagy may cause the accumulation of abnormal proteins. Incomplete or impaired autophagy
may explain the neurotoxic accumulation of protein aggregates in several neurodegenerative diseases
including PD. Indeed, studies have suggested the contribution of impaired autophagy to α-Syn
accumulation, the death of dopaminergic neurons, and neuroinflammation. In this review, we
summarize the recent literature on the involvement of autophagy in PD pathogenesis.

Keywords: apolipoprotein E4 (apoE4); autophagy; endocytosis; lysosomal degradation; Parkinson’s
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1. Introduction

Parkinson’s disease (PD) is characterized by motor symptoms including bradykinesia,
resting tremor and rigidity, and non-motor symptoms such as cognitive impairment and
depression [1–3]. A major problem in the detection of PD is that diagnosis occurs with the
onset of motor symptoms which are observed when the dopaminergic neurons are already
dead, and the prodromal phase includes non-motor symptoms which are nonspecific.
Therefore, it is important to identify molecular mechanisms and biomarkers or other
diagnostic tools for early detection and maybe prevention [2]. Among the hallmarks of the
disease is the accumulation of α-Syn and the death of dopaminergic neurons. Parkinson’s
disease has genetic and non-genetic risk factors. Several environmental risk factors for PD
have been suggested, such as exposure to pesticides, and traumatic brain injury [4]. Only
5–10% of PD cases are genetic and known to have monogenetic forms [5]. Several genes
have been associated with increase in onset of PD (see Table 1). It was previously shown
that point mutation in the synuclein alpha (SNCA) gene which encodes for α-Syn, leads to
familial PD [2]. Moreover, duplication or triplication of the SNCA gene may lead to PD,
although these are more rare cases [2]. Other mutations in the SNCA gene typical of familial
PD include A53T (Ala53Thr), A30P (Ala30Pro), and E46K (Glu46Lys) [6]. Additional genes
associated with familial PD which are discussed in Sections 3 and 4, and presented in
Figure 1 and Table 1, are PARK7, LRRK2, APOE, PINK1, PRKN, GBA, VPS35, RAB39B,
ATP13A2 (PARK9), WDR45, and FBXO7 [7]. It was previously suggested that autophagy, a
self-degradative process which is important for cell homeostasis by maintaining the balance
between synthesis and degradation, plays an important role in the pathology of different
neuro-amyloidogenic diseases [8]. Further understanding of the potential role of autophagy
in PD may lead to new therapeutic approaches. Thus, the present review highlights the
important key players in autophagy machinery related to the pathology of PD. We also
discuss the relationship between autophagy and the various risk factors for the disease.
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pathology of PD. We also discuss the relationship between autophagy and the various risk 
factors for the disease . 

 
Figure 1. A schematic presentation of the various autophagy steps and proteins involved in autoph-
agy regulation (lower part of the scheme. The red color represent negative regulators and the green 
color refers to positive regulators). The various proteins that affect various stages of autophagy and 
may also be involved in PD are listed in the gray boxes of the scheme (see also Table 1). 

2. Autophagy 
Several neurological diseases are linked with neurotoxic accumulation of protein ag-

gregates within the cells, whose degradation may be hampered, leading to cell death [8–
10]. Autophagy is one of the main degradation and recycling processes aimed at maintain-
ing cellular homeostasis [11]. It functions by clearing misfolded proteins and defective 
organelles, and by recycling cytosolic components under stress [12]. In eukaryotic cells, 
there are three major types of autophagy, macroautophagy, microautophagy, and chap-
erone-mediated autophagy (CMA), which are important for the delivery of cargo to the 
lysosome for degradation [13]. Hereafter, we refer to macroautophagy as autophagy. Dur-
ing autophagy, cytoplasmic cargo is sequestered to the autophagosome (a double-mem-
brane vesicle), which is then fused with the lysosome for degradation. Various stimuli 
may lead to nonselective autophagy which in turn leads to bulk degradation of cytosolic 
components; autophagy can also be selective, in regard to degradation of mitochondria 
(mitophagy) (Figure 1) or to the clearance of specific protein aggregates [11,14]. Basal au-
tophagy occurs in normal cells as one of the mechanisms leading to the removal of unnec-
essary and defective proteins and organelles. Induction of autophagy can occur under 
stress, in order to maintain cell homeostasis. Compared to canonical autophagy, which 
involves the degradation through the lysosome, it was demonstrated that autophagy-re-
lated proteins are involved in other processes called non-canonical autophagy [15]. Defec-
tive autophagy has been documented in various neurodegenerative disorders, including 
PD [14]. Autophagy is characterized by several sequential steps: induction and nucleation, 

Figure 1. A schematic presentation of the various autophagy steps and proteins involved in au-
tophagy regulation (lower part of the scheme. The red color represent negative regulators and the
green color refers to positive regulators). The various proteins that affect various stages of autophagy
and may also be involved in PD are listed in the gray boxes of the scheme (see also Table 1).

