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Abstract: The quality prediction of quaternary structure models of a protein complex, in the absence
of its true structure, is known as the Estimation of Model Accuracy (EMA). EMA is useful for
ranking predicted protein complex structures and using them appropriately in biomedical research,
such as protein–protein interaction studies, protein design, and drug discovery. With the advent
of more accurate protein complex (multimer) prediction tools, such as AlphaFold2-Multimer and
ESMFold, the estimation of the accuracy of protein complex structures has attracted increasing
attention. Many deep learning methods have been developed to tackle this problem; however,
there is a noticeable absence of a comprehensive overview of these methods to facilitate future
development. Addressing this gap, we present a review of deep learning EMA methods for protein
complex structures developed in the past several years, analyzing their methodologies, data and
feature construction. We also provide a prospective summary of some potential new developments
for further improving the accuracy of the EMA methods.

Keywords: protein quality assessment; estimation of model accuracy; deep learning; protein complex;
protein quaternary structure

1. Introduction

Proteins interact to form complexes that carry out important biological functions.
Therefore, obtaining the quaternary structure of a protein complex is crucial for elucidating
how proteins interact. This information proves useful in addressing various biological
research problems that require protein–protein interaction (PPI) details, such as drug
discovery [1–3] and protein design [4,5].

Typically, high-resolution structures of protein complexes are determined with meth-
ods such as X-ray crystallography and cryo-electron microscopy (cryo-EM). However, these
low-throughput methods can only solve a small portion of protein complex structures.
As a result, computational protein complex (multimer) prediction methods have gained
significant attention in the scientific community. Recently, some advanced deep-learning
protein multimer predictors, such as AlphaFold-Multimer [6], have substantially acceler-
ated the process of predicting protein complex structures. These tools initially generate a
large number of protein-complex decoys. Then, the quality of all the predicted structures
(decoys) needs to be assessed (predicted) by a quality evaluation method, which is not
aware of the native structure of the protein complex and ultimately selects the decoy with
the highest score. Typically, this phase is referred to as the estimation of model accuracy
(EMA), protein quality assessment (QA), or model scoring problem. Figure 1 illustrates
such a protein complex structure prediction and quality evaluation process. As seen, after
an EMA method selects the highest-ranked decoy, that decoy is passed to downstream
application tasks.
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Figure 1. Protein complex structure prediction and evaluation pipeline. (A) Protein complex structure
predictor generates a pool of structural models (decoys) from the sequence of a protein complex.
(B) Protein EMA method evaluates (predicts) the quality of predicted decoys. (C) The high-quality
decoy selected is used for downstream application tasks.

Numerous methods have been developed to address the challenging problem of es-
timating the accuracy of protein complex structures [7–13]. Commonly, EMA methods
can be categorized into three types of approaches: physical energy-based [12], statisti-
cal potential-based [7,8], and machine learning-based. Physical energy-based methods
typically use scoring functions consisting of a weighted linear combination of various
physical energetic terms. Due to their lower computational complexity, these models are
frequently employed in numerous docking methods [14–16]. Statistical potential-based
methods convert the distribution of distance-relevant or irrelevant pairwise contacts at the
atom or residue level into statistical potentials [8]. Machine learning or deep learning-based
methods [11,13,17–31] generally use features to represent a protein quaternary structure
that are then used to predict the structure’s quality scores. Similar to the protein tertiary
structure EMA task, quaternary structure EMA methods can also be classified into multi-
model [23,32] and single-model approaches [24,25]. Multi-model methods [22,23] yield a
relative score for each predicted protein complex decoy in a model pool, leveraging the
similarity between structural models to assess quality. In contrast, single-model meth-
ods consider only one decoy and assign an absolute quality score to it, independent of
comparisons with other decoys.

In this review, we will concentrate on the deep learning-based protein quaternary
structure EMA methods developed in the last five years. The structure of this review
is as follows: First, we will introduce the metrics for evaluating the quality of protein
complex structures and the performance of EMA methods. Then, we discuss the prevalent
methods for representing protein complex structures for EMA and common datasets used
to train and test EMA methods. Subsequently, we explore the recent deep learning EMA
methods, categorized by their technical approaches. Finally, we conclude the review with
a perspective on future trends in the development and enhancement of protein complex
structure EMA methods.

2. Metrics for Evaluating the Quality of Protein Complex Structures and the
Performance of EMA Methods

CASP (Critical Assessment of Techniques for Protein Structure Prediction) and CAPRI
(Critical Assessment of PRedicted Interactions) are two worldwide experiments that rigor-
ously test computational methods of predicting protein complex structures and estimate
their accuracy. The latest competitions [33] offer widely accepted measures for assessing
the overall (global) structural quality, interface quality, and local structural quality of pre-
dicted complex structures with respect to their true structures, as well as for evaluating the
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performance of EMA methods of estimating/predicting the accuracy of predicted complex
structures, as discussed below.

2.1. Global Structural Quality Evaluation of Protein Complex Structure

CASP uses oligo-GDT-TS [34] and TMscore [35] to evaluate the global structural
quality of a predicted complex structure.

oligo-GDT-TS =
GDTP8 + GDTP4 + GDTP2 + GDTP1

4
(1)

oligo-GDT-TS: Similar to the GDT-TS (Global Distance Test Total Score) [34] used
to evaluate a predicted tertiary structure, oligo-GDT-TS extends the calculation to the
global structural similarity score of the predicted complex structures with respect to the
true structure. It is defined by Equation (1), where GDTPn represents the GDT-TS score
at a specific distance threshold (Pn), i.e., the percentage of residues in the model that fall
within a certain distance threshold (Pn = 8 Å, 4 Å, 2 Å or 1 Å) from their corresponding
residues in the actual structure. This calculation is performed after aligning the predicted
and true structures.

TMscore: Unlike oligo-GDT-TS, the Template Modeling score (TMscore) rescales
residue-wise modeling errors, eliminating the dependency on protein size. TMscore is
calculated using Equation (2), where Ltarget is the length of a target complex structure,
Lcommon is the number of the aligned residue pairs, di is the distance between the Cα atoms
of the ith pair of residues from the two structures (e.g., a predicted target complex structure
and the corresponding true structure), and d0 is calculated by Equation (3) according to the
length of the predicted protein complex.

