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Abstract: Satellite sea surface temperature (SST) images are valuable for various oceanic applications,
including climate monitoring, ocean modeling, and marine ecology. However, cloud cover often
obscures SST signals, creating gaps in the data that reduce resolution and hinder spatiotemporal anal-
ysis, particularly in the waters near Taiwan. Thus, gap-filling methods are crucial for reconstructing
missing SST values to provide continuous and consistent data. This study introduces a gap-filling
approach using the Double U-Net, a deep neural network model, pretrained on a diverse dataset
of Level-4 SST images. These gap-free products are generated by blending satellite observations
with numerical models and in situ measurements. The Double U-Net model excels in capturing SST
dynamics and detailed spatial patterns, offering sharper representations of ocean current-induced
SST patterns than the interpolated outputs of Data Interpolating Empirical Orthogonal Functions
(DINEOFs). Comparative analysis with buoy observations shows the Double U-Net model’s en-
hanced accuracy, with better correlation results and lower error values across most study areas. By
analyzing SST at five key locations near Taiwan, the research highlights the Double U-Net’s potential
for high-resolution SST reconstruction, thus enhancing our understanding of ocean temperature
dynamics. Based on this method, we can combine more high-resolution satellite data in the future to
improve the data-filling model and apply it to marine geographic information science.

Keywords: sea surface temperature; Himawari satellite; gap-filling; U-Nets; leveraging transfer learning

1. Introduction

The ocean, as a major component of Earth’s surface, profoundly impacts the climate
system, ecological balance, and global environmental changes. In the current Earth system
science research, acquiring and calculating spatial data parameters in oceanography is
particularly crucial. Among these, the sea surface temperature (SST) dataset serves as
a fundamental indicator of oceanic heat content, measured by microwave or infrared
wavelengths in the electromagnetic spectrum [1,2]. Variations in SST play a key role in
the exchange of energy and moisture between the atmosphere and the ocean [3,4]. SST
databases, established using geospatial artificial intelligence computations, are vital for
accurately monitoring SST changes to understand and predict the dynamics of climate
change, oceanic processes [3], and the overall health of the marine ecosystem [5–8]. With
the advent of satellite technology, satellite-derived SST data have become an essential
resource for studying global oceanic and atmospheric phenomena. Microwave sensors can
observe seawater despite having lower spatial resolution, as they can penetrate clouds, fog,
and dust in almost all situations except during the heaviest rainfall [9–11]. Infrared sensors
provide higher-resolution SST observations, but their inability to penetrate cloud cover
leads to data interruptions and gaps, as the sensors cannot effectively capture SST values
obscured by clouds [12–16]. These data gaps can lead to inconsistencies in SST records,
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affecting our ability to detect trends, limit cloud radiation feedback, and pose challenges
in the precise analysis and modeling of oceanic and atmospheric processes [17]. Gaps in
SST data have significant impacts on weather forecasting, climate research, and marine
ecosystem management [1,18]. Complete SST data coverage is crucial for comprehensive
analyses of long-term climate trends, detecting anomalies, and assessing the impacts of
climate change on marine ecosystems [19,20]. Therefore, filling these data gaps is necessary
for the successful use and analysis of the data.

Traditional spatial data modeling and geostatistical interpolation techniques have his-
torically been employed to address data gaps in satellite-based marine observations [21–24].
Early efforts in this field included the development of Optimum Interpolation (OI), Empir-
ical Orthogonal Functions (EOFs), and the Expectation Maximization (EM) method [25],
which aimed to mitigate the limitations of available data. One of the most widely recog-
nized and effective methods for filling data gaps in oceanographic datasets is the Data
Interpolating Empirical Orthogonal Functions (DINEOFs) method, proposed by Beckers
and Rixen in 2003 [26]. The DINEOFs method, which utilizes EOFs, has demonstrated
significant efficiency improvements, achieving speeds approximately 30 times faster than
Optimum Interpolation (OI) [26]. It has been extensively applied and tested in various
studies, facilitating the interpolation of single or multiple related marine variables [27,28].
Given its proven performance and widespread acceptance, DINEOFs serves as a valuable
benchmark for evaluating the effectiveness of our proposed approach.