2. Autophagy

Several neurological diseases are linked with neurotoxic accumulation of protein ag-
gregates within the cells, whose degradation may be hampered, leading to cell death [8–10].
Autophagy is one of the main degradation and recycling processes aimed at maintaining
cellular homeostasis [11]. It functions by clearing misfolded proteins and defective or-
ganelles, and by recycling cytosolic components under stress [12]. In eukaryotic cells, there
are three major types of autophagy, macroautophagy, microautophagy, and chaperone-
mediated autophagy (CMA), which are important for the delivery of cargo to the lysosome
for degradation [13]. Hereafter, we refer to macroautophagy as autophagy. During au-
tophagy, cytoplasmic cargo is sequestered to the autophagosome (a double-membrane
vesicle), which is then fused with the lysosome for degradation. Various stimuli may lead
to nonselective autophagy which in turn leads to bulk degradation of cytosolic components;
autophagy can also be selective, in regard to degradation of mitochondria (mitophagy)
(Figure 1) or to the clearance of specific protein aggregates [11,14]. Basal autophagy occurs
in normal cells as one of the mechanisms leading to the removal of unnecessary and defec-
tive proteins and organelles. Induction of autophagy can occur under stress, in order to
maintain cell homeostasis. Compared to canonical autophagy, which involves the degra-
dation through the lysosome, it was demonstrated that autophagy-related proteins are
involved in other processes called non-canonical autophagy [15]. Defective autophagy has
been documented in various neurodegenerative disorders, including PD [14]. Autophagy
is characterized by several sequential steps: induction and nucleation, cargo sequestration,
delivery and fusion of the autophagosome with the lysosome, degradation and recycling
of the degraded material, and autophagic lysosome reformation (ALR) (Figure 1) [16]. Au-
tophagy is regulated by several independent machineries: unc-51-like autophagy-activating
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kinase 1 (ULK1) complex, class-III PI3K complex, and two ubiquitin-like conjugation sys-
tems [14]. The induction step involves the activity of autophagy-related (Atgs) proteins
and is regulated by upstream pathways. These include the mammalian target of rapamycin
complex 1 (mTORC1) pathway, which downregulates the ULK1 complex activity and is a
major repressor of autophagy induction. Moreover, the Bcl-2 pathway inhibits the class-III
PI3K complex by binding one of its major components, Beclin 1 [17–20]. Bcl-2 is regulated
mainly by JNK1. The mTORC1 pathway is negatively regulated by energy-sensitive ki-
nases such as AMP-activated protein kinase (AMPK) and positively regulated by Akt. The
calcium signaling pathway can also modulate autophagy machineries [21]. The class-III
PI3K complex is positively regulated by autophagy and Beclin 1 regulator 1 (Ambra1) and
negatively regulated by UV radiation resistance-associated (UVRAG) proteins [13]. The
expansion of the phagophore membrane is mediated by two ubiquitin-like conjugation sys-
tems: first, the ATG5-ATG12 connected non-covalently to ATG16L1 is associated with the
phagophore membrane and is responsible for membrane elongation and autophagosome
formation. The second complex involved in phagophore elongation and cargo recognition
is Atg8/LC3 (light chain 3), also called MAP1LC3B (microtubule-associated protein light
chain 3B), which undergoes lipidation (conjugation to phosphatidylethanolamine (PE)).
The lipidation of LC3 in mammalian cells is accelerated under conditions of stress or star-
vation [13]. Cargo selection and sequestration processes involve the activity of adaptor
proteins such as p62/SQSTM1, which recognizes ubiquitinated proteins, protein aggregates,
and organelles such as damaged mitochondria. The autophagosome is then delivered to
the lysosomal machinery via the microtubule network [13]. Finally, the autophagosome
fuses with the lysosome, creating an autolysosome. UVRAG can activate GTPase RAB7,
which promotes fusion with the lysosome. Moreover, VAM7 and VAM9 have a role in the
fusion [13]. The cargo is degraded and recycled in the autolysosome.