TM-score = max

 1
Ltarget

Lcommon

∑
i=1

1

1 +
(

di
d0(Ltarget)

)2

 (2)

d0(Ltarget) = 1.24 3
√

Ltarget − 15 − 1.8 (3)

2.2. Interface Quality Evaluation of Protein Complex Structure

The interface quality measurement is meant to evaluate the similarity between the
structure of the residues in the interaction interface of a predicted protein complex structure
and the structure of their counterparts in the true structure. DockQ score [36] is a widely
used metric to measure interface quality and is calculated based on three complementary
measurements: f (nat), L_rms, and i_rms.

f (nat) is the fraction of native contacts in the protein–protein interfaces in the true
complex structure preserved in the predicted protein complex structure. Protein–protein
interface residues are determined by whether the distance between any two heavy atoms
of two residues from two different protein chains is less than 5 Å. This fraction, denoted as
f (nat), ranges from 0 to 1, with a higher value indicating a greater preservation of native
contacts in the predicted complex structure.

L_rms is the ligand root mean square deviation (RMSD), which is defined as the RMSD
of the backbone of a chain of the predicted complex structure, called a ligand (usually the
shorter chain) after the structure of another chain called the receptor (usually longer chain)
is superimposed with that of the true structure. The larger the L_rms value, the worse the
predicted complex structure.

i_rms is the interface root mean square deviation, which is the root mean squared
deviation between the residues in the interface region of a predicted complex structure and
the true structure. The larger the i_rms value, the worse the predicted complex structure is
in comparison with the true structure.

DockQ, in the range [0, 1], is the average of f (nat), scaled L_rms, and scaled i_rms,
calculated according to Equation (4). The scaled value of L_rms and i_rms are determined
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by Equation (5) with two thresholds (d1 and d2), respectively. The threshold values for
d1 (8.5 Å) and d2 (1.5 Å) are selected through a grid search to optimize the F1-score for
classifying predicted protein complex structures in a dataset into the four quality classes
(Incorrect, Acceptable, Medium and High) as commonly used in the CAPRI competition.
Additionally, these four quality classes can be further grouped into two main classes:
incorrect and correct.

DockQ =
f (nat) + RMSscaled(L_rms, d1) + RMSscaled(i_rms, d2)

3
(4)

RMSscaled(RMS, di) =
1

1 +
(

RMS
di

)2 (5)

In addition to the DockQ score, QS-score [37] is also used to evaluate the interface
quality of complex structures. QS-score, expressed by the weighted fraction of shared
interface contacts (e.g., residue-residue pairs with Cβ − Cβ distance < 12 Å), is another
robust continuous score used to measure the interface quality of a predicted complex
structure. It is calculated by Equation (6), where dA and dB denote the distance between
two residues in contact in protein structure A (e.g., predicted structure) and B (e.g., true
structure), respectively. The weighting function w(d) is calculated with Equation (7), which
is the probability of a side-chain interaction between two residues given their distance. A
higher QS-score indicates a higher similarity between compared interfaces.

QS-score =
∑shared(A,B) w(min(dA, dB))(1 − |dA−dB |

12 )

∑shared(A,B) w(min(dA, dB)) + ∑non−shared(A) w(dA) + ∑non−shared(B) w(dB)
(6)

w(d) =

{
1, if d <= 5.

e−2( d−5
4.28 )

2
, if d > 5.

(7)

CAD-score [38] is another metric to evaluate interface quality. Let G be the set of
residue pairs with nonzero contact areas in a predicted complex or true complex structure.
T(i,j) and M(i,j) are the contact areas for residue pair (i, j) in the true structure and predicted
structure, respectively. The CAD score is calculated by Equation (8), where the CADbounded

(i,j)
is calculated by Equation (9) and CAD(i,j) is calculated by Equation (10). The higher the
CAD score, the better the interface quality is.

CAD − score = 1 −
∑(i,j)∈G CADbounded

(i,j)

∑(i,j)∈G T(i,j)
(8)

CADbounded
(i,j) = min(CAD(i,j), T(i,j)) (9)

CAD(i,j) = |T(i,j) − M(i,j)| (10)

2.3. Local Structural Quality Evaluation of Protein Complex Structure

The local structural quality of the predicted protein complex structure, i.e., the quality
of the predicted position of each residue or each atom in a predicted complex structure, is
often evaluated by the Local Distance Difference Test (lDDT) score [39].

lDDT quantifies the degree to which a protein structure accurately replicates the
environment found in the true structure. For each atom in the true structure, the nearby
atoms from different residues are identified by a distance threshold. Then the percentage
of the distances between one atom and other atoms in the true structure that are preserved
as the predicted structure is calculated. This atom-level lDDT score is the average of the
fraction calculated at 0.5 Å, 1 Å, 2 Å, and 4 Å distance thresholds considering all the atoms.
In contrast, the residue-level lDDT score is calculated on the Cα atoms only.

All the quality metrics of global structure, interface, and local structure work in the
same way for homomers and heteromers.
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2.4. Metrics of Evaluating Protein Complex Structure EMA

EMA methods are developed to predict the quality score of predicted protein complex
structures in the absence of true complex structures. Their performance is evaluated by
comparing predicted quality scores with true quality scores, measured by metrics such
as those in Sections 2.1–2.3. Below are some commonly used measures for evaluating the
performance of EMA methods.

Correlation: the Pearson/Spearman correlation between the true and predicted quality
scores of an EMA method.

MSE and MAE: mean squared error (MSE) and mean absolute error (MAE) between
the real and the predicted quality scores of an EMA method.

Ranking loss: the difference between the quality of the actual best structure and the
quality of the No. 1 ranked structure, which is selected according to quality scores predicted
by the EMA method. The smaller the loss, the better the ranking is.

Success rate (SSR): the percentage of near-native structures among the top n ranked
structures selected by the EMA method.

Hit rate (HR): the fraction of near-native structures among the top n ranked structures,
divided by the number of all near-native structures in the structure pool.

3. Learning the Representation of Protein Complex Structure
3.1. Protein Complex Structure Representation

Deep learning EMA methods take a predicted complex structure as input and predict
its quality score. Unlike a vector of numbers that can be directly used as input for deep
learning methods, a predicted complex structure consists of a set of atoms. This requires
their x, y, and z coordinates to be converted into a representation that can be understood
and processed by deep learning methods. Consequently, many different representations
for protein complex structures have been developed. iScore [13] utilizes a graph random
walk method to construct graph kernel matrices for a given protein complex structure,
while CoDES [40] extracts a set of physicochemical and statistical potential features of
protein complex structures. Both methods transform protein structures into tableau data
that machine learning methods can use.

