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Abstract: Despite the extensive research conducted on Alzheimer’s disease (AD) over the years,
no effective drug for AD treatment has been found. Therefore, the development of new drugs for
the treatment of AD is of the utmost importance. We recently reported the proteolytic activities of
JAL-TA9 (YKGSGFRMI) and ANA-TA9 (SKGQAYRMA), synthetic peptides of nine amino acids
each, derived from the Box A region of Tob1 and ANA/BTG3 proteins, respectively. Furthermore,
two components of ANA-TA9, ANA-YA4 (YRMI) at the C-terminus end and ANA-SA5 (SKGQA) at
the N-terminus end of ANA-TA9, exhibited proteolytic activity against amyloid-β (Aβ) fragment
peptides. In this study, we identified the active center of ANA-SA5 using AEBSF, a serine protease
inhibitor, and a peptide in which the Ser residue of ANA-SA5 was replaced with Leu. In addition,
we demonstrate the proteolytic activity of ANA-SA5 against the soluble form Aβ42 (a-Aβ42) and
solid insoluble form s-Aβ42. Furthermore, ANA-SA5 was not cytotoxic to A549 cells. These results
indicate that ANA-SA5 is a promising Catalytide and a potential candidate for the development of
new peptide drugs targeting Aβ42 for AD treatment.

Keywords: Catalytide; proteolytic peptide; ANA-SA5; ANA-TA9; JAL-TA9; Alzheimer’s disease;
amyloid-β; neurodegenerative disease; peptide drug; serine proteases

1. Introduction

Our previous studies on a short hydrolytic peptide named Catalytide present an
attractive possibility for the development of new strategic drugs for the treatment of
Alzheimer’s disease (AD) [1–7].

AD is the most prevalent age-related neurodegenerative disorder globally, and the use
of an effective drug over a long period of time is required. Despite many studies targeting
amyloid-β (Aβ) 42 degradation, clearance, inhibition of aggregation, or oligomerization,
all strategies have failed in the clinical setting [8–11]. Thus, it is not certain whether the Aβ

cascade is the main cause of AD. Recently, the antibody drugs lecanemab and aducanumab
have been recognized as effective AD drugs, giving great hope to patients with AD [12].
The main disadvantages of antibody drugs are the side effects, which are thought to be
caused by the deposition of Aβ removed by anti-amyloid antibodies in the blood and
lymphatic vessels [13–15]. Thus, new strategies are required.
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In our previous work, we reported the discovery of a novel hydrolase peptide, JAL-
TA9, consisting of nine amino acids derived from the Box A region of Tob1. Its proteolytic
activity was inhibited by 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF),
a serine protease inhibitor [5]. We named this proteolytic peptide a Catalytide (catalytic
peptide), and, to our knowledge, this is the first report of a hydrolase peptide. Surprisingly,
JAL-TA9 showed proteolytic activity and cleaved Aβ42 [3]. The Tob/BTG family of proteins
is involved in the cell cycle and the regulation of a variety of cells, such as T lymphocytes,
fibroblasts, epithelial cells, and germ cells [16–20], and contains three highly conserved
regions, Box A, Box B, and Box C, at the N-terminus. Despite numerous reports on the
Tob/BTG family proteins, the functions of these three regions are not well-understood.
Therefore, we investigated the proteolytic activity of ANA-TA9 (SKGQAYRMI) derived
from the ANA/BTG3 protein [6]. This peptide cleaved three types of Aβ fragment peptides,
Aβ1—20, Aβ11—29, and Aβ28—42. Aβ11—29 is the fragment peptide derived from the
central region, thought to be the core region for the aggregation and oligomerization of
Aβ42. ANA-TA9 also cleaved not only the authentic soluble form Aβ42 (a-Aβ42) but also
the solid insoluble form Aβ42 (s-Aβ42) at many cleavage sites, especially in their central
regions in a similar way to JAL-TA9 [3,21]. Therefore, we concluded that ANA-TA9 is a
Catalytide similar to JAL-TA9.