3. PD Risk Factors That Affect Autophagy

Increasing evidence indicates that unregulated autophagy can contribute to the de-
velopment of various neurodegenerative diseases, mainly those related to protein con-
formational disorders, by enhancing the accumulation of proteins and inducing cellular
toxicity [12]. The effects of disrupted autophagy vary depending on the stage of the au-
tophagic blockage and have previously been described [22–25]. Defects in initiation or
cargo recognition can lead to toxicity due to accumulation of the cargo in the cytosol [26].
Impaired autophagy was evident in the brain regions of PD patients [27]. Moreover, Lewy
bodies (LB) in the substantia nigra (SN) of PD brains express elevated levels of autophagy-
related LC3 protein [28,29]. It was reported that in the brains of PD patients there is
reduction in the levels and activities of lysosomal enzymes, such as glucocerebrosidase
(GCase) or the protease cathepsin D (CTSD) [30]. Furthermore, decreased levels of the
heat shock cognate 70 (HSC70) protein (also called HSPA8) and the lysosomal-associated
membrane protein 2A (LAMP2A) were also found in the SN of PD cases [28,31]. The loss
of CMA markers correlated with α-Syn accumulation [31]. Moreover, LB in the SN of PD
brains express elevated levels of autophagy-related LC3 protein [28,29]. In the next section,
we describe PD risk factors that are also involved in autophagy.

Several genes involved in PD pathology were also reported to regulate autophagy
(Table 1).

LRRK2
Among the proteins involved in PD pathology is the leucine-rich repeat kinase

2 (LRRK2), also called dardarin or PARK8 (Table 1 [32]). It is a large, multifunctional
serine–threonine kinase which also has GTPase activity. Mutations in LRRK2 account
for many autosomal dominant cases of PD. These include G2019S and R1441C mutants
which are common pathogenic variants responsible for about 5% of familial PD cases [32].
Mutation in G2019S results in elevation of kinase activity [33]. Pathogenic mutations of
LRRK2 severely alter its expression levels and/or kinase activity [34,35], suggesting that
increased phosphorylation of LRRK2 kinase substrates may affect viability of dopaminergic
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neurons [36,37]. There is evidence that LRRK2 plays a role in the regulation of autophagy.
It was suggested that mutation in LRRK2 affects the maturation of autophagosomes, as
shown by the reduced co-localization of LC3 with lysosome-associated membrane protein
1 (LAMP1) [38]. Fibroblasts from PD patients with LRRK2 G2019S mutation show increased
basal autophagy through activation of the MEK/ERK pathway [39]. It was also shown that
LRRK 2 regulates autophagy through a calcium-dependent pathway involving nicotinic
acid adenine dinucleotide phosphate (NAADP) [40] and that LRRK2 modulates lysosomal
calcium homeostasis, which affects autophagy and cell survival [41]. Moreover, mutations
in LRRK2 were found to be associated with increased accumulation of phosphorylated
α-Syn and increased neuronal secretion of α-Syn. Several studies suggest that LRRK2 regu-
lates lysosomal function through its kinase activity on Rab GTPases [37]. It was also shown
that mutation in LRRK2 increases the interaction between α-Syn and lysosomal membranes.
LAMP2A oligomerization is inhibited by mutant LRRK2; thus, α-Syn bound to lysosomal
membrane cannot translocate into the lysosome, resulting in an increased level of α-Syn
oligomers in the lysosomes [37]. Overexpression of LRRK2 affects Rab phosphorylation
and leads to lysosomes defects [42,43]. Depletion and inhibition of the kinase activity of
LRRK2 in macrophages and microglia increased the expression of lysosomal hydrolases
and enhanced autophagy [44]. Silencing of LRRK2 leads to impairment of macroautophagy
and CMA [45]. Taken together, LRRK2 mutations can block CMA, stimulate autophagy, or
affect the autophagy and mitophagy flux, and can influence lysosomes.