Dove [17] and TRScore [41] employ a fixed-size 3D grid to encode protein complex
structures for model quality classification. PointDE [42] creates a point cloud to represent
the protein interaction interface in protein complex structures to assess their quality.

More recently, several methods [20,24,27,28,30,31,43–49] have used graphs to represent
protein complex structures. Compared to other forms, graph structures offer several
advantages: (1) they can effectively represent residue–residue or atom–atom interactions,
with the capacity to easily assign chemical, physical, biological, and artificial features to the
nodes and edges in the graph; (2) graph representations can scale to match protein structures
of various complexity and size; and (3) they are particularly suitable for some deep learning
algorithms such as graph neural networks while requiring fewer computational resources
than 2D and 3D grid representations. Below is a brief description of various graph neural
networks used to learn the representation of protein complex structures.

3.2. Graph Neural Network

Graph neural networks (GNNs) are specifically designed to process graph-structured
data. As a result, when representing protein complex structures as graph structures, GNNs
naturally lend themselves to addressing protein complex EMA challenges. Here we provide
a concise overview of three common GNN architectures: Graph Convolutional Networks
(GCNs) [50], Graph Attention Networks (GATs) [51], and Graph Transformers (GTs) [52].
These architectures form the backbone of numerous protein complex EMA methodologies.

3.2.1. Graph Convolutional Neural Network

A graph convolutional neural network (GCN) is a type of neural network that applies
the capabilities of a convolutional neural network to a graph data structure. They provide
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a particular advantage in making complex neural networks understandable by utilizing
the layer-wise propagation Equation (11) for a specific graph-based neural network model
f (X, A):

H(ℓ+1) = σ(D̃− 1
2 ÃD̃− 1

2 H(l)W(ℓ)) (11)

This expression outlines how each layer processes information. Ã represents the
adjacency matrix of the undirected graph G with the addition of the identity matrix IN
adding self-connections to each node in the graph. D̃ii is the diagonal elements of a degree
matrix where i is the i-th diagonal element of said matrix. D̃ii is computed with the sum
of the elements of each row within Ãij, where i and j represent the element in the i-th row
and j-th column of the matrix. Within the GCN, each layer has its own trainable weight
matrix W(l). The activation function σ(·) is applied to the results of the matrix operations.
H(l) is a matrix that represents node features in the lth layer of the GCN where H(0) equals
the initial layer X and is updated in each layer using the defined operations.

3.2.2. Graph Attention Neural Network

Graph attention neural networks (GAT) receive an input of nodes h = {
−→
h1 ,

−→
h2 , . . . ,

−→
hN},

−→
hi ∈ RF where N is the number of nodes and F is the number of features in each

node. To obtain initial transformation features, for each input node, it applies a shared
linear transformation, parameterized by the weight matrix W where W ∈ RF′×F to each
node. A self-attention mechanism then computes eij, indicating the importance of node

j’s features to node i using the equation eij = a(W
−→
hi , W

−→
hj ). In this formula, a represents

a weight vector that parameterizes the attention mechanism. Here, the graph structure
is incorporated by only computing for nodes j ∈ Ni where Ni is some neighborhood of
node i in the graph. To improve the comparability across nodes, eij is normalized by the
softmax function (Equation (12)) across all the neighbors of node i, resulting in an attention
weight αij.

αij = so f tmaxj(eij) =
exp(eij)

Σk∈Ni
exp(eik)

(12)

Finally, the layer outputs updated node features h′ = {
−→
h′1 ,

−→
h′2 , . . . ,

−→
h′N},

−→
h′i ∈ RF′

with a
potentially different number of features F′, from the weighted sum of the features of the
neighbors of each node.

3.2.3. Graph Transformer Neural Network

The Graph Transformer (GT) neural network adapts the transformer model [53] from
graph data processing to update both node and edge features, which is different from GAT
above which only updates node features. A graph G, characterized by initial node features
ĥ0

i and edge features ê0
ij, is input into the Graph Transformer layer for message passing

and feature updating. Initially, the Graph Transformer layer computes the attention scores
by utilizing both ĥℓi and êℓij. Subsequently, it derives updated intermediate node features

ĥℓ+1
i and edge features êℓ+1

ij based on these attention scores. The outputs are then passed
to a feed-forward network, which is proceeded and succeeded by residual connections
and normalization layers, leaving the final output the updated node feature hℓi and edge
feature eℓij.

4. Datasets for Training and Test Protein Complex EMA Methods

Training, validation, and testing constitute critical stages in the development of deep
learning methods. The quantity and quality of the training and test data are critical for
constructing high-performing deep learning methods. Table 1 enumerates some commonly
used datasets for training, validating, and testing protein complex structure EMA methods.
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Table 1. The six common protein complex benchmark datasets. All the datasets except the Docking
Benchmark contain both true and predicted structures. The Docking Benchmark dataset includes
only true (native) structures. *: None.

Data Sources Number of Targets/Structures Source

DockGround 61/6100 http://dockground.bioinformatics.ku.edu/
Docking Benchmark 230/* https://zlab.umassmed.edu/benchmark/
PPI4DOCK 1417/54,000 http://biodev.cea.fr/interevol/ppi4dock/
CARPI set 15/19,013 http://cb.iri.univ-lille1.fr/Users/lensink/Score_set/
CASP15 38/9930 https://predictioncenter.org/download_area/CASP15/predictions/oligo/
DBM55-AF2 15/450 https://zenodo.org/record/6569837

The DockGround set [54] provides two docking decoy sets for the EMA benchmark,
which are associated with 61 unbound complex targets. Each target has 100 decoy models,
including at least one near-native (L_rms < 5) decoy generated by a protein docking tool
GARMM-X [55–57].

The Docking Benchmark set (BM set) is a successful protein–protein scoring benchmark
dataset series, with the first DBM set published in 2003 [58] being named DBM1.0. Each
later BM set version was built on top of the previous version by adding new targets. The
latest version, DBM5.5 [59], contains 230 complex targets, several decoys predicted for
them, and the quality scores (labels) of the decoys.

The PPI4DOCK docking set [60] contains 1417 non-redundant docking targets and
also provides 54,000 decoys generated by ZDock 3.0.2 [61]. A CARPI set [62] consists of
15 published CAPRI targets, a total of 19,013 decoys generated by 47 different predictor
groups. About 10% of decoys are of acceptable or higher quality (based on CAPRI stan-
dards). The CASP15 dataset has 38 complex targets, with each target containing around
250 decoys generated by different structure prediction teams. DBM55-AF2 [24], contains
15 targets with a total of 300 decoys generated by AlphaFold-Multimer. DockGroud
set, PPI4DOCK, CAPRI set, CASP15, and DBM55-AF2 provide both decoys and native
structures for each target. By calculating the quality metric of each decoy with respect
to the native (true) structure as labels, decoys can be used for training and testing deep
learning models.

