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Abstract: Inflammageing is a condition of perpetual low-grade inflammation induced by ageing.
Inflammageing may be predicted by the C-reactive protein (CRP) or by a recently described biomarker
which measures N-glycosylated side chains of the carbohydrate component of several acute-phase
proteins known as GlycA. The objective of this study was to examine in depth the genetic relationships
between CRP and GlycA as well as between each of them and other selected cytokines, which may
shed light on the mechanisms of inflammageing. Using the Olink 96 Inflammation panel, data
on inflammatory mediators for 1518 twins from the TwinsUK dataset were acquired. Summary
statistics for genome-wide association studies for several cytokines as well as CRP and GlycA were
collected from public sources. Extensive genetic correlation analyses, colocalization and genetic
enrichment analyses were carried out to detect the shared genetic architecture between GlycA and
CRP. Mendelian randomization was carried out to assess potential causal relationships. GlycA
predicted examined cytokines with a magnitude twice as great as that of CRP. GlycA and CRP were
significantly genetically correlated (Rg = 0.4397 ± 0.0854, p-value = 2.60 × 10−7). No evidence of a
causal relationship between GlycA and CRP, or between these two biomarkers and the cytokines
assessed was obtained. However, the aforementioned relationships were explained well by horizontal
pleiotropy. Five exonic genetic variants annotated to five genes explain the shared genetic architecture
observed between GlycA and CRP: IL6R, GCKR, MLXIPL, SERPINA1, and MAP1A. GlycA and CRP
possess a shared genetic architecture, but the relationship between them appears to be modest, which
may imply the promotion of differing inflammatory pathways. GlycA appears to be a more robust
predictor of cytokines compared to CRP.

Keywords: inflammageing; C-reactive protein; glycoprotein acetyls; cytokines; genetic association

1. Introduction

Inflammageing is defined as a state of low-grade, chronic inflammation arising from
the ageing process. While it is not considered a disease, it does compromise healthy
longevity, and is facilitated by immune system remodeling and cytokine alteration [1,2].
Inflammageing may contribute to the manifestation of several chronic age-related illnesses,
for example, chronic kidney disease, diabetes mellitus, cancer, depression, sarcopenia,
autoimmune conditions, and CVD [3,4]. Inflammageing is likely governed by complex
genetic and epigenetic influences. These could stem from the dysregulation of youthful
genomic networks causing innate immune cell dysfunction during ageing [5], and/or from
the age-associated modification of heterochromatin and gene-specific remodeling [6]. It has
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been hypothesized that the genetic predisposition to a low inflammatory response and/or
to heightened anti-inflammatory response in centenarians may repress the pathogenesis
of inflammageing [7]. The underlying genetic architecture describing the pathogenesis of
inflammageing remains unknown.

Potential indicators of inflammageing may include known biomarkers such as
C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor- (TNF-α), which
were correlated to ageing phenotypes; however, they were not indicative of frailty [2]. CRP,
which is synthesized in the liver and released in the blood in response to inflammation [8,9],
is considered to be an indicator of inflammation and is associated with chronic inflamma-
tory diseases such as RA and CVD, among others [8,9]. While certain pro-inflammatory
cytokines have been suggested to promote CRP, CRP is also suggested to regulate other
cytokines [8].

Recently, glycosylated acetyls (GlycAs) have been suggested as a means to examine
and identify the presence of chronic inflammation and inflammageing [8–10] and are
able to detect aberrations in inflammatory mediators [8,11]. GlycA is the name given to
the specific inflammation-related signal, which arises in the clinically measured proton
nuclear magnetic resonance (NMR) spectra of serum and plasma. The GlycA NMR signal
originates mainly from protons of the N-acetylmethyl group of mobile N-acetylglucosamine
residues on the glycan moieties of acute phase proteins. Blood levels of these proteins
usually correlate with acute-phase CRP and some other markers of systemic inflammatory
responses [12].

GlycA is considered to be preferable to CRP as a biomarker because of its low intra-
individual variability, its other advantages in detecting inflammation and inflammatory
conditions, and it is positively associated with CRP [11]. GlycA was posited as a potential
indicator of chronic inflammation and inflammageing in addition to several cytokines, includ-
ing IL-6, IL-8, IL-10, IL-13, TNF-α, and IFN-γ [13,14]. Yet, the involvement of GlycA and CRP
in inflammatory pathophysiology is heterogeneous, with limited similarities [15–17].

Since GlycA and CRP appear to regulate inflammatory mediators, or cytokines, the
genetic relationship between GlycA/CRP and inflammatory mediators may reveal the
genetic network involved in the pathogenesis of inflammageing. As such, the compara-
bility of GlycA and CRP (henceforth, ”biomarkers”) lead us to consider the current study
and clarify:

(i) whether GlycA and CRP are genetically correlated and, if this is positive,
(ii) to define the shared genetic architecture between them that would possibly describe

the extent of their comparability, and
(iii) to what extent circulating GlycA and CRP share associations with major inflam-

matory mediators.

2. Materials and Methods
2.1. Design of the Study

This study was conducted in several stages, using a few data sources, including data
collected by us and publicly available sources, and implementing a number of modern
genetic-epidemiological methods. The study design is diagrammatically presented in
Figure 1. Following this plan, we first examined the phenotypic and putative genetic
correlations between our primary phenotypes, CRP and GlycA, in a sample from Twin-
sUK, implementing familial-based variance component analysis. We also tested to what
extent the top circulating inflammatory mediators (IMs) measured using the Olink plat-
form [13] correlate significantly and independently with each of the primary phenotypes
(biomarkers). Mixed-effects regression analysis was used to evaluate these associations.
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Figure 1. Study Design.

Second, implementing a two-sample approach, we attempted to estimate the contribu-
tion of common genetic factors to examine the association between each of the two study
primary biomarkers and several IMs available to this study. The polygenic risk score (PRS)
assessment was the major tool to explore this question. To this aim, we also implemented
the Linkage Disequilibrium Score Regression (LDSC) at this stage.