An analysis of the autoproteolytic activity of ANA-TA9 using high-performance
liquid chromatography (HPLC) every hour for eight hours of incubation showed that
the chromatogram pattern changed continuously, even after ANA-TA9 disappeared due
to autolysis (Figure 1a). These results suggest that the C-terminal peptide fragment of
ANA-TA9 (ANA-YA4; YRMI), which appeared because of the autolysis of ANA-TA9 and
was subsequently reduced, may have proteolytic activity (Figure 1a). On the other hand,
it has been found that the active center of ANA-TA9 is the N-terminal Ser. These results
suggested that not only ANA-YA4 but also ANA-SA5 containing N-terminal Ser may have
proteolytic activity. Therefore, we synthesized ANA-YA4 and its N-terminus, SKGQA
(ANA-SA5), and evaluated their proteolytic activity (Figure 1b). Both peptide fragments
YRMI and SKGQA cleaved Aβ1—20, Aβ11—29, and Aβ28—42 fragment peptides of Aβ42,
similar to ANA-TA9. In addition, kinetic parameters showed that, among ANA-TA9, ANA-
SA5, and ANA-YA4, ANA-SA5 has the highest affinity for Aβ11—29, which is known to
form β-sheets and contains the regions essential for the oligomerization and aggregation of
Aβ42 [6]. These data suggest that ANA-SA5 is a better seed peptide for AD treatment.
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Figure 1. Time-dependence analysis of autoproteolytic activity of ANA-TA9. (a) The reaction mixture
was analyzed on an analytical HPLC, and peak height was plotted at an absorbance of 220 nm.
(b) Sequences of ANA-TA9, ANA-SA5, and ANA-YA4.

The absorption, disposition, and brain delivery of Catalytides should be determined
for their clinical application in the treatment of AD. Previously, we revealed that ANA-TA9
is directly delivered to the brain via the olfactory system by nasal administration [7]. It has
been reported that the lower the membrane permeability, the higher the amount transferred
to the olfactory bulb-trigeminal nerve, and the higher the efficiency of delivery to the brain
during nasal administration [22]. Generally, membrane permeability is largely influenced
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by the degree of hydrophobicity of a substance, and highly hydrophilic substances have a
low membrane permeability. Therefore, the hydrophobicity of ANA-TA9, ANA-SA5, and
ANA-YA4 was calculated using the grand averages of the hydropathicity parameters. As a
result, ANA-TA9, ANA-SA5, and ANA-YA4 were −0.689, 0.15, and −1.360, respectively.
Therefore, we predicted that ANA-SA5 has the highest transferability to the brain. Based
on these findings, ANA-SA5 is considered an appropriate candidate for clinical use in
AD therapy.

Here, we investigated the potential of ANA-SA5 as a therapeutic agent for AD. In this
study, we identified the active center of ANA-SA5 using structural analysis, in addition to
studies using inhibitors and mutants with amino acid substitutions. Next, we identified
the proteolytic activity of ANA-SA5 against both a-Aβ42 and s-Aβ42.

2. Materials and Methods
2.1. Preparation of Peptides

Peptides were synthesized based on our prior work, utilizing Fmoc-protected L-amino
acid derivatives and an automated peptide synthesizer (model 433A, Applied Biosystems,
Waltham, MA, USA., 0.1 mmol scale with preloaded resin) [5]. Following deprotection
according to the manufacturer’s instructions, purification was carried out using reversed-
phase HPLC (Capcell Pak C18 column, SG, 10 or 15 mm i.d. × 250 mm; Shiseido Co.,
Ltd., Tokyo, Japan) with a linear elution gradient from 0.1% trifluoro acetic acid (TFA) to
50% or 70% CH3CN containing 0.1% TFA over 30 min or an isocratic mode by using 0.1%
TFA (ANA-SA5). The flow rate was set at 3 or 6 mL/min. Principal peak fractions were
collected and subjected to lyophilization. The purity of the synthetic peptides and the
progress of the enzymatic reaction were confirmed by analytical reversed-phase HPLC
(Capcell Pak C18 column, MGII, 4.6 mm i.d. × 150 mm; Shiseido Co., Ltd., Tokyo, Japan) at
a flow rate of 1.0 mL/min with a linear elution gradient from 0.1% TFA to 70% CH3CN
containing 0.1% TFA. The column eluate was monitored using a photodiode array detector
(SPD-M20A; Shimadzu, Kyoto, Japan). ANA-SA5 and Aβ11-29 exhibited retention times of
3.5 min and 10.6 min, respectively, on the analytical HPLC. Conversely, the solid type of
Aβ42 (s-Aβ42) was obtained as a slightly brownish solid material post-lyophilization and
remained insoluble in CH3CN, CH3OH, CH3COOH, and DMSO. Hence, this solid material
was denoted as solid Aβ42 (s-Aβ42) after repetitive washing with CH3CN and CH3OH [3].
After ANA-SA5 and Aβ11-29 were purified, they were characterized via ESI-Mass (MS)
utilizing a Qstar Elite Hybrid LC-MS/MS system (Applied Biosystems Inc., Waltham, MA,
USA) (Figure S1). Authentic Aβ42 (a-Aβ42) was purchased from the peptide institute
(Osaka, Japan).