For accurately assessing a deep learning method’s performance, the redundancy
between the training and test datasets should be removed. Usually, a target is not included
in a test set when its sequence has 30% or higher sequence identity than any protein target
in the training and validation datasets.

It is worth noting that the size of most datasets above is small and their decoy models
were generated by traditional docking methods instead of the state-of-the-art protein
complex structure prediction methods such as AlphaFold-Multimer, which may not be
sufficient to train large deep learning methods. Therefore, most recent deep learning EMA
methods [24,26–28,48] have used their own custom datasets for training. For example,
DProQA applied AlphaFold2 [63] and AlphaFold2-Multimer [64] to generate complex
structures for training. VoroIF-GNN [21] collected 1567 heterodimer structures and used
FTDock [65] and FASPR [66] to generate decoys for them for training.

5. Deep Learning-Based EMA Methods for Protein Complex Structure

In this section, we review the deep learning-based protein complex structure EMA
methods developed within the last 5 years. Tables 2–4 list the summary information
of each method, including release date, main techniques, predictions, representation
(atom/residue) level, single/multi-model method designation, input features, training
dataset, testing dataset, and source code’s URL.

http://dockground.bioinformatics.ku.edu/
https://zlab.umassmed.edu/benchmark/
http://biodev.cea.fr/interevol/ppi4dock/
http://cb.iri.univ-lille1.fr/Users/lensink/Score_set/
https://predictioncenter.org/download_area/CASP15/predictions/oligo/
https://zenodo.org/record/6569837
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Table 2. Summary of EMA methods for protein complex structures (Part 1). *: Paper accepted time.

Name Year * Main
Techniques

Prediction Representation
Level

Single-/
Multi-Model

PAUL [44] 2020 Equivariant-GCN iRMSD Atom Single

DOVE [17] 2020 3D-CNN The probability of an input decoy has an acceptable quality or not Atom Single

EGCN [12] 2020 GCN iRMSD Residue Single

GNN_DOVE [18] 2021 GAT The probability of an input decoy has an acceptable quality or not Atom Single

DGANN [67] 2021 GAT The probability of an input decoy is near-native or not Residue Single

Trscore [41] 2022 3D-CNN The probability of an input decoy is near-native or not Atom Single

DeepRank_GNN [25] 2022 GNN f-nat (fraction of native contacts) Residue Single

VoroIF-GNN [68] 2023 GAT CAD score Atom Single

DeepUMQA3 [27,45] 2023 2D-CNN lDDT Residue Single

DProQA [24] 2023 GT DockQ Residue Single

G-RANK [30] 2023 GVP f-nat (fraction of native contacts) Atom Single

PIQLE [31] 2023 GAT Interface score, Fold score, Residue score Residue Single

GraphGPSM [46] 2023 EGNN TM-Score Residue Single

GraphCPLMQA [47] 2023 GT + EGNN +
2DCNN lDDT Residue Single

PointDE [42] 2023 Point cloud network The probability of an input decoy is near-native or not Atom Single

ComplexQA [48] 2023 GCN Interface residue score Residue Single

GCPNet-EMA [49] 2024 GCP lDDT Residue Single
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Table 3. Summary of EMA methods for protein complex structures (Part 2).

Name Features

PAUL Atomic positions and types

DOVE Contact potentials, GOAP, ITScore

EGCN
Node features: side-chain pseudo atom’s charge, non-bonded radii, and distance-to-Ca, solvent accessible surface area (SASA).
Edge features: atom distance features

GNN_DOVE Node features: atom physicochemical proprieties of atoms. Edge features: covalent bonds, atom distance.

DGANN Node features: physical-chemical properties, PSSM, information content

Trscore Atoms’ physicochemical features

DeepRank_GNN
Node features: residue type, residue charge, residue polarity, buried surface area, PSSM;
conservation score, information content, residue depth, residue half-sphere exposure. Edge feature: residue distance

VoroIF-GNN
Node features: contact surface areas, contact-solvent border length, sum of inter-contact border lengths;
contact type-dependent descriptors. Edge feature: inter-contact border length

DeepUMQA3
Ultrafast Shape Recognition (USR), residue voxelization, inter-residue distance and orientations, amino acid properties;
level of intra-monomer: sequence embedding, secondary structure, energy terms;
inter-monomer level: attention map of the inter-monomer paired sequence, inter-monomer USR

DProQA
Node features: residue type, secondary structure type, relatively accessible surface area, torsion angles, node positional encoding.
Edge features: Three types of distance, edge positional encoding, contact indicator, permutation-invariant chain encoding

G-RANK Node features: atom types; edge features: edge direction, edge length

PIQLE
Node features: residue encoding, relative residue positioning, secondary structure, SASA, torsion angles,
number of effective sequences (Neff). Edge features: multimeric interaction distance, multimeric interaction orientation

GraphGPSM
USR, residue voxelization, inter-residue distance and orientations, amino acid properties;
level of intra-monomer: sequence embedding, secondary structure, energy terms;
inter-monomer level: attention map of the inter-monomer, paired sequence, inter-monomer USR, Ca coordinates

GraphCPLMQA
MSA embedding, sequence embedding, structure embedding, triangular location and residue-level contact order,
relative position encoding, dihedral and planar angles, voxelization and distance map, Meiler, Blosum62 and DSSP

PointDE Atomic type, residue types and coordinates, chain identity

ComplexQA Sequence features, three-dimensional structural and chemical features

GCPNet-EMA
Node features: residue type, positional encoding, virtual dihedral and bond Angles over the Cα trace, residue backbone dihedral angles;
Residue-wise ESM embeddings, residue-wise AlphaFold 2 plDDT, residue-sequential forward and backward vectors;
Edge features: Euclidean distance between connected Cα atoms, directional vector between connected Cα atoms



Biomolecules 2024, 14, 574 10 of 17

Table 4. Summary of EMA methods for protein complex structures (Part 3).