Third, we examined the genetic correlations between the CRP and GlycA established
above, as well as the genetic correlations between each of them with the selected above
IMs. We further considered whether these relationships exhibit a causal and/or pleiotropic
nature. Mendelian randomization (MR) analysis was conducted to examine this.

At the next stage, we used colocalization methods to capture potential specific genetic
factors involved in the pleiotropic relationships between the genetic correlations established
and confirmed in the previous stages.

Finally, we implemented gene ontology analysis in an attempt to find the possible
functional-genetic model best describing the topology between the primary phenotypes,
GlycA and CRP.

The methods of analysis and data sources used at each stage of the study are indicated
on the diagram and described in the following sections.

2.2. Datasets

The Olink96/TwinsUK dataset consisted of 1518 samples and included inflamma-
tory mediators as well as the biomarkers, GlycA and CRP, for this cross-sectional study.
The dataset was a subsample of the TwinsUK collection comprised of the longitudinal
observational data of over 14,000 participants (predominantly of North European ancestry).
Participants were assessed using the Olink 96 Inflammation panel [13,14]. The dataset
contained 876 dizygotic and 642 monozygotic female twins with the age range of 43 and
88 years, with a mean age 64.4 ± 0.2.
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Concerning the Olink 96 Inflammation panel, 96 inflammatory mediators were com-
bined from a couple of datasets. The 96 inflammatory factors list can be found in the
Olink 96 Inflammation panel [13]. Using the limit of detection (LOD) missing procedure
to ascertain the extent of missingness following the merging of datasets, variables with
LOD values > 30% were omitted from this study. Subsequently, 70 inflammatory mediators
were available (Table S1, Supplementary Materials) which include chemokines, cytokines,
among other inflammatory factors, and two primary biomarkers, GlycA and CRP. The latter
two biomarkers were collected from the TwinsUK database separately. The GlycA and CRP
data of the same participants found in the Olink 96 Inflammation panel were matched and
formed a singular dataset that ultimately resulted in the inflammatory mediator data and
biomarkers of 1518 participants.

Big data sources were accessed. The corresponding GWAS summary statistics of the
inflammatory mediators were collected from the Ahola-Olli et al. study, using data from
the FINRISK study and the Cardiovascular Risk in Young Finns Study, and contained
41 cytokines [15]. These cytokines were measured from 8293 Finnish participants. The
respective GWAS summary statistics files consisted of over 10 million genetic variants with
the covariates being age and sex [15].

The GWAS summary statistics for CRP were acquired from the Cohort for Heart and
Ageing Research in Genetic Epidemiology (CHARGE) Consortium and carried out by the
CHARGE Inflammation Working Group. This quantitative dataset contained 204,402 Euro-
pean participants gathered from 78 studies and consisted of 10 million genetic variants [16].
The GWAS summary statistics for GlycA were collected from 115,078 European participants
and comprised over 12 million genetic variants, [17].

2.3. Statistical Analysis

Basic statistical analyses were carried out using R (Version 4.2.3; R Core Team). Mixed-
effects regression analyses were conducted using the lmer function from the lme4 statistical
package for R. This model was used to generate a linear regression mixed-effects model
considering familial genetic effects, which tends to result in a decrease in residual error.
The heritability of each inflammatory mediator was estimated using the FVCA method
using the MAN package [18].

2.4. Statistical Genetics

Genetic correlation was assessed between GlycA and CRP to examine the extent of the
genetic relationship using the cross-trait Linkage Disequilibrium Score Regression (LDSC)
(python implementation downloaded from https://github.com/bulik/ldsc (accessed on
1 May 2023)) [19,20]. The LD reference panel was limited to the European subset acquired
from the 1000 genomes project available for download from the bulik/ldsc GitHub portal.

2.5. Polygenic Risk Score Analysis

Polygenic risk score (PRS) analyses using PRSice-2 software (v2.3.5) were used to
predict the potential shared genetic framework between the two biomarkers and the
cytokines [21]. The PRS is computed by aggregating all trait-associated alleles in a target
sample, weighted by the effect size of each allele in a base GWAS. Linkage disequilibrium
(LD) is accounted for by classifying the SNPs in the LD as one to avoid the overestimation
of a single marker. PRSice-2 screens for the optimal p-value threshold, which would explain
the maximum variance of the target phenotype. The base GWAS predicts the likelihood of
occurrence or the presence of the target trait. Each cytokine GWAS was used at the base
GWAS and the biomarkers (GlycA/CRP) were each used as the target phenotype.

2.6. Mendelian Randomization (MR)

The major purpose of conducting the MR analysis was to test the hypothesis regarding
a causal relationship between the exposure, phenotype X (e.g., an IM), and the primary
phenotype of interest, Y—the outcome (e.g., GlycA). This analysis utilizes the principles

https://github.com/bulik/ldsc
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of instrumental variable analysis assuming that the specific genetic variant gi serves as
the instrument [22]. Testing the entire hypothesis relies on the three basic assumptions:
(1) The relevance assumption is that, to serve as a valid instrument for the causal effect
of an exposure on an outcome, the instrumental variable(s) [defined IV(s)] must be as-
sociated with the exposure phenotype only. (2) In the exclusion assumption, there is no
direct association between the IV(s) and the outcome variable, the association is medi-
ated by the exposure. (3) In the independence assumption, IV(s) is (are) independent of
other factors which affect the outcome, i.e., the selected IVs must be independent from
confounding factors.

In this study, MR was carried out using the MendelianRandomization package in R
for GWAS summary statistics [23]. Two MR approaches were utilized to satisfy different
assumptions, including inverse variance weighted (IVW) and the MR Egger approaches.
The IVW approach is considered to be the most efficient method and is suggested as the
primary method of analysis, but it is also susceptible to horizontal pleiotropy [22]. Once the
association between the IV and the outcome variable is established (the relevance assump-
tion), it is important that the exclusion-restriction assumption is satisfied. The MR Egger
method examines the IV assumptions, and it was therefore subsequently implemented for
its robustness in that it tests for horizontal pleiotropy by providing the MR Egger intercept
while simultaneously presenting the MR Egger estimate. MR Egger additionally provides
the I2Gx statistic, which measures the bias and validity of the instrumental variables se-
lected [24]. Both approaches (IVW and Egger) test for the heterogeneity of the instrumental
variables [22].