GBA
The glucosylceramidase beta (GBA) protein is lysosomal GCase enzyme, which main-

tains glycosphingolipid homeostasis. Although involved in many lysosomal storage dis-
eases, GBA mutations are also involved in approximately 5–15% of PD patients. The
common GBA mutations in PD patients are N370S and L444P [46]. Misfolded GBA impairs
ER quality control by chaperone-mediated autophagy in Parkinson’s disease [47]. Loss-of-
function mutations in GBA promote α-Syn accumulation [48]. It was also shown that in
sporadic PD, GBA deficits correlate with early accumulation of α-Syn, and impairment of
CMA and lipid metabolism [49]. It was also shown that GBA deficiency promotes α-Syn
accumulation through inhibition of autophagy by inactivated PPP2A [50]. Furthermore,
ALR is compromised in cells lacking functional GCase. In models of GCase deficiency
(cells with GBA1 mutations), the levels of phospho-S6K decreased, and Rab7 GTPase,
which functions in endosome–lysosome trafficking, accumulated, indicating that lysosomal
recycling is impaired [51]. Moreover, GCase deficiency in neurons leads to enlargement of
lysosomes and increased levels of α-Syn [52]. Interestingly, both LRRK2 and GBA play a
role in the autophagy-lysosomal pathway and their mutations cause similar dysfunction
in autophagy and lysosomal function, resulting in aggregation and propagation of α-Syn.
Indeed, neurons with LRRK2 mutations showed reduced GCase activity [53]. LRRK2
inhibitor can restore GCase activity. Rab10, which is regulated by LRRK2, is a key mediator
of GCase activity [53]. LRRK2 inhibitor reduced pS129-α-Syn levels in LRRK2-mutant and
in GBA-mutant neurons [35].

PINK1 and PRKN
Mutations in PINK1 and PRKN leading to loss function are the most common causes

for early onset PD [54–56]. PINK1 and Parkin function in the mitochondrial quality con-
trol pathways in response to mitochondrial damage [57]. PINK1 rapidly accumulate on
the outer mitochondrial membrane following mitochondrial stress and is activated by
autophosphorylation thus it functions as a sensor of mitochondrial damage [57–59]. Fol-
lowing mitochondrial injury PINK1 phosphorylates both ubiquitin and the ubiquitin-like
domain of Parkin, which stimulates its E3 ligase activity [59]. Parkin is an E3 ubiquitin
ligase, with minimal basal activity [60]. PINK1 activates Parkin which functions as E3-Ub
ligase, ubiquitinating and mediating the clearance of numerous mitochondrial proteins [61].
Mutations in PINK1 and Parkin inhibit mitophagy, thus enabling the accumulation of dam-
aged mitochondria and possibly inducing apoptosis [62] (Table 1). One of the prominent
targets of Parkin-mediated ubiquitination is mitofusins, which are GTPases essential for



Biomolecules 2023, 13, 1435 5 of 16

mitochondrial fusion [63]. It was also shown that phosphorylated ERK/MAP kinases are
localized to the mitochondria and autophagosomes in LB diseases, suggesting a PD-related
abnormal mitophagy [64]. Furthermore, the phosphorylated ubiquitin kinase PINK1 and
the E3 ubiquitin ligase Parkin levels are increased in the PD brains and are colocalized with
markers of mitochondria, autophagy, and lysosome [65].

DJ-1
Mutation of the DJ-1 (PARK7) gene causes early-onset familial PD [66,67]. DJ-1 protein

is located in the cytosol and is present in the nucleus and mitochondria. Under oxidative
stress, DJ-1 translocates to the mitochondria and acts as a neuroprotective intracellular redox
sensor [68,69]. DJ-1-deficient mice are more sensitive to MPTP (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine)-induced loss of dopaminergic neurons [69]. It was shown that DJ-1
deficiency increases the accumulation and aggregation of α-Syn. It suppressed upregulation
of LAMP2A and downregulated the level of lysosomal 70 kDa HSC70 [70]. It also regulates
the inflammatory response during injury by activation of the ATG5-ATG12-ATG16L1
complex [71]. We have previously suggested that in DJ-1-deficient microglia, a gene
affiliated with PD, there is an impairment in their ability to degrade and clear neurotoxic α-
Syn [72]. Furthermore, we found that that DJ-1 deficiency impairs the number of lipid rafts
and α-Syn uptake by microglia [72]. Under oxidative stress, increased association between
DJ-1 and PINK1 were reported [67,73]. Furthermore, reduction of DJ-1 was shown to affect
mitochondrial functions, its membrane potential (MMP), fusion, and fragmentation [67,69].
It was also shown that DJ-1 is essential for PINK1/Parkin-mediated mitophagy [74].