Name Training Data Testing Data Source

PAUL DBM4 DBM5, PPI4DOCK NA

DOVE DBM4 DockGround https://kiharalab.org/dove/

EGCN DBM4 CAPRI https://github.com/Shen-Lab/EGCN

GNN_DOVE Dockground, DBM4 CAPRI https://github.com/kiharalab/GNN_DOVE

DGANN DBM4 DBM5.5 https://github.com/coffee19850519/PPDocking/tree/master

Trscore DBM4 DBM5 https://github.com/BioinformaticsCSU/TRScore

DeepRank_GNN DBM5 CAPRI https://github.com/DeepRank/Deeprank-GNN

VoroIF-GNN Custom set Custom set https://www.voronota.com/expansion_js/

DeepUMQA3 Custom set Custom set http://zhanglab-bioinf.com/DeepUMQA/

DProQA Dockground, DBM5.5, Custom Dataset Custom Dataset https://github.com/jianlin-cheng/DProQA/tree/main

G-RANK DBM5 CAPRI https://github.com/ha01994/grank

PIQLE Dockground v2 Dockground v1 https://github.com/Bhattacharya-Lab/PIQLE

GraphGPSM Custom set CASP15 http://zhanglab-bioinf.com/GraphGPSM/

GraphCPLMQA Custom set CASP15 http://zhanglab-bioinf.com/GraphCPLMQA/

PointDE DOCKGROUND CAPRI, Custom Dataset https://github.com/AI-ProteinGroup/PointDE

ComplexQA DockGround, DBM5, Custom Dataset Custom set https://github.com/Cao-Labs/ComplexQA/tree/main

CGPNet-EMA Custom set CASP15, Custom set https://github.com/BioinfoMachineLearning/GCPNet-EMA

https://kiharalab.org/dove/
https://github.com/Shen-Lab/EGCN
https://github.com/kiharalab/GNN_DOVE
https://github.com/coffee19850519/PPDocking/tree/master
https://github.com/BioinformaticsCSU/TRScore
https://github.com/DeepRank/Deeprank-GNN
https://www.voronota.com/expansion_js/
http://zhanglab-bioinf.com/DeepUMQA/
https://github.com/jianlin-cheng/DProQA/tree/main
https://github.com/ha01994/grank
https://github.com/Bhattacharya-Lab/PIQLE
http://zhanglab-bioinf.com/GraphGPSM/
http://zhanglab-bioinf.com/GraphCPLMQA/
https://github.com/AI-ProteinGroup/PointDE
https://github.com/Cao-Labs/ComplexQA/tree/main
https://github.com/BioinfoMachineLearning/GCPNet-EMA
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TRScore [41] employs a 3D CNN architecture, adapted from a ResNet-inspired
VGG [69,70] architecture with structural re-parameterization technique (RepVGG), to pre-
dict the likelihood of a near-native model for an input 3D complex structure. When
provided with an input 3D structure, a 3D grid with 20 × 20 × 20 shape and 2 Å grid spac-
ing is constructed after voxelizing the 40× 40× 40 cube that is placed on the centroid of the
protein–protein interface. Each voxel in the grid is then assigned a 19-dimensional vector
feature representing the counts of atoms of different types within the voxel. Evaluated
on the BM5 dataset, DockGround unbound decoy set, and CAPRI decoy set, TRScore can
obtain a performance comparable to or better than DOVE [17], ZRANK [71], ZRANK2 [72]
and IRAD [10] in terms of success rate and hit rate.

DOVE [17] applies two knowledge-based statistical potential values, GOAP [73] and
ITScore [9], as the description of the input decoy and also represents the position of carbon,
oxygen, nitrogen, and other atoms at the interface. These features were concatenated and
reshaped as the fixed cube shape (40 Å × 40 Å × 40 Å) for a 3D CNN model to predict the
probability that an input protein complex structure has an acceptable model quality based
on the CAPRI standard. The DOVE is trained and validated on the BM4.0 dataset [74] and
tested on the DockGround set [54]. Because it uses a fixed-size cube as input, DOVE faces
the difficulty of accurately capturing the protein interface of large-size protein complex
structures. Also, 3D-CNN is computationally expensive for modeling. To address these
issues, the GNN-DOVE [18] is proposed. GNN-DOVE extracts the interface region of the
protein complex and then reconstructs a graph with/without inter-molecular interactions
to represent it as input. It then predicts a probability that the input protein complex has
a CAPRI-acceptable quality. GNN-DOVE was trained on the DockGround and DBM4
set. For a fair comparison with DOVE, DOVE was also retrained on the same dataset as
GNN-DOVE. On the CAPRI set [62], GNN-DOVE shows a higher performance in terms of
hit rate.

PAUL [44] is an end-to-end protein complex scoring system. PAUL does not use any
pre-calculated statistical or physical terms as the input feature for the neural network.
PUAL instead uses rotation-equivariant neural networks with three hierarchical structures
to represent protein–protein complex atoms’ positions and types. PAUL consists of two
models with the same architecture: the first one is a classification model (for ranking
purposes) to predict if a decoy has an acceptable quality (i.e., L_rms < 10 Å), and the second
one is the regression model (for model quality assessment purpose) to directly predict
the LRMSD. PAUL’s training dataset is BM4.0 and evaluated on BM5.0 (excluding the
BM4.0 part) and PPI4DOCK set. Because of PAUL’s ranking ability, it is sometimes used to
enhance other model scoring methods’ ranking ability. PAULSOAP-PP and PAULZRANK,
for example, use PAUL to filter out sub-optimal decoys first and then rank the remaining
decoys using SOAP-PP or ZRANK, which perform better than using SOAP-PP and ZRANK
alone in both benchmark datasets.

ECGN [12] utilizes two identical GNNs with different parameters to represent intra-
and inter-molecular residue–residue contacts in a protein complex structure to predict
its binding energy. The energy term is calculated from the interface root mean square
deviation (iRMSD) of the complex structure. For both intra- and inter-molecular residue
contact graphs, ECGN employs 4 node features and 11 edge features. ECGN was trained
on the BM4 dataset and tested on the CAPRI targets and score_set. On the test datasets,
ECGN demonstrates a better performance than a random forest-based scoring method on
both the ranking task and the quality estimation task and its performance is comparable to
iRAD [10].

PIQLE [31] utilizes GAT to predict a single global interface quality score from the
interaction interface graph extracted from the input protein complex structure. Each graph
is assigned 17 residue-level sequence- and structure-based node features and 27 multimeric
geometric-based edge (interaction) features. PIQLE was trained on the DockgGround set
and benchmarked on the HAF2 set [24], achieving a better performance than DProQA [24],
TRScore, GNN-DOVE, and DOVE.
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DGANN [67] employs a deep graph attention neural network to predict the likelihood
of a protein complex structure model being a near-native model. The graph for an input
structure is constructed by treating residues with encoded physical-chemical properties
and Position-Specific Scoring Matrix (PSSM) features as nodes, while edges are established
when the minimum distance between any two atoms from two different residues is less than
5 Å. Benchmarked on the BM5.5 dataset, DGANN outperformed ZDOCK, HADDOCK [75],
iScore [13] and DOVE-Atom40 in terms of success rate and enrichment factor.