2.2. Analysis of Proteolytic Activity and Determination of Cleavage Sites

We conducted a detailed analysis of the proteolytic activity of ANA-SA5 and the
determination of its cleavage sites as described previously [6]. In brief, ANA-SA5 was
incubated individually with or without a-Aβ42 (final concentration 0.05 mM), s-Aβ42 (final
concentration 0.05 mM), or Aβ11—29 (final concentration 0.05 mM) in the presence of
human serum albumin (HSA) at a final concentration of 0.025% w/v in PBS (pH 7.4) at
37 ◦C. Immediately before use, Aβ11—29 and a-Aβ42 were dissolved in MilliQ water to
1 mM and in DMSO to 5 mM, respectively. In the case of s-Aβ42, since it did not dissolve in
the solvent, the reaction was carried out in the buffer solution in solid form. A 10 µL aliquot
of the reaction mixture was subjected to time-dependent analysis using the analytical HPLC
system described above. A portion of the reaction mixture (20 µL for a-Aβ42 and Aβ11—29;
40 µL for s-Aβ42) was injected into the analytical HPLC system to determine the cleavage
site. The peak fractions were monitored at 220 nm and collected into microtubes. Following
lyophilization, an appropriate volume of 36% CH3CN containing 0.1% HCOOH was added
based on the chromatographic peak height, and the mixture was stirred using an automatic
mixer. The cleavage sites were determined by ESI-MS using a flow injection method with
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70% CH3CN and 0.1% HCOOH on a QStar Hybrid LC-MS/MS system. The flow rate was
set at 0.1 mL/min.

The effects of AEBSF, a serine protease inhibitor, on the proteolytic activity of ANA-
SA5 were analyzed in the same manner using 60 mM of AEBSF.

2.3. Cell Experiments

Cisplatin (CDDP), WST-8 (Cell Counting Kit-8), and the FLAG peptide (DYKDDDDK)
were sourced from FUJIFILM Wako Pure Chemical Corporation, Dojindo Laboratories, and
Sigma-Aldrich, respectively. The human lung cancer cell line A549 was obtained from Riken
Cell Bank (Ibaraki, Japan). Briefly, A549 cells were exposed to 0.2 mM ANA-SA5, 0.2 mM
FLAG peptide, and 4 µM CDDP under the same conditions described previously [21].
After a 72 h incubation, the medium was replaced with 110 µL containing WST-8 reagent
(10 µL WST-8 reagent and 100 µL DMEM). The cells were further incubated for 1 h, and
absorbance was determined at 450 nm with a reference wavelength of 620 nm using a
Spectra Max Plus 384 microplate reader (Molecular Devices, Sunnyvale, CA, USA).

2.4. Stereo-Structure Analysis

The stereo-structure of ANA-SA5 was examined in a manner consistent with the
methodologies outlined in our prior publications [1,5,6]. We utilized the CSC Chem3D
UltraTM software (version 17.0., PerkinElmer, Waltham, MA, USA) for computer modeling
of ANA-SA5. The solvent radius was set to 1.4 Å, corresponding to the value for water.
The initial conditions for the structure of ANA-SA5 involved setting all peptide bonds
and dihedral angles to 180◦, after which the six atoms constituting the peptide bond were
aligned on a single plane, and the bond lengths were established. Subsequent calculations
were performed using structural optimization and energy minimization by MM2 and
MMFF94 parameters, which include bond length, bond angles, dihedral angles, dipole
moments, and van der Waals values [1,5].