While statistical and machine learning methods, such as Self-Organizing Maps (SOMs) [29],
Random Forests [30,31], and Multilayer Perceptrons [32], have been proposed for estimating
data under cloud-covered pixels, they may have limitations in capturing the intricate spatial
patterns and complex physical processes that drive SST dynamics [33–36]. These methods
can struggle with prolonged data gaps, as accurately identifying oscillations and cycles
becomes challenging [34]. Additionally, they may not fully account for the interactions
among various factors affecting temperature changes, such as ocean currents, atmospheric
circulation, and solar radiation [35].

Currently, advancements in deep machine learning methods have brought deep learn-
ing techniques to the forefront of filling data gaps. Barth et al. (2020) proposed using
a Data-Interpolating Convolutional Auto-Encoder (DINCAE) [37], a convolutional neural
network, to fill data gaps in satellite-observed SST. DINCAE, leveraging existing cloud-free
pixels, surpasses traditional methods like DINEOF in reconstructing missing data. Addi-
tionally, other deep learning approaches have shown promise in reconstructing missing
data and enhancing the accuracy of marine data products, particularly SST. For instance,
Patil et al. (2022) introduced several deep learning models [38], including a Deep Multi-
Layer Perceptron (MLP), Long Short-Term Memory (LSTM), and a Spatial 2D Convolution
Neural Network. These models, trained with past meteorological features, predict the
next day’s SST in the northeast region of Japan. The study revealed that the Spatial 2D
CNN was highly skilled at coastal locations, while the Deep MLP and LSTM were equally
proficient at offshore locations. Another study developed a Bi-directional Long Short-Term
Memory (BiLSTM) model, featuring a novel and adjustable custom temporal penalty layer.
This model, designed for filling daily night-time SST images in spatiotemporal sequences
acquired by the Himawari-8 satellite, robustly reconstructed the spatial and temporal
features of cloud-affected SST data. It outperformed the previous state-of-the-art Simple
Spatial Gap-filler (SSGP) algorithm in error metrics, Structural Similarity Index (SSIM),
and computational efficiency [39]. In recent years, deep learning techniques have emerged
as a powerful tool for handling missing data and capturing complex patterns in various
fields [40]. For example, in image-based tasks, deep learning models of convolutional
neural networks, such as U-Net, have demonstrated exceptional performance in accu-
rately capturing details and spatial relationships. Originally developed for medical image
segmentation, the U-Net architecture has shown significant ability in solving complex
image-based problems. In the context of SST data gap filling, utilizing deep learning, par-
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ticularly the U-Net architecture, could potentially overcome the limitations of traditional
methods, providing more precise estimates for missing SST values.

In light of previous studies, our research introduces a U-Net model for filling gaps in
sea surface observational data. Building upon existing knowledge and methodologies, we
aim to provide new insights into accurately estimating marine geographic data, leveraging
the strengths of our proposed method to capture the complex dynamic features of the sea
surface. Specifically, we propose a deep learning model with a Double U-Net architecture
to fill missing values in satellite SST data. To evaluate its performance, we conducted
a comparative analysis with the widely used DINEOFs method, assessing the model’s
ability to capture SST geospatial patterns and address data gaps in the waters around
Taiwan. This region, with its complex oceanographic features, serves as an ideal testing
ground for evaluating the performance of our pre-trained U-Net model. Grounded in
geoinformation science techniques and methodologies, this study addresses the following
four questions: (1) whether high spatial resolution geostationary Himawari satellite SST
data are suitable for data gap filling; (2) whether the U-Net architecture and transfer learning
techniques can enhance data usability; (3) how the spatial information of SST filled by
deep learning compares with traditional DINEOFs methods and in situ observational data;
(4) whether the gap-filled SST data can be used for monthly and long-term SST analysis
and if spatial features can successfully capture the SST dynamics mentioned in previous
research. Through the research on leveraging transfer learning and U-Nets for improved
gap filling in Himawari SST data, the findings of this study are significant for advancing
our understanding of dynamic marine geographic data and contribute to methods for
filling gaps in satellite-derived SST datasets in other sea areas using similar approaches.