Instrumental variables (IVs), or genetic variants of the exposure trait, were chosen
following the compilation of the GWAS summary statistics of the exposure and outcome
phenotypes. A p-value threshold of <5.00 × 10−8 was applied. Subsequently, LD clumping
was performed to remove the SNPs in the LD by utilizing the ld_clump function available
in the MRCIEU/ieugwasr R package [25] with a parameter of clumping R2 = 0.01. Finally,
allele harmonization was performed [22] prior to running the analysis.

The most prominent (top 8) statistically significant associations between GlycA/CRP
and the cytokines were considered for MR analyses.

2.7. Colocalization

Colocalization analysis was implemented to find the possible shared causal genes/SNPs
between two phenotypes. The coloc.abf function from the coloc R package by Wallace et al.
uses Bayesian statistical modelling and on GWAS summary statistics [26,27]. The colo-
calization analysis was limited to the association between GlcyA and CRP, to determine
their shared genomic regions and potentially shared SNPs. The advanced coloc pack-
age tests genomic regions and produces posterior probabilities (PPs) corresponding to
five hypotheses between two traits of interest, which were described and presented by
Wallace et al. [26]. We were particularly interested in the PP of H4 ≥ 75%, which was
defined as high and strong, which estimates the PP of colocalization arising from shared
common causal SNPs [26]. The tested genomic regions were selected and restricted to LD
blocks [28].

Proposed SNPs with higher posterior probabilities generated from the SNP.PP.H4
output were considered for gene set enrichment analysis. Gene set enrichment analysis was
carried out using the Functional Mapping and Annotation (FUMA) GWAS platform [29] to
define the genes in common between the two phenotypes.

2.8. Gene Ontology

Gene ontology (GO) enrichment analysis was carried out to identify at least one model
that would describe the genetic topology of one GO term or node and can be calculated
under three classes: the biological process, molecular function, and cellular component [30].
Each GO term explains a cluster of genes that contribute to the process, function, or
component examined. Thus, we used the topGO R package in Bioconductor [31] to identify
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highly associated GO terms under the three classes between GlycA and CRP. Algorithmic
parameters were set to “classic” and the Fisher’s exact test statistic was assessed.

3. Results
3.1. Phenotypic Correlations

CRP was assessed as to whether it could predict GlycA, while age was considered
as a covariate, and a mixed-effects multivariate model was implemented to account for
the familial relationship of the twin pairs. The analysis suggested that CRP was highly
and significantly associated with GlycA (β = 0.1255 ± 0.0197, p = 2.17 × 10−10), while
controlling for age.

Next, age-adjusted correlations between GlycA and the panel of inflammatory me-
diators were computed, and were computed similarly between CRP and the inflamma-
tory mediators (Tables S2 and S3, Supplementary Materials). Correlations were estimated
70 times with each of GlycA’s and CRP’s levels, so the Bonferroni correction was
α = 0.05/70= 0.0007. We identified 27 significant correlations between GlycA and the
inflammatory mediators (Table S2, Supplementary Materials), ranging between
−0.1279 and +0.2368. The most significantly associated inflammatory mediators were HGF
(β = 0.2368 ± 0.0260, p-value < 2.00 × 10−16), IL18R1 (β = 0.2325 ± 0.0244,
p-value < 2.00 × 10−16), OSM (β = 0.2153 ± 0.0255, p-value < 2.00 × 10−16), TNFSF14
(β = 0.2049 ± 0.0251, p-value = 7.07 × 10−16), VEGFA (β = 0.1965 ± 0.0259,
p-value = 5.32 × 10−14), CCL3 (β = 0.1844 ± 0.0254, p-value = 6.14 × 10−13), CCL23
(β = 0.1844 ± 0.0254, p-value = 6.14 × 10−13), and FGF21 (β = 0.1774 ± 0.0255,
p-value = 4.78 × 10−12) (Table S2, Supplementary Materials). CRP demonstrated 20 signifi-
cant correlations with inflammatory mediators (Table S3, Supplementary Materials), rang-
ing between −0.1426 and +0.2553. The most significantly associated inflammatory media-
tors were IL6 (β = 0.2553 ± 0.0382, p-value = 3.81 × 10−11), IL18R1
(β = 0.1618 ± 0.0274, p-value = 4.29 × 10−9), VEGFA (β = 0.1587 ± 0.0289,
p-value = 4.65 × 10−8), OSM (β = 0.1539 ± 0.0283, p-value = 6.22 × 10−8), CCL19
(β = 0.1462 ± 0.0274, p-value = 1.10 × 10−7), CSF1 (β= 0.1470 ± 0.0283, p-value = 2.39 × 10−7),
DNER (β = −0.1426 ± 0.0282, p-value = 4.75 × 10−7), and HGF (β = 0.1477 ± 0.0297,
p-value = 7.31 × 10−7) (Table S3, Supplementary Materials).

Subsequently, the eight inflammatory mediators most significantly associated with
GlycA and CRP, respectively, were subjected to a mixed-effects multivariate regression
model to examine their independent and combined associations, respectively, taking into
account familial relationships and age (Tables 1 and 2). The step function was used to
implement a stepwise approach and identify the most optimal model by considering
the Akaike information criterion. Both regression models showed high overall statistical
significance (p < 2.2 × 10−16) and they explained 8% and 10% of CRP and GlycA variation,
respectively. Interestingly, only a few and different cytokines were retained in these
analyses, and age had a significant independent association only with GlycA.

Table 1. Mixed multiple regression analysis where the GlycA level is the dependent variabe and
inflammatory mediators are predictors.