3. Results
3.1. Identification of the Active Center of ANA-SA5

We previously reported that ANA-SA5 derived from ANA-TA9 cleaved Aβ11—29,
which contains the core sequence for Aβ42 aggregation. In ANA-TA9, Ser, Arg, and
carboxyl groups have been identified as being involved in its activity. However, the
amino acids involved in the activity of ANA-SA5 have not yet been identified. First, we
investigated whether ANA-SA5 is inhibited by AEBSF, a serine protease inhibitor that
inhibits ANA-TA9 activity. A reaction mixture of ANA-SA5 (final concentration 0.2 mM)
and Aβ11—29 (final concentration 0.05 mM) was incubated with HSA in PBS (pH 7.4)
at 37 ◦C in the presence or absence of AEBSF. The reaction mixture was loaded onto
an analytical HPLC system. In the absence of AEBSF, several peaks were observed on
the chromatogram after 1 day of incubation. Furthermore, an analysis of the peaks that
appeared on the chromatogram using mass spectrometry (MS) revealed that ANA-SA5
cleaved Aβ11—29 with 10 cleavage sites (Figure 2a,d). In the presence of AEBSF, both
ANA-SA5 and Aβ11—29 were initially identified as a single peak for each (Figure 2b).
After one day of incubation, all peaks observed in the chromatogram were collected for
MS analysis (Figure 2c). Five peaks (β1–β5) were identified as fragment peptides derived
from Aβ11—29, and the cleavage sites were summarized (Table 1 and Figure 2d). It was
revealed that the number of cleavage sites on Aβ11—29 by ANA-SA5 decreased to 5. These
results revealed that AEBSF inhibited ANA-SA5 activity, but not completely. The specific
inhibition mechanism of AEBSF is the sulfonylation of the serine residue at the active center
of the serine protease. Based on MS analysis, the molecular weights of the peak marked by
C were identified as 637.28 Da (Figure 2b; lower). This molecular weight was the same as
the predicted molecular weight when AEBSF was combined with ANA-SA5.
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Figure 2. Inhibitory effect of AEBSF on the proteolytic activity of ANA-SA5. Aβ11—29 (50 µM)
was incubated with ANA-SA5 (200 µM) in PBS at 37 ◦C with or without AEBSF. (a) Chromatogram
of Aβ11—29 co-incubated with ANA-SA5. The peaks marked with a blue star (*) were peaks
corresponding to fragment peptide of Aβ11—29. (b) Chromatogram of Aβ11—29 co-incubated with
ANA-SA5 in the presence of AEBSF. The peaks marked with a red star (*) are not peptides. For both
(a) and (b), ten microliters of the reaction mixture were injected into the analytical HPLC system.
The upper figure represents the results at day 0, and the lower figure represents the results at day
1. (c) Five peak fractions were identified as peptide fragments derived from Aβ11—29. Twenty
microliters of the reaction mixture were injected into the analytical HPLC system. (d) Cleavage sites
on Aβ11—29 by ANA-SA5 (▼ in the absence of AEBSF; ▲ in the presence of AEBSF).

Table 1. Fragment peptides derived from Aβ11—29 cleaved by ANA-SA5 in the presence of AEBSF.
Cleavage sites were determined using a Qstar Hybrid LC-MS/MS system (ABI).

Peak Fragment Calculated Mass Observed Mass

β1
DVGSNKG 676.3260 676.3221

GSNKG 461.2307 461.2234
β2 EDVGSNKG 805.3686 805.3601
β3 EVHHQKL 890.4842 890.5015
β4 FAEDVGSNKG 1023.4741 1023.4890
β5 EVHHQKLVFFAE 1482.76 1482.7860