2. Data and Methods
2.1. Data
2.1.1. In Situ Buoy Observation

The in situ observations utilized in this research were obtained from 10 sites situated
around Taiwan, generously provided by the Taiwan Central Weather Administration
(CWA). These in situ measurements serve as ground-truth data, against which we validate
the predictions of our model. Table 1 presents detailed information about the ground-truth
observation data collected from each of the 10 sites, including the corresponding number
of missing satellite data points in their respective areas. Additionally, Figure 1 depicts the
geographical locations of the in situ SST data collection, providing a visual representation
of the spatial coverage of these measurements.

Table 1. Details of buoy locations and number of data samples of gapped satellite data at each
in situ location.

Buoy
Co-Ordinates

Data Sample Number
Lat Lon

Pengjiayu 25◦37′13′′ N 122◦04′06′′ E 400
Fugui 25◦18′14′′ N 121◦32′01′′ E 404

Long Dong 25◦05′52′′ N 121◦55′21′′ E 495
Guishandao 24◦50′54′′ N 121◦55′31′′ E 468

Hsinchu 24◦45′47′′ N 120◦50′37′′ E 257
Taichung 24◦12′56′′ N 120◦24′48′′ E 211
Hualien 24◦01′54′′ N 121◦37′55′′ E 481
Chimi 23◦11′14′′ N 119◦39′22′′ E 213

Xiao Liuqiu 22◦19′00′′ N 120◦22′24′′ E 166
Lanyu 22◦04′31′′ N 121◦34′58′′ E 301
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Figure 1. (a) The SST (◦C) surrounding Taiwan, observed by the Himawari satellite from 2016 to 2023,
with white dots representing the positions of buoy stations. (b) Daily missing SST data rate (%) of
spatial grid observed by the Himawari satellite, from July 2015 to December 2023.

2.1.2. Himawari-8/9 Satellite Data

We utilize the daily Level 4 (L4) Himawari SST dataset for the year 2022. This dataset
encompasses the area around Japan, including the Taiwan, spanning from 117◦ E to 150◦ E
longitude and from 17◦ N to 50◦ N latitude. We accessed the L4 dataset through the JAXA
website (https://www.eorc.jaxa.jp/ptree/index.html, accessed on 20 May 2023). The L4
dataset is constructed using a data assimilation process that integrates information from
various sources, including the high-resolution regional ocean model ‘JCOPE-T’, developed
by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). This model
assimilates observational data from six types of satellite SST provided by JAXA, offering
a comprehensive representation of SST in the region, particularly around Taiwan. We
employed a cropping process on the daily L4 Himawari SST data to tailor it to our specific
study area. This cropped dataset covers a latitude range of 21◦ N to 26◦ N and a longitude
range of 119◦E to 124◦E, which aligns with the spatial extent relevant to our research
objectives (see Figure 1a). The area is characterized by complex oceanographic features,
such as proximity to the Kuroshio Current (KC) and diverse topography [41–43]. Notably,
the daily data missing rate in the northern part of Taiwan can reach up to 50%, particularly
during winter and typhoon seasons, causing significant data gaps. Even in areas with
the lowest missing rates, the proportion can reach 20% (see Figure 1b). Additionally, to
match the resolution of the Level 3 (L3) Himawari SST product, the original data, with
a resolution of 3 km, is linearly interpolated to a higher resolution of 2 km. The resulting
cropped dataset consists of SST images with dimensions of 256 × 256 pixels.

Before commencing the model training phase, we generate an artificial cloud dataset.
This dataset is created by superimposing artificial cloud features, derived from the L3
Himawari dataset, onto the cropped L4 Himawari SST dataset within our study area. The
artificial clouds, designated as value ‘0’, are designed to emulate the realistic cloud patterns
and coverage observed in the region during the study period. This step enhances the
model’s capability to manage missing data and incomplete observations due to cloud
cover, which are common challenges in SST estimation. The target dataset used for training
the model comprises free gap data extracted from the cropped L4 Himawari SST dataset

https://www.eorc.jaxa.jp/ptree/index.html
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within the study area. This dataset includes regions where SST observations are missing
or incomplete. By using the free gap data as the target, the model aims to estimate
and fill in the gaps in SST values, serving as a ground-truth reference for evaluating
the model’s performance.