PARK9
Mutations in the lysosomal ATPase, ATP13A2 (PARK9), cause early-onset forms of PD.

It was demonstrated that ATP13A2 functions as a lysosomal H+,K+-ATPase, contributing
to acidification and α-Syn degradation in lysosomes [34]. It was reported that ATP13A2
suppresses α-Syn toxicity and its silencing can affect autophagic degradation of A53T
mutant α-Syn [75,76].

RAB39B
RAB39B is a small GTPases important for regulation of vesicular trafficking between

membrane compartments. Mutations in the RAB39B gene have been associated with early-
onset PD [77]. Deficiency of RAB39B has been shown to impair autophagy and upregulate
α-Syn in dopaminergic neurons by inducing mitochondrial dysfunction and oxidative
stress [78].

APOE4
Several reports describe a potential connection between apolipoprotein E (APOE)

isoforms and autophagy efficiency [79–83]. APOE4 allele was reported to promote amyloid-
beta accumulation into senile plaques in Alzheimer’s disease (AD) [84]. Other studies have
suggested a connection between APOE expression and PD [85], and that APOE4 allele
increases the risk of motor deficiency and decreases the age of PD onset [86–88]. It was
suggested that PD patients carrying the APOE3/APOE4 and APOE4/APOE4 genotype have
greater risk of dementia [89–91]. It was previously reported that expression of APOE4 in
α-Syn transgenic mice exacerbates pathology, as shown by increased α-Syn aggregation,
neuronal and synaptic loss, and impaired behavioral performances [92,93]. We have
reported that in immortalized astrocytes derived from target replacement transgenic mice
that express either APOE3 or APOE4, autophagy is impaired in cells expressing APOE4 [79].
We have also shown that APOE4 cells exert mitochondrial and mitophagy impairment [83].

VPS35
Additional proteins were implicated in Parkinson’s pathology. Vacuolar protein

sorting 35 ortholog (VPS35) plays a major role in the retrograde sorting and recycling of
cargo proteins. It regulates their transport from endosomes to the plasma membrane and
trans-Golgi network. It was shown that VPS35 Parkinson mutation impairs autophagy via
the WASH complex [94].

WDR45
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WD repeat domain 45 protein (WDR45) plays a role in cell cycle control, translational
regulation, signal transduction, and autophagy [95]. WDR45 mutation impairs the au-
tophagic degradation of transferrin receptor and promotes ferroptosis [96,97]. Patients
with a WDR45 defect have neurodevelopmental disorder and late-onset Parkinsonism [98].

FBXO7
Reduced FBXO7 (F-box-only protein 7) expression results in deficiencies in mitochon-

drial Parkin, ubiquitination of mitofusin 1, and mitophagy [99]. Inhibition of FBXO7
reduces inflammation and induces neuroprotection by stabilizing PINK1 [100].

4. The Role of Autophagy Impairment and α-Syn Pathology in PD

The main pathologies in PD include the accumulation of LB and the death of dopamin-
ergic neurons in the substantia nigra (SN), leading to reduction of dopamine production
in the brain. LB, containing α-Syn aggregates, serve as a marker for α-synucleinopathies
typical for PD, and are frequently found in the SN, and during the disease progression, they
are more diffused throughout the brain [2]. There are two main theories regarding the loss
of the dopaminergic neurons in the SN. The first is related to α-Syn aggregates which are
commonly observed in PD patients, and the second suggests damage due to mitochondrial
dysfunction [67]. α-Syn is part of the synuclein family of proteins: α-synuclein, β-synuclein,
and γ-synuclein. β-synuclein and γ-synuclein were implicated in human brain lesions
and were found to be co-expressed with α-Syn in LB [101,102]. α-Syn (14KDa) is mainly
expressed in the brain at the pre-synaptic terminals, associated with vesicular release,
although its exact function is still unclear. It can also be found in the cerebrospinal fluid
(CSF), blood, and plasma [2].