Because MS analysis showed that the molecular weights of the peaks marked with an
asterisk (*) did not correspond to amino acids or peptides, it was thought that they might
be a byproduct of AEBSF. To confirm the binding site of AEBSF to ANA-SA5, peak C in
the chromatogram shown in Figure 2 was used for MS/MS analysis (Figure 3). Using the
reading method from the C-terminus (indicated by b), a molecular weight of 398.1536 Da
was observed for b2. In addition, in the N-terminus reading method (indicated by y), a
precursor ion of 673.2831 Da was observed at y5 and 275.1360 Da, the molecular weight of
GQA, was observed at y3, with a difference of 398.15. The molecular weight of the AEBSF
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bound to SK (398.15) was determined using both methods. Furthermore, the molecular
weight of AEBSF bound to S (288.06) was also identified. These results showed that the
conjugated position of AEBSF was determined on the OH group of Ser residue at the
N-terminus end of ANA-SA5 (Figure 3).
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Figure 3. MS/MS analysis of the ANA-SA5 and AEBSF complex. The complex of AEBSF and the
serine residue of ANA-SA5 was identified with a molecular weight of 288.0568. The production
obtained by fragmenting the precursor ion 673.28 by collision-induced dissociation was read. The
reading method from the C-terminus is described as b, and the reading method from the N-terminus
is described as y.

This suggested that Ser plays an important role in the proteolytic activity of ANA-
SA5. Therefore, we investigated whether the activity of ANA-SA5 could be abolished
by replacing Ser (S) with Leu (L), an amino acid without a hydroxyl group. A reaction
mixture of ANA-SA5 S/L (final concentration 0.2 mM) in which Ser was replaced with Leu
and Aβ11—29 (final concentration 0.05 mM) was incubated with HSA in PBS (pH 7.4) at
37 ◦C and analyzed using HPLC on days 0 and 3. The chromatograms had no significant
differences between days 0 and 3 (Figure 4). These results revealed that the proteolytic
activity of ANA-SA5 ceased with substituting the Ser residue with Leu.
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Figure 4. Evaluation of the proteolytic activity of ANA-SA5 S/L. Aβ11—29 (50 µM) was incubated
with ANA-SA5 S/L (200 µM) in PBS at 37 ◦C. Ten µL of the reaction mixture was injected into the
analytical HPLC system.

Generally, a catalytic triad is necessary for an enzyme to function as a serine protease,
with the active center and an oxyanion hole to stabilize binding to the substrate [23].
According to our previous reports, the stereo structure of ANA-SA5 was estimated by
molecular dynamics simulations using the MM2 and MMFF94 parameters [1]. As a result,
the distances between Ser (-OH) and the N-terminus (-NH2) and between Ala (-COOH)
and the N-terminus (-NH2) were 2.26 Å and 2.03 Å, respectively (Table 2). This indicated
that the catalytic triad of ANA-SA5 was formed by the carbonyl oxygen at the C-terminus
(-COOH), base at the N-terminus (-NH2), and hydroxyl group of serine (Ser) (Figure 5a).
As the main NH chains of Lys and side chains (-NH2) of Lys are on the same plane, it is
thought that they form an oxyanion hole, as shown in Figure 5b.

Table 2. The distances of amino acids forming catalytic triad by structural analysis.

Length (Å)

Ser (-OH)-Ser(-NH2) 2.26
Ala (-COOH)-Ser(NH2) 2.03
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These data indicate that ANA-SA5 possesses serine-protease-like activity, like ANA-
TA9 [6,21].

3.2. Proteolysis of Authentic Soluble Form Aβ42 (a-Aβ42) by ANA-SA5

Next, we examined the proteolytic activity of ANA-SA5 against a-Aβ42 as previously
reported [3,21]. The reaction mixture of ANA-SA5 and a-Aβ42 was analyzed for up to
7 days (Figure S2). Initially, ANA-SA5, a-Aβ42, and HSA were eluted at 3.5, 12.8, and
13.5 min, respectively (Figure 6a). On day 1, small peaks appeared at approximately
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8 min. Interestingly, the chromatogram patterns, especially the comparative heights of the
individual peaks, changed up to day 7. Thus, all peaks (β1–15) on day 7 were collected and
analyzed by MS (Figure 6b). As a result, 24 types of peptides, including a-Aβ42 and one
amino acid, were identified as fragment peptides derived from Aβ42 (Table 3). No peptide
fragments derived from HSA were identified by HPLC or MS analyses. With a-Aβ42 alone,
no fragment peptide was identified. These results indicate that ANA-SA5 cleaves a-Aβ42,
but not HSA like ANA-TA9.
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3.3. Proteolysis of Solid Form Aβ42 (s-Aβ42) by ANA-SA5 

Figure 6. Cleavage reaction of the authentic soluble form Aβ42 (a-Aβ42) by ANA-SA5. Aβ42, with
a final concentration of 0.05 mM, was incubated with HSA (final concentration: 0.025% w/v) in
phosphate-buffered saline at 37 ◦C in the presence of ANA-SA5 (final concentration 0.2 mM). Initially,
10 µL of the reaction mixture was analyzed using analytical HPLC (a). After 7 days, 20 µL of the
reaction mixture was injected, and all new peaks were collected (b).