To further optimize the model’s performance, we incorporate a supplementary dataset
for fine-tuning: the L3 Himawari night-time observation daily dataset, spanning from
July 2015 to December 2022. This dataset, obtained from the JAXA website, is similar to
the L4 dataset. These night-time observations are particularly valuable as they provide
insights into the unique characteristics and variations of SST during the darker hours, which
minimizes the influence of solar radiation-induced fluctuations. Although the L3 dataset
offers high temporal resolution up to 1 h, we utilize it on a daily timescale for our analysis.
To determine the most representative time for daily observations, we analyze the absolute
error between in situ and satellite data, as shown in Figure 2. Our analysis reveals that 7 a.m.
local time (23 UTC) exhibits the lowest Root Mean Square Error (RMSE), indicating its
suitability for representing daily SST values. Therefore, we select this specific observation
hour to enhance the accuracy and reliability of our model’s predictions, enabling a more
comprehensive understanding of the temporal dynamics of SST within the study area.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 6 of 22 
 

 

 
Figure 2. The comparison results of the RMSE values for buoy SST and Himawari SST, with black 
dots representing the minimum values at each observation location. 

2.1.3. Typhoon Dataset 
The typhoon dataset utilized in this research was sourced from the International Best 

Track Archive for Climate Stewardship (IBTrACS) [44]. This dataset provides comprehen-
sive information on tropical cyclones, including their tracks, intensities, and other relevant 
attributes. The incorporation of typhoon data is crucial for distinguishing days with ty-
phoons and pinpointing instances where the eye of a typhoon intersects with our research 
area. These records offer invaluable insights into atmospheric conditions, especially dur-
ing periods of maximum cloud cover associated with typhoons, presenting a significant 
challenge in testing our proposed method. Addressing this challenge is integral to our 
study’s focus on gap-filling in SST data. 

2.2. Data Filling of Double U-Net Architecture 
This study employs a Double U-Net architecture, as illustrated in Figure 3, to tackle 

the challenging task of SST gap filling and estimation. The architecture consists of two 
interconnected U-Net networks arranged in a cascaded manner. To train this architecture, 
we used the L4 Himawari SST daily data for the year 2022. This dataset, offering a rich 
source of information, enables the extraction of valuable physical knowledge about SST 
dynamics. The Double U-Net architecture is trained to discern intricate relationships and 
patterns within the SST data. The model inputs include three layers representing satellite 
images from three consecutive days, while the output predicts non-gap data for the first 
layer of the input. This approach, based on three days of observations, aims to minimize 
data gaps. As demonstrated in Figure 4, the SST patterns from the first and second days 
before the prediction day are relatively consistent. Consequently, combining observations 
from these three days allows for a more reliable representation of spatial patterns. Regard-
ing the use of three consecutive days of SST data as the model input, this choice was not 
arbitrary but rather based on prior knowledge and assumptions about the temporal be-
havior of SST. We hypothesized that SST values do not significantly change over short 
periods, such as three consecutive days. This hypothesis is reasonable because SST 

Figure 2. The comparison results of the RMSE values for buoy SST and Himawari SST, with black
dots representing the minimum values at each observation location.

2.1.3. Typhoon Dataset

The typhoon dataset utilized in this research was sourced from the International Best
Track Archive for Climate Stewardship (IBTrACS) [44]. This dataset provides compre-
hensive information on tropical cyclones, including their tracks, intensities, and other
relevant attributes. The incorporation of typhoon data is crucial for distinguishing days
with typhoons and pinpointing instances where the eye of a typhoon intersects with our re-
search area. These records offer invaluable insights into atmospheric conditions, especially
during periods of maximum cloud cover associated with typhoons, presenting a significant
challenge in testing our proposed method. Addressing this challenge is integral to our
study’s focus on gap-filling in SST data.
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2.2. Data Filling of Double U-Net Architecture