DeepRank_GNN [25] adapts a graph structure to represent a protein dimer structure
for interface quality prediction. Similar to DGANN, the construction of the graph involves
treating residues with their features (e.g., residue type, residue charge, residue polarity,
and PSSM) as nodes, with edges symbolizing the contact between the residues. Different
from DGANN, DeepRank_GNN builds two distinct input graphs formed by intra-chain
(e.g., a minimum atomic distance less than 8.5 Å) and inter-chain contacts (e.g., a minimum
distance between heavy atoms less than 3 Å). These graphs are then inputted into the
graph neural network to predict the fraction of native contacts in the input structure.
Benchmarked on the CAPRI dataset, DeepRank_GNN performed better than HADDOCK,
DeepRank [76], DOVE, GNN-DOVE and iScore in terms of AUC.

DProQA [24] encodes a protein complex structure as a KNN (10 neighbors) graph
and feeds it to a gated graph transformer to predict a real-valued quality score of the
structure as well as a quality class that it belongs to. The graph’s node and edge features
are all directly generated from the input protein complex structure without using any
extra information such as multiple sequence alignments (MSAs) and residue residue co-
evolutionary features extracted from MSAs. DProQA is trained and tested on the newly
developed protein complex datasets in which all structural decoys were generated using
AlphaFold2 and AlphaFold-Multimer. In the blind CAPSP15 experiment, DProQA is one
of the top performers among all single-model methods in terms of ranking loss [77].

G-RANK [30] is built on top of the geometric vector perceptron–graph neural network
(GVP) [78]. GVP uses directed Euclidean vectors to represent the positions of atoms of
protein complex structures for downstream machine-learning tasks. G-RANK uses the
graph to represent the protein complex structure’s interface, with atom type as node
features, and edge direction and length as edge features. Both node and edge features are
embedded in a high-dimension feature space. They are then sent to GVP for updating via
message passing and predicting an interface quality score fnat.

GCPNet-EMA [49] represents a successful implementation of Geometry-Complete
Perceptron (GCP) Networks [79] for the protein complex structure EMA task. Given a
protein complex structure, GCPNet-EMA constructs a residue-level graph, incorporating
initial node features, edge features, and frames derived from the residues’ coordinates.
These features are processed through several SE(3)-equivariant GCPConv layers. Subse-
quently, the model employs its learned fine-tuned representations to predict the lDDT score
for each residue (node). When benchmarked on the CASP15 multimer set, GCPNet-EMA
demonstrates competitive performance in terms of ranking loss. Interestingly, GCPNet-
EMA can be applied to predict lDDT scores for both protein quaternary structures and
tertiary structures. Similarly, EnQA based on 3D-equivariant graph neural networks [43]
was originally trained on protein tertiary structures to predict per-residue lDDT scores, but
can also be applied to predict the lDDT scores of protein quaternary structures by treating
them as a single unit.

ComplexQA [48] designs a new graph-based neural network for predicting the local
residue quality of protein complex interfaces based on the sequence and three-dimensional
structure-derived features. ComplexQA first generated thousands of features and finally
selected the top 300 features that had the highest Pearson correlation with the labels.
Additionally, to accurately evaluate ComplexQA’s performance, a modified lDDT score—
lDDT_C30—is proposed. Compared to the original lDDT score, lDDT_C30 enlarges the
default radius from 15 Å to 30 Å when calculating the fraction of local residue pairs. In the
experiment, lDDT_C30 shows a higher correlation with the DockQ score than lDDT.
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VoroIF-GNN [68] (Voronoi InterFace Graph Neural Network) adapts the Voronoi
tessellation of atomic balls of van der Waals radii to establish atomic contacts, which are
aggregated to form residue contacts. The inter-residue contacts characterized by their
attributes such as contact surface area, contact-solvent border length, sum of inter-contact
border lengths, and contact-type descriptors serve as nodes in the constructed interface
graph. Meanwhile, the inter-contact borders are designated as edges in this graph, which
are fed to a graph neural network to predict the CAD-goodnesses derived from the CAD-
score. Evaluated on the CASP15 dataset, VoroIF-GNN was the best single-model method
in terms of ICS, IPS and lDDT-oligo [77].

PointDE [42] first extracts the interaction interface from a protein complex structure
and then converts it to an interface point cloud. To sample a fixed number of points from
the initial interface points vector, PointDE proposes a new Nearest Pair Sampling approach
to sample a fixed number of atom pairs on the interface. As a result, each final point cloud
contains 500 closest atomic pairs. Each point has 3D coordinates and a 26-dimensional
feature vector. PointeDE takes PointMLP [80] as the backbone and uses the Inter-molecular
Group Mechanism (IGM) to replace the k-Nearest Neighbor (kNN) algorithm to aggregate
geometric features during the grouping process. PointDE predicts the probability that a
protein complex is native-like or not.

DeepUMQA3 [27,45] extracts overall complex features, intra-chain (intra-monomer)
features, and inter-chain (inter-monomer) features for a given complex structure. The
overall features are generated by considering the whole complex structure as a single
component, which contains ultrafast shape recognition (USR), voxelization expression,
inter-residue distances and orientations, and amino acid properties. The sequence em-
bedding generated by a protein language model [81], secondary structure, and Rosetta
energy terms [82] of each monomer are considered as the intra-chain features. The inter-
chain features are composed of an attention map between the monomer sequence and
inter-monomer USR. All these features are first combined and then updated by a triangular
multiplication update layer, an axial attention layer, and a feed-forward layer to generate
higher-level features. These higher-level features are fed to a residual neural network to
predict the local residue quality score and interface residue accuracy. DeepUMQA3 ranked
first in the accuracy estimation for protein complex interface residues in CASP15 [77].

GraphGPSM [46] represents a protein complex as a residue-level graph and uses
the same features of DeepUMQA3 [45] with the additional coordinates of the Cα atoms
of the input complex structure to embed the graph. The graph is then updated by the
Equivalent-GNN (EGNN) to predict the global TM score of the complex structure.