Spreading of α-Syn within the dopaminergic neuronal cells was suggested as one of
the processes affiliated with the progression of the disease, by inducing neurotoxicity of
the recipient cells [103]. It is secreted following stress, lysosomal dysfunction, aggregation,
inhibition of the proteasome and mitochondrial dysfunction, and the release from the cell
also depends on its specific conformation [103]. α-Syn production, aggregation inside
cells, uptake by neighboring cells, and degradation rate either inside or outside cells will
determine the extent of affected neurons [104]. The protein is transmitted by endocytosis,
plasma membrane penetration, or exosomes [103]. α-Syn uptake can also occur by diffusion,
by endocytosis or phagocytosis. Several mechanisms for α-Syn uptake were suggested [105].
It was suggested that lymphocyte activation gene 3 (LAG3) is the receptor with a high
affinity to α-Syn [104,106]. However, another study did not find expression of LAG3 in
brain neurons, and overexpression or depletion of LAG3 had no effect on α-Syn pathology
in A53T mice [107]. Notably, toll-like receptors (TLRs), especially TLR2 and TLR4, are
dysregulated in patients with PD. A connection between these TLRs’ expression and α-
Syn aggregation was suggested [108]. In addition, α-Syn aggregation was previously
suggested to activate NLRP3-type inflammasome (nucleotide-binding oligomerization
domain-leucine-rich repeat-pyrin domain-containing 3) [109]. NLRP3 was reported to play
a role in mediating neuroinflammation and autophagy in PD [110–112].

Several studies indicate that α-Syn can affect autophagy. It was reported that over-
expression of α-Syn increases the interaction between Bcl2 and BECN1, thus inhibiting
autophagy [113]. Moreover, α-Syn inhibits microglia autophagy [114]. It was demonstrated
that α-Syn leads to the accumulation of Parkin (PRKN) [115] and that it compromises au-
tophagy via inhibition of Rab1, resulting in ATG9 mislocalization [116]. It was also shown
that expression of α-Syn impairs autophagolysosome maturation [117] and decreases the
abundance of SNAP29, a member of the SNARE complex that mediates autophagolysosome
fusion [118]. In addition, overexpression of α-Syn showed disruption of lysosomal mor-
phology and distribution [119]. Interestingly, it was found that autophagic receptor protein
SQSTM1/p62 S nitrosylation inhibits autophagic flux and promotes the accumulation of
misfolded α-Syn. This modification increases the secretion and spread of aggregated synu-
clein, thus contributing to autophagy inhibition, neuronal damage, and the propagation of
α-Syn in the brain [120].
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Degradation of α-Syn aggregates depends on autophagy-mediated lysosomal degra-
dation [121]. Generally, monomers are degraded by CMA [106,121], while autophagy has
an important role in aggregate degradation [12], although the degradation mechanism
also depends on the posttranslational modification of the proteins [121,122]. Nevertheless,
α-Syn mutations, phosphorylation, ubiquitination, nitration, oxidated forms, and posttrans-
lational modified forms induced by dopamine have been identified in cytosolic aggregates
in brains of PD patients and in experimental models of the disease, and have been shown to
inhibit autophagy [122–125]. Several genetic mutations in ATG genes may lead to different
phenotypes of PD [8]. In addition, elevated levels of intracellular α-Syn due to inhibition of
the GTPase Rab1A have been shown to hamper omegasome formation by affecting Atg9
localization [116].

Since hyperphosphorylated α-Syn has propagational properties, it was suggested that
its level decreases during autophagy. Klucken et al. have shown evidence for the function
of the autophagy-lysosomal pathway (ALP) in α-Syn degradation. Inhibition of ALP by
bafilomycin A1 (BafA1) enhanced the toxicity of aggregated α-Syn; however, reduced
toxicity correlated with α-Syn aggregation, suggesting that protein aggregation may be a
detoxification event [126]. Another study has shown that ALP inhibition by BafA1 reduced
intracellular α-Syn aggregation and increased the secretion of smaller oligomers. This
effect worsened cell responses including uptake, inflammation, and cellular damage. Low-
aggregated α-Syn release was mediated by exosomes and RAB11A-associated pathways;
however, high-aggregated α-Syn was mediated by membrane shedding [127]. This study
suggests that impaired ALP limits intracellular degradation of misfolded proteins, and
also leads to increased α-Syn secretion and propagation in the brain [127]. Autophagy
was also considered in several papers to play an important role in glial cells’ ability to
clear neurotoxic α-Syn [128]. Astrocytes were reported to endocytose extracellular α-Syn
released by neurons and play a role in its spreading [129,130]. It was previously suggested
that autophagy plays an important role in the ability of astrocytes to clear and degrade
neurotoxic components [131]. Furthermore, according to Tsunemi et al., astrocytes have
a higher proteolytic capacity of α-Syn than neurons, and co-culturing of astrocytes and
neurons decreases the transfer of α-Syn between neurons [130].