This study employs a Double U-Net architecture, as illustrated in Figure 3, to tackle
the challenging task of SST gap filling and estimation. The architecture consists of two
interconnected U-Net networks arranged in a cascaded manner. To train this architecture,
we used the L4 Himawari SST daily data for the year 2022. This dataset, offering a rich
source of information, enables the extraction of valuable physical knowledge about SST
dynamics. The Double U-Net architecture is trained to discern intricate relationships
and patterns within the SST data. The model inputs include three layers representing
satellite images from three consecutive days, while the output predicts non-gap data for
the first layer of the input. This approach, based on three days of observations, aims to
minimize data gaps. As demonstrated in Figure 4, the SST patterns from the first and
second days before the prediction day are relatively consistent. Consequently, combining
observations from these three days allows for a more reliable representation of spatial
patterns. Regarding the use of three consecutive days of SST data as the model input, this
choice was not arbitrary but rather based on prior knowledge and assumptions about the
temporal behavior of SST. We hypothesized that SST values do not significantly change
over short periods, such as three consecutive days. This hypothesis is reasonable because
SST generally exhibits gradual and continuous changes, particularly in the absence of
major disturbances or weather events. By incorporating three consecutive days of SST data,
we aimed to leverage the temporal correlation and continuity of SST patterns to fill gaps
more effectively. It is important to note that we did not solely rely on this assumption. We
thoroughly tested and evaluated the impact of using different numbers of consecutive days,
including two and four days. Our experiments demonstrated that using three consecutive
days (as shown in Figure 4) provided an acceptable balance between capturing sufficient
temporal information and avoiding excessive smoothing or distortion of the SST patterns.
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length. For instance, ‘5 k 2 s’ indicates the layer uses a 5 × 5 kernel with a 2 × 2 stride. ‘ReLU’ and
‘linear’ refer to the activation functions used within this architecture. This architecture combines
original U-Net features with max pooling and 2D Transpose layers, and L1 regularization is applied
following each convolutional layer.
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difference, indicating the change in SST from one day to the next, calculated as the average absolute

difference between successive days
(

∑ 1
n |dsst − dn−1sst| ), and (b) represents the two-day difference,

indicating the change over a two-day interval, calculated as the average absolute difference over
two days (∑ 1

n |dsst − dn−2sst|).

Within the Double U-Net architecture, the output of the first U-Net serves as the
first layer of input data for the second U-Net. This process enables the second U-Net to
leverage the enhanced features learned by the first. The training involves optimizing the
architecture’s parameters using the Adam optimization algorithm, aiming to minimize
the discrepancy between predicted SST values and the ground-truth data from the L4
Himawari dataset. Our methodology begins with training the Double U-Net architecture
using the L4 Himawari SST daily data. We feed the model input patches of SST data along
with corresponding ground-truth data to enable it to learn SST patterns effectively. This
step optimizes the model’s parameters to minimize the discrepancy between predicted
and actual SST values. The training process utilizes the Adam optimization algorithm,
starting with an initial learning rate of 10−3, which is progressively decreased to 10−7 if
no improvement in loss is observed over five consecutive epochs. After the initial training
phase, the model undergoes fine-tuning using the official JAXA Himawari daily SST
nighttime L3 data product, which covers the period from July 2015 to December 2022. This
dataset is particularly valuable as it provides night-time observations, which exhibit lower
variability influenced by solar factors. The fine-tuning process begins with a learning rate of
10−5, also decreasing to 10−7 if there is no loss improvement over five consecutive epochs.

However, employing the U-Net, a supervised model that requires a target label,
presents a challenge when used with the Himawari L3 SST data, which contains gaps,
leaving the actual values for those regions unknown. To address this issue, a preprocessing
step is conducted prior to the fine-tuning process. Specifically, a subset of valid pixel points
is randomly selected to serve as target values for prediction and contribute to the loss
function, aiding in optimizing the U-Net model. Approximately 5% of random points from
the available data, equating to almost 3000 points in the absence of cloud cover, are chosen
for this purpose, as illustrated in Figure 5. Notably, the random selection of pixel locations
is performed independently for each satellite image, ensuring the creation of a diverse and
representative subset that facilitates effective model optimization.



ISPRS Int. J. Geo-Inf. 2024, 13, 162 8 of 20

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 8 of 22 
 

 

difference between successive days ∑ |𝑑𝑠𝑠𝑡 𝑑 𝑠𝑠𝑡|), and (b) represents the two-day differ-
ence, indicating the change over a two-day interval, calculated as the average absolute difference 
over two days (∑ |𝑑𝑠𝑠𝑡 𝑑 𝑠𝑠𝑡|). 