GraphCPLMQA [47] combines the protein language model-generated sequence- and
structural-embedding features, triangular location, reside-level contact order, and physic-
ochemical properties of protein complex structure as the initial features, which are used
by a graph neural network-based encoding module to generate high-level features. The
high-level features are used by a CNN-based decoding module to predict the residual-level
local quality score.

6. Performance of Some EMA Methods in CASP15

Although there is no benchmark for evaluating all the EMA methods reviewed in this
article on a common dataset in the field, four of them, i.e., VoroIF-GNN (CASP15 group
name: VoroIF), DeepUMQA3 (group name: GuijunLab-RocketX), GraphGPSM (group
name: GuijunLab-Threader), and DProQA (group name: MULTICOM-egnn), participated
in the EMA experiment of CASP15 in 2022, providing an evaluation of their relative
performance. In the CASP15 experiment, three metrics were applied to evaluate the
EMA predictors: SCORE, QSCORE, and Local Score [77]. SCORE integrates TMscore and
oligo-GDT-TS to assess the global topological accuracy of predicted structures. QSCORE
combines DockQ and QS-score to evaluate the accuracy of the interface, while the Local
Score metric uses the lDDT and CAD scores to measure local interface accuracy.



Biomolecules 2024, 14, 574 14 of 17

In the CASP15 experiment, among the single-model EMA methods, GraphGPSM
achieved the highest ranking based on the SCORE metric. VoroIF-GNN excelled in esti-
mating interface accuracy in terms of QSCORE, and DeepUMQA3 demonstrated the best
performance in estimating local interface accuracy.

7. Future Work

Although important contributions have been made towards the estimation of protein
complex structure accuracy as discussed above, few methods can consistently estimate
the accuracy of protein complex structure models better than the built-in quality scores
assigned to them by protein complex structure prediction methods (e.g., the confidence
score of AlphaFold-Multimer) [23]. One reason for this sub-optimal performance is the
lack of large labeled protein complex structure datasets to train and test deep learning
EMA methods.

Public datasets available for training protein complex structures, including the CAPRI
set, Docking Benchmark dataset, and Dockground set, typically contain a limited number
of structural models (decoys) for a small number of protein complex targets. These datasets
cover only a small portion of the protein structure and sequence space. Furthermore,
many datasets contain decoys not generated by the latest high-accuracy protein structure
predictors, such as AlphaFold-Multimer, potentially causing misalignment between the
deep learning model’s training and inference stages. Also, most protein complex targets
of these datasets are dimers, with only a small portion of them dedicated to multimers
(i.e., more than two chains). This imbalanced distribution could degrade the performance
of deep learning models in estimating the accuracy of multimer models. To address these
disadvantages, some recent EMA methods have started constructing custom datasets
generated by state-of-the-art protein complex structure predictors. These feature a more
diverse model distribution in terms of length and number of chains. However, very large
public high-quality datasets for the protein complex structure EMA task are still lacking. In
addition to the need to create large datasets of protein complex structures, leveraging large
datasets for protein tertiary structures that are significantly more abundant in predicted
structure databases such as AlphaFold DB [83] and ESM Metagenomic Atlas [81] to train
deep learning methods for predicting the quality of protein complex structures can be a
viable approach. As demonstrated by GCPNet-EMA and EnQA, deep learning methods
trained on tertiary structures can be applied to quaternary structures. One can first train an
EMA method on very large datasets of protein tertiary structures and then fine-tune it on a
dataset of protein quaternary structures.

In addition to overcoming the major bottleneck of lacking large datasets in the field,
another direction is to explore more sophisticated deep learning methods to represent and
process protein complex structures. Recently, most EMA methods have represented protein
complex structures as graphs for training deep learning models or for feature extraction.
Compared to other representations, graph structures provide a more flexible way to encode
protein complexes and easily assign features. We expect that more sophisticated graph
neural network-based EMA methods will be developed in the future.
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38. Olechnovič, K.; Kulberkytė, E.; Venclovas, Č. CAD-score: A new contact area difference-based function for evaluation of protein
structural models. Proteins Struct. Funct. Bioinform. 2013, 81, 149–162. [CrossRef]

39. Mariani, V.; Biasini, M.; Barbato, A.; Schwede, T. lDDT: A local superposition-free score for comparing protein structures and
models using distance difference tests. Bioinformatics 2013, 29, 2722–2728. [CrossRef]

40. Barradas-Bautista, D.; Cao, Z.; Vangone, A.; Oliva, R.; Cavallo, L. A random forest classifier for protein–protein docking models.
Bioinform. Adv. 2022, 2, vbab042. [CrossRef]

41. Guo, L.; He, J.; Lin, P.; Huang, S.Y.; Wang, J. TRScore: A 3D RepVGG-based scoring method for ranking protein docking models.
Bioinformatics 2022, 38, 2444–2451. [CrossRef] [PubMed]

42. Chen, Z.; Liu, N.; Huang, Y.; Min, X.; Zeng, X.; Ge, S.; Zhang, J.; Xia, N. PointDE: Protein Docking Evaluation Using 3D Point
Cloud Neural Network. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 20, 3128–3138. [CrossRef] [PubMed]

43. Chen, C.; Chen, X.; Morehead, A.; Wu, T.; Cheng, J. 3D-equivariant graph neural networks for protein model quality assessment.
Bioinformatics 2023, 39, btad030. [CrossRef] [PubMed]

44. Eismann, S.; Townshend, R.J.; Thomas, N.; Jagota, M.; Jing, B.; Dror, R.O. Hierarchical, rotation-equivariant neural networks to
select structural models of protein complexes. Proteins Struct. Funct. Bioinform. 2021, 89, 493–501. [CrossRef] [PubMed]

45. Liu, J.; Liu, D.; He, G.; Zhang, G. Estimating protein complex model accuracy based on ultrafast shape recognition and deep
learning in CASP15. Proteins Struct. Funct. Bioinform. 2023, 91, 1861–1870. [CrossRef]

46. He, G.; Liu, J.; Liu, D.; Zhang, G. GraphGPSM: A global scoring model for protein structure using graph neural networks.
Briefings Bioinform. 2023, 24, bbad219. [CrossRef]

47. Liu, D.; Zhang, B.; Liu, J.; Li, H.; Song, L.; Zhang, G. Assessing protein model quality based on deep graph coupled networks
using protein language model. Briefings Bioinform. 2024, 25, bbad420. [CrossRef] [PubMed]

48. Zhang, L.; Wang, S.; Hou, J.; Si, D.; Zhu, J.; Cao, R. ComplexQA: A deep graph learning approach for protein complex structure
assessment. Briefings Bioinform. 2023, 24, bbad287. [CrossRef]

49. Morehead, A.; Liu, J.; Cheng, J. Protein Structure Accuracy Estimation using Geometry-Complete Perceptron Networks. Protein
Sci. 2024, 33, e4932. [CrossRef]

50. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
51. Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y.; et al. Graph attention networks. stat 2017, 1050, 10–48550.
52. Dwivedi, V.P.; Bresson, X. A generalization of transformer networks to graphs. arXiv 2020, arXiv:2012.09699.
53. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.u.; Polosukhin, I. Attention is All you Need.