Independent Variables Estimate SE p-Value

Intercept 0.0107 0.0297 7.19 × 10−1

IL18R1 0.1724 0.0251 9.56 × 10−12

OSM 0.1353 0.0250 7.35 × 10−8

FGF21 0.1009 0.0251 6.02 × 10−5

Age 0.0947 0.0302 1.81 × 10−3

Multiple R-squared: 0.1028, p-value: <2.2 × 10−16; all variables were standardized.
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Table 2. Mixed multiple regression analysis where the CRP level is the dependent variable
and inflammatory mediators are predictors. CRP Results: Multiple R-squared: 0.0759, p-value:
<2.2 × 10−16; all variables were standardized prior to analysis.

Independent Variables Estimate SE p-Value

Intercept 0.0763 0.0400 5.64 × 10−2

IL18R1 0.1185 0.0436 6.68 × 10−3

IL6 0.1805 0.0403 8.24 × 10−6

VEGFA 0.1036 0.0464 2.58 × 10−2

DNER −0.2223 0.0396 2.46 × 10−8

3.2. Heritability Rate and Genetic Correlation

Given the highly significant association between GlycA and CRP, the extent of their
genetic association was also examined. First, the heritability of each marker was evaluated
by implementing familial-based variance decomposition analysis, which revealed modest
significant estimates: 0.2971 ± 0.0802 (p = 2.11 × 10−4) for GlycA and 0.2786 ± 0.0246
(p = 1.12 × 10−29) for CRP. The genetic correlation between the two biomarkers was
Rg = 0.4397 ± 0.0854 (p = 2.60 × 10−7).

3.3. Polygenic Risk Score Analysis

We further assessed the shared genetic framework using PRSice-2. PRSice-2 revealed
that 23 cytokines and CRP (PRS.R2 = 0.0084, p-value = 1.46 × 10−4) appeared to genetically
predict GlycA (Table 3), and that 17 cytokines genetically predicted CRP (Table 3). Among
these were 11 cytokines commonly associated with both biomarkers (Table 3): GCSF, GROA,
HGF, IL5, IL7, IL9, IL10, MIG, MIP1α, TNFα, and TNFβ. The magnitudes of the PRS.R2

between GlycA and these inflammatory factors were between 0.0023 for TNFβ and 0.0050
for IL5 (Table 3). The value of PRS.R2 between CRP and the same inflammatory factors
ranged between 0.0010 for MIP1α and 0.0022 for HGF. The magnitude of the PRS results
were twice as high on average, where GlycA was the target phenotype when compared
to CRP.

Table 3. Polygenic risk score (PRS) results of the analysis of GlycA and CRP. Only significant PRS
results are shown here (p < 0.05). Full PRS results including all 41 inflammatory mediators can be
found in Table S4, Supplementary Materials.

Base
GWAS Target Threshold PRS.R2 Full.R2 Null.R2 Coefficient Standard Error p-Value Number of SNP

B_NGF GlycA 0.3904 0.0047 0.0167 0.0120 −197.16 69.70 4.73 × 10−3 86,767

CRP GlycA 0.0525 0.0084 0.0205 0.0120 479.34 125.94 1.46 × 10−4 24,677

GCSF GlycA 0.2646 0.0029 0.0150 0.0120 −191.20 85.64 2.57 × 10−2 69,225

GROA GlycA 0.0026 0.0045 0.0166 0.0120 16.04 5.76 5.43 × 10−3 1632

HGF GlycA 0.0047 0.0032 0.0152 0.0120 29.60 12.68 1.97 × 10−2 3025

IL10 GlycA 0.3433 0.0030 0.0151 0.0120 −212.77 93.28 2.27 × 10−2 81,302

IL12 GlycA 0.1460 0.0049 0.0170 0.0120 −184.79 63.64 3.74 × 10−3 46,700

IL16 GlycA 0.0003 0.0032 0.0153 0.0120 3.93 1.67 1.86 × 10−2 186
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Table 3. Cont.

Base
GWAS Target Threshold PRS.R2 Full.R2 Null.R2 Coefficient Standard Error p-Value Number of SNP