5. Targeting Autophagy as Therapeutic Approach in PD

Several autophagy-enhancing agents were tested in pre-clinical PD models [132,133].
These include drugs that affect the mTOR signaling pathway such as rapamycin, metformin,
resveratrol, PREP inhibitor (KYP-2047), and isorhynchophylline. Other drugs that affect
the mTOR independent pathway include Lithium, Sodium Valproate, Carbamazepine,
Trehalose, Latrepirdine, Spermidine, and Nilotinib [132,133]. Another approach is to use
drugs that affect lysosome function such as Ambroxol, Isofagomine, and acidic nanopar-
ticles. These drugs can also affect cell viability, the levels of phosphorylated α-Syn, the
rate of α-Syn clearance, the mitochondrial function, lysosomal functions, and neuroin-
flammation [132,133]. Several studies demonstrated that the symptoms induced by MPTP
(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in mice are improved following treatment
with rapamycin [134,135]. Rapamycin and trehalose treatments have been shown to exert
protective effect on damaged dopaminergic neurons (induced by MPTP) [136]. Additional
autophagy-targeting compounds that can be used as potential treatment have been de-
scribed [137]. It was demonstrated that in models of PD in vivo and in vitro, autophagy
inhibition at various stages has positive effects on reduction of α-Syn levels of inclusion; it
increased α-Syn clearance, cell viability, and protection from α-Syn toxicity [137].

Another approach to treating PD pathology was suggested by targeting mitophagy.
Targeting PINK1/Parkin dependent and independent pathways has been suggested. For
example, PINK1 activator KTP (kinetin triphosphate) and its analogues and niclosamide
and its analogues have been described [138–141].

LRRK2 is considered as a good target to develop drugs for PD treatment [142]. It
has been shown that LRRK2 kinase inhibitor, GSK3357679A, can rescue LRRK2 G2019S
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knock-in mice from their defects in mitophagy [143]. Recently, small-molecule LRRK2
inhibitors for PD therapy were described with the potential that they will prove effi-
cient for PD treatment [141]. Moreover, new ongoing clinical trials to evaluate the effi-
ciency of LRRK2 inhibitors, BIIB122 and DNL-201, for treatment of PD patients have been
conducted [144–146].

Mutations in the ATP13A2 gene, which appears in PD patients, have been described
previously. Indeed, it was shown that drugs such as clioquinol and rifampicin restore
lysosomal acidification in mammalian models of PD [147]. Moreover, the compound ML-
SA1, which increases lysosomal function, has been shown to reduce SNCA accumulation
in DA neurons of PD patients [133].

Another approach to modulating autophagy as treatments for PD are miRNAs. A
neuroprotective role of agents that affect autophagy-regulating miRNAs has been de-
scribed [148]. Agents such as Baicalein and Pramipexole have been reported to alleviate
PD characteristics [148].

Further studies are needed to determine the benefit of a therapeutic approach that
enhances autophagy/mitophagy functions for treatment of PD patients. However, it
is extremely important to understand the molecular mechanisms in neuronal and non-
neuronal cells and to assess the most potent genes and pathways involved as targets for
therapeutic application.

6. Concluding Remarks

PD is neuropathologically characterized by progressive loss of dopaminergic neurons,
accompanied by accumulation of LB with α-Syn aggregates as the major protein compo-
nent [36]. Degradation pathway dysfunctions, such as autophagy and lysosome, were also
described [29,149]. Autophagy, as one of the major degradation pathways, plays a pivotal
role in maintaining effective protein and organelle turnover, maintaining cell homeosta-
sis and preventing toxicity and cell death. Accumulating evidence suggests that increased
α-Syn aggregates are a consequence of impaired autophagy [121]. In turn, α-Syn was also
shown to affect mitochondrial, autophagic, and lysosomal functions [121,150–152]. Moreover,
several mutations in genes linked to PD were implicated in early-onset familial PD [36].
Recent studies, including our own, suggest that other factors, such as APOE4 expression,
which are involved in other neurodegenerative diseases, may affect autophagy/mitophagy
processes and possibly can be linked to PD as well [82,153]. Taken together, these findings
may suggest a pivotal role of autophagy within the pathology of PD. Further research
on autophagy pathways may increase our understanding of the etiology of the disease
towards development of future therapeutic intervention.