Table 3. Mass spectrometry (MS) analysis of the reaction mixture of a-Aβ42 and ANA-SA5.

Peak Fragment Calculated Mass Observed Mass

β1
AEDVGSNKG 876.4057 876.4001

AEDVG 490.2143 490.2314
β2 AEDVGSNKGA 947.4428 947.4432

β3
HQKL 525.3143 525.3073
YEVH 547.2511 547.2429

F 166.0862 166.0736
β4 DAEFRH 774.3529 774.3491

β5
DSGYEVH 806.3315 806.3282
SGYEVH 691.3046 691.3023
GYEVH 604.2725 604.2654

β6 DAEFR 637.2940 637.2875

β7
HQKLV 624.3827 624.3879

FAEDVGSNKGA 1094.5112 1094.5014

β8
GGVVIA 515.3187 515.3027
GVVIA 458.2973 458.2883

FFAEDVGSNKGA 1241.5796 1241.5872

β9
FFAE 513.2343 513.2232

VHHQ 520.2626 520.3233
β10 HQKLVF 771.4512 771.4414
β11 AIIG 373.2445 373.2334

β12
VFFA 483.2602 483.2494

AEDVGSNKGAIIGLM 1474.7570 1474.7415

β13
AIIGLM 617.3691 617.3527

HQKLVFF 918.5196 918.5002
β14 IIGLM 546.3320 546.3109
β15 Aβ42 4512.2768 4512.2800

3.3. Proteolysis of Solid Form Aβ42 (s-Aβ42) by ANA-SA5

Before analyzing the proteolysis of s-Aβ42, we confirmed the purity and stability
of a slightly brownish solid material, referred to as s-Aβ42, obtained after lyophilization
(Figure 7a), which was insoluble in CH3CN, CH3OH, CH3COOH, and DMSO. After
continuously washing with CH3CN and CH3OH to remove the amino-acid-protecting
groups and other by-products, s-Aβ42 was incubated alone in PBS (pH 7.4) in the presence
of HSA at 37 ◦C. The reaction mixtures were analyzed in the same manner as a-Aβ42
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described above. s-Aβ42 was not initially identified, indicating that s-Aβ42 was not soluble
in the reaction buffer (Figure 7a). However, the chromatograms changed continuously for
up to 7 days (Figure S3a). Thus, all the new peaks (b1–b3) that appeared on day 7 were
collected and subjected to MS analysis (Figure 7b). Four peptides, GGVVIA, VVIA, GVVIA,
and VGGVVIA, were identified from three peak fractions as analogous peptides derived
from the C-terminus of Aβ42 (Table 4). These peptides are considered side products of
Aβ42 synthesis because they contain Ala residues at their C-termini [3,21]. In addition, the
appearance of s-Aβ42 did not change in the absence of ANA-SA5 during seven days of
incubation, indicating that s-Aβ42 was not cleaved in the reaction buffer.
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Figure 7. Cleavage reaction of solid form Aβ42 (s-Aβ42). s-Aβ42 (0.3 mg) was incubated with HSA
(final concentration: 0.025% w/v) in PBS at 37 ◦C. (a) Initially, 10 µL of the reaction mixture was
analyzed using an analytical HPLC system and a photograph of s-Aβ42. (b) After 7 days, 40 µL of
the reaction mixture was injected, and all new peaks were collected and analyzed using the analytical
HPLC system, and a photograph of s-Aβ42 was obtained.

Table 4. MS analyses of the reaction mixture of s-Aβ42.