IL17 GlycA 0.0003 0.0032 0.0152 0.0120 −7.56 3.23 1.95 × 10−2 277

IL18 GlycA 0.0000 0.0023 0.0144 0.0120 0.23 0.11 4.64 × 10−2 6

IL1B GlycA 0.0069 0.0025 0.0145 0.0120 −19.80 9.65 4.03 × 10−2 3979

IL4 GlycA 0.0174 0.0027 0.0147 0.0120 −49.91 23.22 3.17 × 10−2 8899

IL5 GlycA 0.0002 0.0050 0.0171 0.0120 4.56 1.55 3.38 × 10−3 144

IL7 GlycA 0.0679 0.0029 0.0150 0.0120 −65.97 29.43 2.51 × 10−2 25,883

IL9 GlycA 0.0504 0.0023 0.0143 0.0120 −53.39 27.05 4.85 × 10−2 20,691

MCP3 GlycA 0.0035 0.0052 0.0173 0.0120 −11.94 3.98 2.74 × 10−3 2199

MCSF GlycA 0.0001 0.0038 0.0158 0.0120 −1.93 0.76 1.08 × 10−2 59

MIG GlycA 0.0487 0.0048 0.0168 0.0120 −72.30 25.28 4.29 × 10−3 20,112

MIP1α GlycA 0.0003 0.0043 0.0164 0.0120 5.47 2.00 6.44 × 10−3 248

PDGF GlycA 0.0449 0.0029 0.0150 0.0120 86.18 38.51 2.53 × 10−2 19,340

SCGF GlycA 0.0004 0.0042 0.0162 0.0120 6.80 2.54 7.43 × 10−3 350

TNFα GlycA 0.0032 0.0042 0.0162 0.0120 −17.93 6.68 7.36 × 10−3 2036

TNFβ GlycA 0.0051 0.0023 0.0143 0.0120 −11.39 5.78 4.88 × 10−2 2834

VEGF GlycA 0.0049 0.0025 0.0146 0.0120 −23.60 11.32 3.71 × 10−2 3167

CTACK hsCRP 0.0122 0.0013 0.0021 0.0008 737.42 315.68 1.95 × 10−2 6432

GCSF hsCRP 0.0002 0.0013 0.0022 0.0008 151.87 63.17 1.62 × 10−2 182

GROA hsCRP 0.0001 0.0017 0.0026 0.0008 32.43 11.76 5.83 × 10−3 42

HGF hsCRP 0.0388 0.0022 0.0030 0.0008 2526.22 819.79 2.07 × 10−3 16,920

IL10 hsCRP 0.0063 0.0014 0.0022 0.0008 816.14 331.20 1.38 × 10−2 3851

IL13 hsCRP 0.0098 0.0018 0.0026 0.0008 793.16 286.06 5.58 × 10−3 5469

IL1RA hsCRP 0.0020 0.0021 0.0029 0.0008 390.15 128.89 2.48 × 10−3 1435

IL5 hsCRP 0.0000 0.0011 0.0019 0.0008 4.33 2.01 3.12 × 10−2 1

IL6 hsCRP 0.0003 0.0012 0.0020 0.0008 −151.93 67.34 2.41 × 10−2 209

IL7 hsCRP 0.0023 0.0013 0.0021 0.0008 311.91 132.34 1.85 × 10−2 1592

IL9 hsCRP 0.0192 0.0009 0.0017 0.0008 773.62 392.08 4.85 × 10−2 9498

MCP1 hsCRP 0.0954 0.0011 0.0019 0.0008 −2693.09 1229.10 2.85 × 10−2 33,867

MIG hsCRP 0.0000 0.0011 0.0020 0.0008 6.92 3.13 2.71 × 10−2 2

MIP1α hsCRP 0.0154 0.0010 0.0019 0.0008 727.29 345.39 3.53 × 10−2 7966

TNFα hsCRP 0.0045 0.0013 0.0022 0.0008 −449.89 186.96 1.62 × 10−2 2691

TNFβ hsCRP 0.0019 0.0010 0.0018 0.0008 −162.52 79.27 4.04 × 10−2 1146

TRAIL hsCRP 0.0011 0.0018 0.0026 0.0008 −391.97 141.91 5.77 × 10−3 857

3.4. Causality and Mendelian Randomization

MR was conducted to detect the causality between the biomarkers and their signifi-
cantly correlated inflammatory mediators, following the Bonferroni correction. Further, we
only assessed those cytokines with available GWAS summary statistics from the Finnish
sample. Using the IVW approach, GlycA and CRP appeared to causally predict each
cytokine examined (Tables S5 and S6, Supplementary Materials).

Upon further investigation, by implementing the MR Egger approach to distinguish
between causal and pleiotropic effects, a causal effect was only seen between GlycA and
VEGF (β = 0.291, 95%CI= 0.016 to 0.567, p-value = 0.038), with no evidence of horizontal
pleiotropy (Table 4). The genetic relationship between GlycA and most of the selected
cytokines, including HGF (p-value = 0.002), IL6 (p-value = 0.008), IL7 (p-value = 0.002),
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TNFα (p-value = 0.043), as well as that with CRP (p-value = 0.003), appeared to be explained
by horizontal pleiotropy (Table 4). No causal relationship was evident between CRP and
the associated cytokines with the genetic associations explained by horizontal pleiotropy
with HGF (p-value = 0.001), IL6 (p-value = 0.035), and VEGF (p-value = 0.037) (Table 5).

Table 4. The Mendelian randomization with GlycA as the exposure variable. The MR Egger method
suggests that the majority of the inflammatory mediators are in horizontal pleiotropy with GlycA.

Outcome Instrumental
Variables Estimate SE 95% Confidence

Interval p-Value MR Egger
Intercept p-Value I2Gx Heterogeneity

hsCRP 21 0.001 0.036 −0.068, 0.071 0.975 0.003 97.7% 0.5688

FGF 38 0.114 0.107 −0.096, 0.324 0.289 0.062 98.1% 0.8006

HGF 41 0.113 0.105 −0.093, 0.319 0.284 0.002 98.0% 0.9371

IL6 41 0.070 0.096 −0.118, 0.257 0.466 0.008 98.1% 0.9201

IL7 36 0.030 0.147 −0.257, 0.318 0.836 0.002 97.2% 0.9599

TNFα 37 0.082 0.140 −0.192, 0.356 0.558 0.043 97.6% 0.9920

VEGF 45 0.291 0.140 0.016, 0.567 0.038 0.471 95.4% 0.9781

Table 5. The Mendelian randomization with hsCRP as the exposure variable. The MR Egger method
suggests that the majority of the inflammatory mediators are in horizontal pleiotropy with hsCRP.