In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Guyon, I.,
Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Brooklyn, NY,
USA, 2017; Volume 30.

54. Liu, S.; Gao, Y.; Vakser, I.A. Dockground protein–protein docking decoy set. Bioinformatics 2008, 24, 2634–2635. [CrossRef]
[PubMed]

55. Tovchigrechko, A.; Vakser, I.A. Development and testing of an automated approach to protein docking. Proteins Struct. Funct.
Bioinform. 2005, 60, 296–301. [CrossRef] [PubMed]

56. Tovchigrechko, A.; Vakser, I.A. GRAMM-X public web server for protein–protein docking. Nucleic Acids Res. 2006, 34, W310–W314.
[CrossRef] [PubMed]

57. Singh, A.; Copeland, M.M.; Kundrotas, P.J.; Vakser, I.A. GRAMM Web Server for Protein Docking. In Computational Drug
Discovery and Design; Springer: New York, NY, USA, 2023; pp. 101–112.

58. Chen, R.; Mintseris, J.; Janin, J.; Weng, Z. A protein–protein docking benchmark. Proteins Struct. Funct. Bioinform. 2003, 52, 88–91.
[CrossRef] [PubMed]

http://dx.doi.org/10.1093/bioadv/vbad011
http://dx.doi.org/10.1093/bioadv/vbad070
http://www.ncbi.nlm.nih.gov/pubmed/37351310
http://dx.doi.org/10.1093/bioinformatics/btx068
http://www.ncbi.nlm.nih.gov/pubmed/28200016
http://dx.doi.org/10.1002/prot.26609
http://www.ncbi.nlm.nih.gov/pubmed/37905971
http://dx.doi.org/10.1093/nar/gkg571
http://www.ncbi.nlm.nih.gov/pubmed/12824330
http://dx.doi.org/10.1002/prot.20264
http://www.ncbi.nlm.nih.gov/pubmed/15476259
http://dx.doi.org/10.1371/journal.pone.0161879
http://www.ncbi.nlm.nih.gov/pubmed/27560519
http://dx.doi.org/10.1038/s41598-017-09654-8
http://www.ncbi.nlm.nih.gov/pubmed/28874689
http://dx.doi.org/10.1002/prot.24172
http://dx.doi.org/10.1093/bioinformatics/btt473
http://dx.doi.org/10.1093/bioadv/vbab042
http://dx.doi.org/10.1093/bioinformatics/btac120
http://www.ncbi.nlm.nih.gov/pubmed/35199137
http://dx.doi.org/10.1109/TCBB.2023.3279019
http://www.ncbi.nlm.nih.gov/pubmed/37220029
http://dx.doi.org/10.1093/bioinformatics/btad030
http://www.ncbi.nlm.nih.gov/pubmed/36637199
http://dx.doi.org/10.1002/prot.26033
http://www.ncbi.nlm.nih.gov/pubmed/33289162
http://dx.doi.org/10.1002/prot.26564
http://dx.doi.org/10.1093/bib/bbad219
http://dx.doi.org/10.1093/bib/bbad420
http://www.ncbi.nlm.nih.gov/pubmed/38018909
http://dx.doi.org/10.1093/bib/bbad287
http://dx.doi.org/10.1002/pro.4932
http://dx.doi.org/10.1093/bioinformatics/btn497
http://www.ncbi.nlm.nih.gov/pubmed/18812365
http://dx.doi.org/10.1002/prot.20573
http://www.ncbi.nlm.nih.gov/pubmed/15981259
http://dx.doi.org/10.1093/nar/gkl206
http://www.ncbi.nlm.nih.gov/pubmed/16845016
http://dx.doi.org/10.1002/prot.10390
http://www.ncbi.nlm.nih.gov/pubmed/12784372


Biomolecules 2024, 14, 574 17 of 17

59. Vreven, T.; Moal, I.H.; Vangone, A.; Pierce, B.G.; Kastritis, P.L.; Torchala, M.; Chaleil, R.; Jiménez-García, B.; Bates, P.A.; Fernandez-
Recio, J.; et al. Updates to the integrated protein–protein interaction benchmarks: docking benchmark version 5 and affinity
benchmark version 2. J. Mol. Biol. 2015, 427, 3031–3041. [CrossRef] [PubMed]

60. Yu, J.; Guerois, R. PPI4DOCK: Large scale assessment of the use of homology models in free docking over more than 1000 realistic
targets. Bioinformatics 2016, 32, 3760–3767. [CrossRef]

61. Pierce, B.G.; Wiehe, K.; Hwang, H.; Kim, B.H.; Vreven, T.; Weng, Z. ZDOCK server: Interactive docking prediction of protein–
protein complexes and symmetric multimers. Bioinformatics 2014, 30, 1771–1773. [CrossRef]

62. Lensink, M.F.; Wodak, S.J. Score_set: A CAPRI benchmark for scoring protein complexes. Proteins Struct. Funct. Bioinform. 2014,
82, 3163–3169. [CrossRef]

63. Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.;
et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373, 871–876.
[CrossRef] [PubMed]

64. Bryant, P.; Pozzati, G.; Elofsson, A. Improved prediction of protein-protein interactions using AlphaFold2. Nat. Commun. 2022,
13, 1265. [CrossRef] [PubMed]

65. Gabb, H.A.; Jackson, R.M.; Sternberg, M.J. Modelling protein docking using shape complementarity, electrostatics and biochemical
information. J. Mol. Biol. 1997, 272, 106–120. [CrossRef] [PubMed]

66. Huang, X.; Pearce, R.; Zhang, Y. FASPR: An open-source tool for fast and accurate protein side-chain packing. Bioinformatics 2020,
36, 3758–3765. [CrossRef] [PubMed]

67. Han, Y.; He, F.; Chen, Y.; Qin, W.; Yu, H.; Xu, D. Quality assessment of protein docking models based on graph neural network.
Front. Bioinform. 2021, 1, 693211. [CrossRef] [PubMed]
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