Peak Fragment Calculated Mass Observed Mass

b1
GGVVIA 515.3187 515.4486

VVIA 401.2758 401.3619
b2 GVVIA 458.2973 458.4021
b3 VGGVVIA 614.3871 614.5443

Next, we examined the proteolytic activity of ANA-SA5 on s-Aβ42. Initially, ANA-SA5
and HSA were identified; however, several peaks appeared in the chromatogram on day 1.
The heights of the new peaks increased in a time-dependent manner (Figure S3b). Thus, we
collected all appearing peaks (S1 and β1–17) on day 7 (Figure 8), and 19 peptides, including
GGVVIA, identified in the reaction mixture of s-Aβ42 alone, were identified as fragments
derived from s-Aβ42 (Table 5). Based on the MS analysis, we determined the cleavage sites
on a-Aβ42 and s-Aβ42 using ANA-SA5 (Figure 9). These data indicated that ANA-SA5
can cleave s-Aβ42, which is thought to be similar to the senile plaques. This implied that
ANA-SA5, ANA-TA9, and JAL-TA9 could potentially be useful for the treatment of AD.
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Figure 8. Cleavage reaction of the solid form Aβ42 (s-Aβ42) by ANA-SA5. s-Aβ42 (0.3 mg) was
incubated with HSA (final concentration 0.025% w/v) in phosphate-buffered saline at 37 ◦C with
ANA-SA5 (final concentration 1.0 mM). (a) Initially, 10 µL of the reaction mixture was analyzed using
the analytical HPLC system and a photograph of s-Aβ42. (b) After 7 days, 40 µL of the reaction
mixture was injected, and all the new peaks were collected and analyzed by MS, and a photograph of
s-Aβ42 was obtained.

Table 5. MS analyses of the reaction mixture of s-Aβ42 and ANA-SA5.

Peak Fragment Calculated Mass Observed Mass

S1 SKGQA 490.2620 490.2721
β1 QK 275.1714 275.1445
β2 SGYE 455.1772 455.0973
β3 R 175.1189 175.1210
β4 IIGLM 546.3320 546.3343

β5
GAII or AIIG 373.2445 373.2331

AII 316.2231 316.2004
β6 EFRH 588.2888 588.3154
β7 KGAIIG 558.3609 558.3452
β8 GGVVIA 515.3187 515.3301
β9 VGSNKGAIIG 915.5258 914.6014

β10
YEVHHQKL 1053.5476 1053.5873
FAEDVGSNK 966.4527 966.5642

β11 VFF 412.2231 412.2643
β12 KGAIIGL 671.4450 671.4257
β13 FRH 459.2463 459.2905
β14 KGAIIGLM 802.4855 802.4546
β15 FFAEDVG 784.3512 784.5042
β16 LMVGGVVI 787.4746 787.4581

β17
EVHHQKLVFFAED 1598.7961 1598.9801
NKGAIIGLMVGGV 1228.7082 1228.7654
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3.4. Effect of ANA-SA5 on the Growth of A549 Cells

Cytotoxicity is one of the most important events in clinical settings. Therefore, the
cytotoxicity of ANA-SA5 was evaluated using A549 cells, which are one of the cells that
can be used for drug metabolism research. ANA-SA5 (0.2 mM) did not show a significant
inhibitory effect on the growth of A549 cells compared to the FLAG peptide, which was
used as a peptide control. In contrast, the chemotherapeutic agent CDDP, which was used
as the positive control, inhibited the growth of A549 cells (Figure 10).
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4. Discussion

In this study, we found that a 5-mer peptide, ANA-SA5, cleaves both a-Aβ42 and
s-Aβ42 by serine-protease-like activity. In both cases, ANA-SA5 cleaved at numerous
positions on s-Aβ42 and a-Aβ42 that were different from each other (Figure 9). Previous
reports examining the cytotoxicity of fragment peptides of various lengths derived from
Aβ42 have reported that Aβ25—35, Aβ1—36, 1—39, and 1—42 are cytotoxic fragment
peptides. Other fragments from the N-terminus and middle region have been shown not to
exhibit cytotoxicity [24]. In this study, it was revealed that ANA-SA5 cleaved Aβ42, and
the cleaved fragment peptides do not contain fragment peptides that have been reported to
be cytotoxic. This suggests that the Aβ42 fragment peptide cleaved by ANA-TA9 does not
exhibit cytotoxicity.