Outcome Instrumental
Variables Estimate SE

95%
Confidence

Interval
p-Value

MR Egger
Intercept
p-Value

I2Gx Heterogeneity

HGF 34 0.146 0.424 −0.685, 0.977 0.731 0.001 98.7% 1.0000

IL6 46 0.120 0.091 −0.057, 0.298 0.184 0.035 97.3% 0.9170

IL10 38 0.215 0.139 −0.057, 0.487 0.122 0.220 93.2% 0.9979

TNFα 35 0.360 0.223 −0.077, 0.796 0.106 0.300 80.5% 1.0000

VEGF 35 0.077 0.115 −0.149, 0.304 0.502 0.037 96.5% 0.9868

3.5. Colocalization Analysis and Gene Enrichment

Colocalization and gene enrichment analysis identified shared pleiotropic SNPs and
their corresponding genes between GlycA and CRP. While the significant SNPs found
in the GWAS profile of each biomarker had some key differences, some shared genes
were apparent (Table 6). The reported results were restricted to evidence of high posterior
probabilities (≥75%) for shared SNPs between the biomarkers (H4), or distinct causal SNPs
on the same gene (H3). The colocalization analysis revealed 17 genomic regions in the
colocalization between GlycA and CRP found on chromosomes 1, 2, 6, 7, 8, 9, 11, 14, 15, and
19 (Table 6). While intronic and intergenic SNPs were seen, interestingly, five exonic SNPs
were also evident and shared between the two biomarkers (Table 6). On chromosome 1,
between base pairs 151,538,881 and 154,770,403, a nonsynonymous exonic SNP was evident
with a PP.H4 of 98.1% and corresponded to the gene, IL6R (Table 6). Subsequently, on
chromosome 2 between base pairs 110,572,432 and 113,921,856, another nonsynonymous
exonic SNP was observed with a PP.H4 of 99.9% and was harbored by the GCKR gene
(Table 6). Next, another shared exonic SNP was found on chromosome 7 ranging between
base pairs 71,874,885 and 73,334,602 with a PP.H3 of 100%, and was noted near the gene
MLXIPL (Table 6). The final two exonic SNPs were located on chromosomes 14 and 15, and
spanned the base pair regions 94,325,285–95,750,867 and 42,776,399–44,198,049, respectively,
and were harbored by the genes SERPINA1 and MAP1A, respectively (Table 6). The
posterior probabilities of H4 were 99.8% and 85.0%, respectively (Table 6).
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Table 6. The GlycA and CRP genetic colocalization analysis results. Seventeen genomic regions
showed the colocalization of the SNP with p < 5 × 10−8 for both hsCRP and GlycA. These regions
specifically indicate shared SNPs, or at least SNPs in the same genomic regions.

Cytokine in
Colocalization

with GlycA

Genomic Region
Chromosome:

Base Pairs

Gene
(SNP)

Function

GlycA
p-Value

hsCRP
p-Value

PP.H4 (Posterior
Probability of Shared
Causal SNP) or PP.H3

(of SNPs in Same Region)

hsCRP Chr1: 25516845–
27401867

ZDHHC18
rs75460349

intronic
5.20 × 10−8 4.88 × 10−10 H4: 99.0%

hsCRP Chr1: 65041704–
66939401

LEPR/RN7SL854P
rs13375019
intergenic

4.40 × 10−13 1.35 × 10−134 H4: 79.3%

hsCRP
Chr1:

151538881–
154770403

IL6R
rs2228145

Nonsynonymous
SNV, exon9

3.30 × 10−7 1.21 × 10−101 H4: 98.1%

hsCRP Chr1: 247344518–
249239466

NLRP3
rs56188865

intronic
3.10 × 10−11 1.95 × 10−22 H4: 98.8%

hsCRP Chr2: 110572432–
113921856

GCKR
rs1260326

Nonsynonymous
SNV, exon15

2.60 × 10−125 5.44 × 10−61 H4: 99.9%

hsCRP Chr2: 26894985–
28598777

IL1F10/RNU6-
1180P

rs6734238
intergenic

4.00 × 10−9 7.46 × 10−29 H4: 100%

hsCRP Chr6: 31571218–
32682664

HLA-DRA/HLA-
DRB9

rs9268790
intergenic

1.10 × 10−23 8.9 × 10−9 H3: 96.4%

hsCRP Chr7: 71874885–
73334602

MLXIPL
rs3812316

Nonsynonymous
SNV, exon6

3.90 × 10−59 3.52 × 10−12 H3: 100%

hsCRP Chr8: 10463197–
11278998

LINC00529
rs10481445

ncRNA_intronic
8.10 × 10−10 6.29 × 10−11 H3: 97.7%

hsCRP Chr8: 11278998–
13491775

FDFT1
rs2409836
intronic

8.10 × 10−10 1.09 × 10−12 H3: 90.9%

hsCRP Chr8:
7153079–9154694

CTA-398F10.2
rs2921057

ncRNA_exonic
2.10 × 10−10 5.82 × 10−10 H3: 98.8%

hsCRP Chr8:
9154694–9640787

RP11-115J16.
rs4841133

ncRNA_exonic
2.10 × 10−22 3.31 × 10−19 H3: 100%

hsCRP Chr9: 135298842–
137041122

ABO
rs543040

ncRNA_intronic
8.90 × 10−11 1.97 × 10−9 H4: 97.1%
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Table 6. Cont.

Cytokine in
Colocalization

with GlycA

Genomic Region
Chromosome:

Base Pairs

Gene
(SNP)

Function

GlycA
p-Value

hsCRP
p-Value

PP.H4 (Posterior
Probability of Shared
Causal SNP) or PP.H3

(of SNPs in Same Region)

hsCRP Chr11: 12564229–
13373124

ARNTL
rs7947951
intronic

5.10 × 10−6 5.81 × 10−9 H4: 96.8%

hsCRP Chr14: 94325285–
95750867

SERPINA1
rs28929474

Nonsynonymous
SNV, exon7

3.80 × 10−80 5.47 × 10−10 H4: 99.8%

hsCRP Chr15: 42776399–
44198049

MAP1A
rs55707100

Nonsynonymous
SNV, exon4

1.50 × 10−7 1.53 × 10−4 H4: 85.0%

hsCRP Chr19: 34262952–
36469295

HPN-AS1
rs2445818

ncRNA_intronic
2.60 × 10−8 5.71 × 10−5 H4: 86.7%

3.6. Comparative Enrichment—Gene Ontology

Subsequently, comparative gene ontology was performed to assess the potential
similarity using gene ontology terms between GlycA and CRP. The GO terms were mapped
and annotated by each variable and calculated using Fisher’s exact test to determine the
most likely represented GO term associated with each variable by class.