Table 1. Proteins involved in PD that affect autophagy.

Protein Connection to PD Autophagy/Mitophagy/CMA Bibliography

α-synuclein
Mutations in α-synuclein are
affiliated with early PD onset
and Lewy bodies formation.

Inhibits autophagy in the
nucleation and maturation
steps. Inhibits mitophagy.

[31,103–107,109–119]

DJ-1
Deletions and point mutations

of DJ-1 cause autosomal
recessive PD.

Regulates
autophagy/mitophagy. [66–74]

LRRK2
LRRK2 mutations are found in

families with late-onset
autosomal-dominant PD.

Affects autophagy, mitophagy,
and CMA. [27,32–45]

Apolipoprotein E4
APOE4 isoform was

suggested to be involved
in PD.

Impairs autophagy and
mitophagy. [79–82,84–93,154]
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Table 1. Cont.

Protein Connection to PD Autophagy/Mitophagy/CMA Bibliography

PTEN-induced kinase 1
(PINK1) and PARKIN

Loss of function mutations of
PINK1 and PARKIN genes are

the most common causes of
autosomal recessive and

early-onset PD.

Regulate mitophagy. [54–63]

GBA

Mutations in the GBA gene
lead to lysosomal dysfunction

and impaired α-synuclein
metabolism.

Affects lysosomal activity. [46–53]

VPS35

Mutations in the vacuolar
protein sorting 35 ortholog

(VPS35) gene cause late-onset
autosomal dominant

familial PD.

Inhibits autophagy in the
nucleation step. [94]

RAB39B

RAB39B gene mutations were
associated with X-linked

neurodevelopmental defects
including early-onset

Parkinson’s disease (PD).

Affects
autophagy/mitophagy. [77,78,155,156]

ATP13A2 (PARK9).

ATP13A2 (PARK9) gene
mutations cause Kufor–Rakeb

syndrome (Parkinson’s
disease 9), an autosomal

recessive form of
Parkinsonism with dementia.

Affects lysosome activity and
α-syn degradation. [34,75,76,157–160]

WDR45

WDR45 (WD Repeat Domain
45) is a component of the

autophagy machinery that
controls the major

intracellular
degradation process.

Regulates autophagy. [95–98]

FBXO7

FBXO7 (F-box-only protein 7)
gene mutations have been
identified in a number of

families with severe
autosomal recessive

early-onset
Parkinson’s disease.

Affects mitophagy. [99,100]
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Abbreviations

α-Syn α-synuclein
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
Ambra1 Activating molecule in Beclin1-regulated autophagy
AD Alzheimer’s disease
AMPK AMP-activated protein kinase
APOE Apolipoprotein E
ALP Autophagy-lysosomal pathway
ALR Autophagic lysosome reformation
Atgs Autophagy-related proteins
AV Autophagic vacuoles
BafA1 Bafilomycin A1
CSF Cerebrospinal fluid
CMA Chaperone-mediated autophagy
CTSD Protease cathepsin D
FBXO7 F-box-only protein 7
GCase Glucocerebrosidase
GBA Glucosylceramidase beta
HSC70 Heat shock cognate 70
LRRK2 Leucine-rich repeat kinase 2
LB Lewy bodies
LC3 Light chain 3
LAG3 Lymphocyte activation gene 3
LAMP Lysosome-associated membrane protein
mTORC1 Mammalian target of rapamycin complex 1
MMP Mitochondrial Membrane Potential
NAADP Nicotinic acid adenine dinucleotide phosphate
NLRP3 Nucleotide-binding oligomerization domain-leucine-rich

repeat-pyrin domain-containing 3
PD Parkinson’s disease
PE Phosphatidylethanolamine
PINK1 PTEN-induced kinase 1
SN Substantia Nigra
SNCA Synuclein alpha
TLRs Toll-like receptors
ULK1 Unc-51-like autophagy-activating kinase 1
VPS35 Vacuolar protein sorting 35 ortholog
WDR45 WD Repeat Domain 45
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