The specificity of this cleavage site has not been determined. It is generally believed
that enzymes exhibit cleavage site specificity. Chymotrypsin, a representative proteolytic en-
zyme, hydrolyzes peptides at the carboxyl groups of aromatic amino acids. Chymotrypsin
contains a hydrophobic pocket as a substrate-binding site. An aromatic amino acid, which
is highly hydrophobic, binds to the hydrophobic pocket, and its carboxy group approaches
the active center of chymotrypsin, causing its degradation [23]. Cleavage site specificity is
believed to occur because of this mechanism. This was also true for other enzymes, and the
specificity of the cleavage point was determined by the substrate-binding site. However,
ANA-SA5, composed of five amino acid residues, is a very small molecule that lacks a
substrate-binding site, similar to the enzymes mentioned above. This is thought to be why
it did not exhibit any cut-point characteristics. This indicates that the Catalytides are very
different from the lock-and-key relationships expressed by the common enzymes.

We assumed that the difference in the cleavage sites of ANA-SA5 for s-Aβ42 and a-
Aβ42 is due to the interaction with the substrate and the substrate stereochemistry and can
change depending on the stereo-structure of Aβ42. However, the mechanism underlying
the hydrolytic activity remains unclear. We further hypothesized that the compact structure
of ANA-SA5 allows it to invade the inner space of aggregated/oligomerized substrates
and cleave them.

The hydrolytic activity mechanism of ANA-SA5 was elucidated through structural
analysis, utilizing the MM2 and MMFF94 parameters. These findings led us to propose
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a cleavage mechanism for ANA-SA5 (Figure 11). Initially, the nitrogen atom at the N-
terminus extracts a proton from the hydroxyl group of serine, forming an oxyanion. This
oxyanion, acting as a nucleophile, proceeds to attack the peptide bonds of the substrate.
Following this, the N-terminus (-NH2) donates a proton to the nitrogen of the amide
substrate. Lastly, water attacks the ester bond between the substrate and Ser (Figure 11).
This proposed mechanism is consistent with the well-established chemical process of serine
protease catalysis [23].
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For clinical use, two important events must be clarified. The first are side effects,
including the toxicity or cleavage of enzymes against various major proteins. In this study,
ANA-SA5 did not show any effect on the growth of A549 cells (Figure 10), similar to that
of JAL-TA9 and ANA-TA9 cells. In addition, we reported that two types of Catalytides,
JAL-TA9 and ANA-TA9, did not show proteolytic activity against five proteins: γ-globulin,
rabbit immunoglobulin G, cytochrome C, and lysozyme, as well as HSA [6]. ANA-SA5 is
a component of ANA-TA9, and the proteolytic properties of ANA-SA5 are like those of
ANA-TA9 and JAL-TA9, suggesting that ANA-SA5 does not cleave these native proteins
and is non-toxic [3,5,6,21].

Second, basic information regarding the pharmacokinetics of ANA-SA5, such as
its stability, degradation, absorption, and brain delivery, is important. Recently, it has
become widely accepted that peptides and proteins can be transported to the central
nervous system directly from the nose [25–32] because of several advantages over oral or
intraperitoneal administration, including the non-invasiveness, self-administration, shorter
onset time of the effect, and higher bioavailability, owing to the avoidance of hepatic first-
pass metabolism. Moreover, intranasal drug administration has gained increasing interest
as an application site for drugs, particularly peptides, for systemic delivery. Recently, we
revealed that ANA-TA9 could be delivered to the brain via nasal administration [7]. Based
on these data, we expect that ANA-SA5 can be efficiently delivered to the brain via nasal
administration, similar to ANA-TA9, compared to other routes.

5. Conclusions

This study demonstrated that ANA-SA5, the analogous 5-mer peptide of ANA-TA9
derived from the Box A region of the ANA/BTG3 protein, cleaves both a-Aβ42 and s-Aβ42
with serine-protease-like activity, which is similar to the proteolytic activity of ANA-TA9
and JAL-TA9. We should examine whether Aβ42 fragment peptides which are generated
by ANA-SA5 from Aβ42 showed cytotoxicity or not in the future. Even with this limitation,
we concluded that ANA-SA5 is an attractive candidate for clinical use in AD treatment and
prevention, as well as ANA-TA9 and JAL-TA9, previously identified as Catalytides.

6. Patents

T. Yamamoto and T. Akizawa, 2016, NOVEL HYDROLASE-LIKE PEPTIDE AND
ITSUSE, US62/275,599.
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