Within the Double U-Net architecture, the output of the first U-Net serves as the first 
layer of input data for the second U-Net. This process enables the second U-Net to lever-
age the enhanced features learned by the first. The training involves optimizing the archi-
tecture’s parameters using the Adam optimization algorithm, aiming to minimize the dis-
crepancy between predicted SST values and the ground-truth data from the L4 Himawari 
dataset. Our methodology begins with training the Double U-Net architecture using the 
L4 Himawari SST daily data. We feed the model input patches of SST data along with 
corresponding ground-truth data to enable it to learn SST patterns effectively. This step 
optimizes the model’s parameters to minimize the discrepancy between predicted and 
actual SST values. The training process utilizes the Adam optimization algorithm, starting 
with an initial learning rate of 10−3, which is progressively decreased to 10−7 if no improve-
ment in loss is observed over five consecutive epochs. After the initial training phase, the 
model undergoes fine-tuning using the official JAXA Himawari daily SST nighttime L3 
data product, which covers the period from July 2015 to December 2022. This dataset is 
particularly valuable as it provides night-time observations, which exhibit lower variabil-
ity influenced by solar factors. The fine-tuning process begins with a learning rate of 10−5, 
also decreasing to 10−7 if there is no loss improvement over five consecutive epochs. 

However, employing the U-Net, a supervised model that requires a target label, pre-
sents a challenge when used with the Himawari L3 SST data, which contains gaps, leaving 
the actual values for those regions unknown. To address this issue, a preprocessing step 
is conducted prior to the fine-tuning process. Specifically, a subset of valid pixel points is 
randomly selected to serve as target values for prediction and contribute to the loss func-
tion, aiding in optimizing the U-Net model. Approximately 5% of random points from the 
available data, equating to almost 3000 points in the absence of cloud cover, are chosen 
for this purpose, as illustrated in Figure 5. Notably, the random selection of pixel locations 
is performed independently for each satellite image, ensuring the creation of a diverse and 
representative subset that facilitates effective model optimization. 

 
Figure 5. The fine-tuning process using Himawari L3 SST data. The arrows show the direction of 
data flow, whereas grey arrows indicate the internal processes within the Double U-Net architec-
ture. The gray line moving in the opposite direction represents the process of updating weights. 

By incorporating this subset of valid target values, the fine-tuning process can pro-
ceed effectively despite the data gaps, enabling the U-Net model to learn from and adapt 
to the Himawari night-time SST data. The entire training process is illustrated in Figure 6. 
To evaluate our proposed pre-trained U-Net model’s performance, we conducted a 

Figure 5. The fine-tuning process using Himawari L3 SST data. The arrows show the direction of
data flow, whereas grey arrows indicate the internal processes within the Double U-Net architecture.
The gray line moving in the opposite direction represents the process of updating weights.

By incorporating this subset of valid target values, the fine-tuning process can proceed
effectively despite the data gaps, enabling the U-Net model to learn from and adapt to the
Himawari night-time SST data. The entire training process is illustrated in Figure 6. To eval-
uate our proposed pre-trained U-Net model’s performance, we conducted a comparative
analysis with the widely used DINEOFs method. Proven to be an effective technique for
filling gaps in oceanographic datasets, DINEOFs has been applied and tested in multiple
studies, facilitating the interpolation of single or multiple related marine variables [43,44].
To validate the accuracy of the gap-filled SST data, we use in situ observations from 10
sites around Taiwan, provided by the CWA Taiwan, as ground-truth data. The model’s
performance is evaluated by comparing its predictions to both these in situ observations
and the results obtained from the DINEOFs method. Metrics such as Root Mean Square
Error (RMSE), Mean Error (ME), and R are utilized to quantify the accuracy of the model’s
predictions in filling the gaps and estimating SST values. Additionally, the CWA dataset is
highly valuable for assessing the performance of the models, particularly when applied
to specific scenarios like typhoon occurrences. Such cases pose a considerable challenge,
especially during periods of maximum cloud cover associated with typhoons, thus provid-
ing a critical test for our proposed method. Post-typhoon, there tends to be a significant
observational gap, leading to a lack of SST data for several days. The identification of
typhoon days is based on the IBTrACS dataset, which specifically pinpoints instances when
typhoons are within our study area.
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3. Results
3.1. Evaluation of Filling Capabilities of Double U-Net and DINEOF Methods
3.1.1. Comparison with Buoy Data