The Fisher test revealed that GlycA and CRP significantly shared GO terms
in each class, biological process, molecular function, and cellular component
(Table S7, Supplementary Materials). Moreover, each GO term was seen in the first node,
except for molecular function in CRP, where the same GO term was reflected in the
second node (Table S7, Supplementary Materials). In examining the biological process
class, GlycA and CRP were significantly associated with GO:0007156, which denotes ho-
mophilic cell adhesion via a plasma membrane (p-values = 3.60 × 10−6 and 1.40 × 10−5,
respectively) (Table S7, Supplementary Materials). Next, the molecular function class
showed that the GO:0005515 term was significantly associated with GlycA and CRP
(p-values = 4.00 × 10−8 and 5.90 × 10−7, respectively), and demonstrated protein binding
(Table S7, Supplementary Materials). Lastly, the cellular component class indicated that
GlycA and CRP were significantly associated with the GO:0005829 term (p = 4.00 × 10−8 and
5.90 × 10−7, respectively), which expressed the cytosol (Table S7, Supplementary Materials).

4. Discussion
4.1. Overview

This study has defined the relationship between the biomarkers of inflammageing,
GlycA and CRP, and other inflammatory mediators. GlycA and CRP were significantly
correlated both phenotypically and genetically; however, differences were also apparent.
Genetically, they posed a significant genetic correlation indicating some shared genetic
architecture which was confirmed by the PRS estimates and colocalization analysis. Their
genetic relationship was found to be horizontally pleiotropic following the Mendelian
randomization analysis, with some key genes shared; however, genetic variation was
still evident in their respective genetic profiles. Associations of cytokines with GlycA
tended to be higher compared to those with CRP, and the lists of the associated cytokines
partially overlapped. These results were in agreement with the results of the Mendelian
randomization analyses. GlycA was consistently superior to CRP in its association with in-
flammatory mediators when examining the magnitude of association and overall collection
of statistically significant associations.
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4.2. Cytokines of Interest

Interestingly, in the case of GlycA, the results suggested possible causality for IL-10
and -12, while the others factors shared common pleiotropic effects. Of these, the most
prominent were pleiotropic correlations with IL-6, IL-7, and HGF. CRP, on the other hand,
displayed only pleiotropic relations with other inflammatory mediators, in particular, the
most significant was that with IL-6 and HGF. Notably, IL-7 contributes to the elicitation
of IL-17 [32]. IL-17 is involved in T cell activation and is involved in the pathogenesis
of inflammatory conditions, such as rheumatoid arthritis and psoriasis [33]. HGF is in-
volved in various inflammatory pathways and inflammatory conditions, while exhibiting
anti-inflammatory properties [34]. IL-6 is a well-established key cytokine in autoimmune
conditions, chronic inflammation, and infections [35] and is also a target for immunomodu-
latory treatment.

One of the highly significant (p = 2.46 × 10−8, Table 2) correlations to CRP was its
correlation with DNER (Delta- and Notch-like Epidermal Growth Factor Receptor). This
correlation is not entirely clear since DNER is predominantly expressed in the nervous
system and in various tumors, and its soluble form in the serum is a marker for a number
of tumors but not for inflammation [36]. However, as we tested the whole battery of
OLINK markers without a priori assumption, we could not neglect this result, which
survived the multiple testing correction, and in terms of statistical significance, was the top
marker. It displayed an association even more significant than that between CRP and IL6
(p = 8.24 × 10−6). We do not have a clear explanation for this correlation. However,
we may note that although the pro- or anti-inflammatory functions of Notch signaling
were not shown, it has been shown to modulate inflammatory conditions such as sepsis,
and therefore may significantly impact the course of disease [37]. This, however, does not
concern DNER. It has been reported that DNER is the actual target for anti-Tr antibodies [38],
which in turn could be associated with paraneoplastic cerebellar degeneration and Hodgkin
disease [39]. To further understand the metabolic bridge (if there is any) between the anti-Tr
antibodies and CRP would suggestively require clarification and further study.

4.3. GlycA vs. CRP

A highly significant (p = 2.17 × 10−10) association was seen between the circulating
levels of GlycA and CRP. This is in agreement with one previously published study, wherein
the modest sample (58 participants) of individuals who were obese manifested a significant
correlation between their plasma levels (r = 0.46; p < 1 × 10−3) [40]. The multiple regression
analyses suggest differing mechanisms for GlycA and CRP, whereby they were significantly
associated with different inflammatory mediators, while demonstrating similar regression
coefficients. However, despite their similarities, GlycA and CRP appeared to employ
differing inflammatory pathways, which yield to GlycA’s consistency, unlike CRP [40].
While CRP’s response is more apparent in the early stages of the disease, GlycA’s response
may be more indicative in the acute phases of the disease [9]. Unlike CRP, GlycA posits
low intra-individual variability [9].

CRP is a classical marker of inflammation and infection. GlycA has been relatively
recently suggested as a superior predictor of chronic inflammatory illness as well as
autoimmune disorders [9]. It may provide a more accurate predictor of CVD risk, RA, type 2
diabetes, and other chronic and/or autoimmune conditions [9]. Moreover, when GlycA was
compared to CRP in depicting the metabolomic profile dictating CVD risk, GlycA appeared
as the more sensitive and accurate determinant [41]. Subsequently, GlycA, unlike CRP,
is linked with the gut microbiome, which would otherwise predict disease among other
conditions [41]. GlycA and hsCRP showed similarities along short-term measurements
and associations with inflammatory mediators [17]. However, GlycA was more indicative
of chronic inflammation, which is maintained by its long-term, perpetual, and consistent
presence, unlike CRP, which reflected a short-term response to acute inflammation [17].
Similar to our findings, a report demonstrated that GlycA was statistically associated
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with some cytokines, and suggested that GlycA may encapsulate and possibly represent
cytokine alteration [42].

Elevated GlycA has been observed in low-grade chronic inflammation, and an in-
crease is GlycA levels is indicative of hospitalization and increased mortality arising from
infection [42]. The characteristics apparent in GlycA essentially depict the description of
inflammageing [8]. Otherwise, the current suggested indicators of inflammageing include
CRP, IL6, IL8, and TNF [43].

4.4. Genes of Interest

While CRP and GlycA were indicative of horizontally pleiotropic relationships with
other cytokines, they also exhibited a horizontally pleiotropic relationship with each other.
Through conducting a colocalization analysis, several shared genomic regions emerged.
Interestingly, five genomic regions yielded shared nonsynonymous exonic SNPs. These five
mutations were annotated to the following five genes: IL6R, GCKR, MLXIPL, SERPINA1
and MAP1A.