We introduce a U-Net model designed to fill data gaps in SST observations, and we
compare its performance with that of the widely used DINEOFs method. Figure 7 illustrates
an example of gap-filled SST data for 29 January 2020, using both our proposed U-Net
model (shown in Figure 7d) and the DINEOF method (shown in Figure 7e). Using three con-
secutive days of Himawari satellite observation data, both approaches successfully generate
complete SST maps by filling the gaps in SST data. Due to the KCt being closer to Taiwan
during winter, the position at 123◦ E longitude is no longer within the KC region. From
a physical oceanography perspective, the high SST gradient presented in the DINEOFs
results appears to be unusually far to the east. However, our U-Net model presents several
significant advantages over DINEOFs. Notably, it captures a wider range of SST dynamics,
offering a more detailed spatial pattern representation. This advantage is particularly
apparent in modeling the KC, where our method provides a sharper and more distinct
representation compared to the more interpolation-like appearance produced by DINEOFs.
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The comparison results of the gap-filled method with buoy observations for several
periods including our Double U-Net method and DINEOFs method are in Figure 8 and
Table 2. It is noteworthy that DINEOFs consistently undervalues SST to a greater extent
than our proposed model. Our study’s evaluation indicates that the Double U-Net ar-
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chitecture outperforms the DINEOFs method in SST estimation for most study areas. In
a comparison of 10 buoy observations, the Double U-Net approach for filling SST data
showed high correlation results (R > 0.6) in nine cases, with an average correlation co-
efficient of 0.84, except for Lanyu, where the correlation coefficient was only 0.37. In
contrast, the DINEOFs method demonstrated high correlation at only four stations, with
an average correlation coefficient across all stations of 0.54. Regarding the RMSE results for
the gap-filled SST compared to buoy observations, the Double U-Net method yielded an
outcome of 2.5 ◦C, while the DINEOFs method’s results were as high as 5.0 ◦C. According
to previous research [45], there is an inherent RMSE of 1.12 ◦C between the Himawari
satellite and these buoy observations. The reasons for such discrepancies are complex,
due to the difference between satellite-observed skin SST and buoy-measured bulk SST.
These two types of SST can vary due to the intensity of solar insolation and wind speed,
leading to the formation of diurnal warm layers and cool skin layers [45]. For the sake of
data consistency, only 7 a.m. local time data were used for daily measurements; hence,
it is normal to expect more errors. This error was also reflected in the mean error (ME)
comparison; in the early morning when solar radiation is still weak, the average buoy data
tend to be significantly warmer than the satellite skin SST. Therefore, the SST filled by both
methods turned out to be lower on average compared to the bulk SST of buoy, with the
Double U-Net method at –1.44 ◦C and the DINEOF method at –2.07 ◦C.
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Pengjiayu 318 0.56 0.81 4.03 2.24 –1.61 –1.24
Fugui 1039 0.68 0.81 3.77 2.94 –0.96 –1.19

Long Dong 1065 0.62 0.84 3.79 1.84 –1.23 –0.58
Guishandao 1328 0.47 0.71 4.49 2.48 –1.80 –1.33

Hsinchu 804 0.63 0.88 4.90 3.19 –1.80 –2.21
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Lanyu 562 0.42 0.37 5.72 3.63 –2.50 –2.37
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3.1.2. The Challenge of Filling in Data When a Typhoon Passes through