The functional role of IL6R is apparent in cancer, cell differentiation, and inflamma-
tion [44]. Importantly, both GCKR and IL6R were reported in metabolic syndrome. In
particular, the rs1260326 polymorphism in GCKR showed a 21% increase in susceptibly to
metabolic syndrome [45,46]. Metabolic syndrome may be considered to be a culmination
of cardiometabolic abnormalities with a genetic foundation that leads to several disorders
including, but not limited to, cardiovascular complications, diabetes, neurological compli-
cations, and an overall proinflammatory state. Such findings substantiate CRP, and recently
GlycA, as biomarkers that may be used to predict metabolic syndrome [47,48].

The particular polymorphism in IL6R, rs2228145, contributes to the genetic predis-
position of nonalcoholic steatohepatitis, and a variation of hematological levels [49,50].
Interestingly, rs2228145 was also associated with chronic autoimmune conditions including
asthma, coronary heart disease, rheumatoid arthritis, and type 1 diabetes [51–54]. On a
molecular level, the acute phase of CRP is related to the production of soluble IL6R by
threefold, which may subsequently contribute to the inflammatory response [55]. The
relationship between IL6R and GlycA is still poorly understood. The rs1260326 polymor-
phism mapped to GCKR was reportedly associated with non-alcoholic fatty liver disease
and cardiovascular disease-related phenotypes [56,57]. This polymorphism is of interest
because it was significantly associated not only with CRP but also with GlycA [58,59].

The colocalization analysis identified other interesting candidate genes associated with
exonic SNPs, which may have an important clinical orientation. The first is MLXIPL, a gene
that is deleted in Williams-Beuren syndrome, a multisystem developmental disorder, and
is associated with non-alcoholic fatty liver disease [60] as well as metabolic syndrome [61].
Essentially, MLXIPL is responsible for the modulation of hepatic carcinoma [62]. The
MLXIPL gene’s function is related to the carbohydrate response element-binding protein,
and in particular, to the rs3812316 polymorphism, to blood triglyceride levels, cardiovas-
cular disease, and metabolic alterations [63,64]. Interestingly, the molecular function in
the comparative gene ontology analysis in our study detected protein binding as a shared
characteristic between GlycA and CRP. MLXIPL was also suggestively associated with
CRP [61]. However, to the best of our knowledge, the association between MLXIPL and
GlycA has not yet been reported in the literature.

Another notable gene was SERPINA1. SERPINA regulates immune function and
inhibits proteases [65]. The rs28929474 polymorphism near SERPINA1 increases suscep-
tibly to childhood asthma and was previously noted to contribute to the shared genetic
relationship between rheumatoid arthritis and osteoporosis [66,67]. Alpha 1 Antitrypsin
deficiency, which is expressed by the SERPINA1 gene, is associated with elevated levels of
CRP, thus suggesting an inflammatory component [68]. However, this study reported the
strong association of GlycA with SERPINA1 variants, for the first time.
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Another gene of interest, MAP1A, has not been previously associated with both CRP
and GlycA. MAP1A is functionally involved in the development of neuronal components,
such as axons and dendrites [69].

4.5. Limitations

The TwinsUK sample may be too small for full genetic analyses. Thus, genetic findings
involving the cytokines were underpowered, and further larger studies may reveal further
contrasts. Moreover, the number of inflammatory mediators available from the Olink panel
was limited to 70 due to insufficient data, as was tested by the LOD missing analysis. Only
a limited number of GWASs were available in the Finnish sample. Despite this difference,
some GWASs available from the Finnish sample were generalized to fit several mediators
and the most prominent cytokines were nevertheless available. It should also be mentioned
that despite the fact that >70 inflammatory mediators were examined in this study, some
others, such as interleukin-1\u03b2 (IL-1\u03b2) or interferon-\u03b3 (IFN-\u03b3), could
also be of interest, but were not included in this project.

5. Conclusions

Both GlycA and CRP were significantly associated with mutations that increase sus-
ceptibility to metabolic syndrome and were also associated with inflammatory diseases
and chronic conditions which were ascribed to inflammageing. Still, GlycA appears to
be more explicit in describing the cytokines, as its associations were more comprehensive
in magnitude and proportion when compared to CRP. Of interest was the overall shared
architecture between GlycA and CRP, which might explain their consistencies and poten-
tially isolate genes that may be attributed to inflammageing. Despite their shared genetic
architecture, and that there is variation is cytokine prediction, we therefore speculate that
GlycA and CRP potentially emulate different inflammatory pathways.

6. Possible Clinical Implications

Our above conclusion, based on the extensive genetic analysis, is in good agreement
with Tebar et al.’s study [70] which evaluated the cross-sectional association of CRP and
GlycA with carotid artery plaque (CAP), obesity, and some other conditions from the
ELSA-Brasil adult cohort. The analysis included 4126 participants with a median age of
50 years old. The authors concluded that their findings suggest potentially different
biological pathways between GlycA and CRP, despite the correlation between them. They
believe that GlycA is associated mostly with inflammation and carotid atherosclerosis,
whereas high CRP was more associated with obesity. Clearly more studies are needed
to confirm these conclusions, but if they are positive, this means that elevated levels of
GlycA and CRP could be used for differential diagnostic and prognostic implications in
clinical practice.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/biom14050563/s1, Table S1: List of 70 inflammatory medi-
ators presented from the Olink 96 panel; Table S2: Correlations between GlycA and Inflammatory
Mediators; Table S3: Correlations between hsCRP and inflammatory mediators; Table S4: PRS results
for GlycA and CRP; Table S5: MR GlycA as exposure using the IVW method; Table S6: MR hsCRP
as the exposure, using the IVW method; Table S7: Gene Ontology results: enrichment analysis r for
GlycA and CRP variables for gene ontology (GO) terms.
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