Typhoons bring extensive cloud cover, rendering satellites almost incapable of ob-
serving SST. Additionally, typhoons induce vertical movements in the ocean, presenting
a significant challenge for filling spatial data gaps. Figure 9 visually illustrates the distribu-
tion of typhoon eyes within our study area from July 2015 to December 2022, providing
additional details such as typhoon names and the dates they passed through. Notably,
while most typhoons traverse our region within a single day, some have a prolonged
impact, affecting the area for two days and thus adding complexity to the SST dynamics.
Figure 10 showcases the application of the gap-filling algorithm in our study area during
the occurrence of several typhoons, specifically Nepartak, Malakas, Megi, and Barijat. The
first row of Figure 10 displays the original observational data from Himawari satellite
observations, establishing the baseline for SST conditions. The second and third rows
display the results of DINEOFs and our U-Net model, respectively, in filling SST data gaps
during typhoon events, allowing for a visual assessment of their comparative efficacy.
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Figure 10. Examples of the spatial patterns of SST from the Himawari satellite, with gaps filled
by DINEOFs and Double U-Net during typhoon occurrences. (a) 8 July 2016, NEPARTAK (2016),
(b) 17 September 2016, MALAKAS (2016), (c) 27 September 2016, MEGI (2016), (d) 9 September 2018,
BARIJAT (2018), (e) 3 August 2020, HAGUPIT (2020), and (f) 6 November 2020, ATSANI (2020).
White dots connected by black dashed lines represent the tracks of the typhoons.
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We evaluate our model’s capability to capture and reconstruct SST patterns under
challenging meteorological conditions. During the passage of Typhoon Megi through our
study area, an evident lack of observations suggests extensive cloud cover, which obstructs
satellite observations. A similar observation shortfall is noted during Typhoon Barijat,
particularly in mid-western Taiwan. This situation contrasts with Typhoons Nepartak and
Malakas, for which significant observations are retained, albeit with sparse SST data. The
DINEOFs method proves effective for gap-filling during Nepartak and Malakas. However,
it appears less adept for Typhoons Megi and Barijat, leading to underestimations and incom-
plete gap filling. This is particularly true for Megi, where noticeable underestimation occurs
in all images, and for Barijat, where only areas with minimal observations receive adequate
filling. Our U-Net model, on the other hand, excels in addressing the gaps left by Himawari
SST observations, especially during the occurrences of Megi and Barijat where DINEOFs
underperforms. While our model successfully fills gaps for Nepartak, the resultant val-
ues appear anomalous, indicating significant SST discrepancies in areas adjacent to the
filled gaps. Moreover, the gap-filled values for Nepartak exhibit considerable differences
between our U-Net model and DINEOFs. Conversely, for Malakas, the variance in filled
values between DINEOFs and our U-Net model is minor. Figure 10e,f reveal a significant
aspect of the algorithm, highlighting its potential to misinterpret ocean dynamics. This is
demonstrated in two distinct typhoon cases: Hagupit on 3 August 2020 (Figure 10e), and
Atsani on 7 November 2020 (Figure 10f). Despite over 50% cloud cover caused by typhoons,
both algorithms effectively fill gaps. However, the reconstructed images, juxtaposed with
the plotted locations of typhoon eyes, reveal intriguing patterns. For Hagupit, our U-Net
algorithm exhibits more anomalous patterns than DINEOFs. Specifically, during Hagupit’s
passage through the western-central Taiwan, U-Net generates a pattern with low SST val-
ues, and an even broader, lower pattern is observed on the eastern side. The lack of sensors
at these locations to validate the accuracy of these patterns leaves their representation
of actual values in question. These cannot be conclusively identified as the cold wake
caused by the typhoon, particularly given their distance from the typhoon’s eye. During
Atsani’s passage, both algorithms produce cold patterns, with U-Net creating two and
DINEOFs one. The low SST pattern to the west appears valid, as nearby sea regions with
minimal cloud cover permit satellite observation of SST. Thus, both DINEOFs and U-Net
successfully reconstruct the dataset with gaps, resulting in a continuous, low-temperature
pattern. However, the eastern cold pattern generated exclusively by U-Net is questionable,
situated in the open ocean without observational validation. Additionally, a small cold
wake pattern near the typhoon eye on 6 November 2020, is visible in the U-Net-generated
data, likely because the model used data from two days before the prediction day. This
nuanced analysis underscores the algorithm’s tendency to introduce unique patterns, some
of which may not have empirical support, emphasizing the need for careful interpretation
and validation in certain scenarios.

A critical assessment is illustrated through a scatter plot (Figure 11), where the hori-
zontal axis represents in situ observations, and the vertical axis denotes values generated by
models. Each of the 10 plots corresponds to ground-truth data from buoys, with regression
lines included to evaluate the data observed by DINEOFs and our U-Net model. The
results commonly show an underestimation in predicting high SST values across most
plots, a phenomenon discussed in the previous section. Despite this trend, predictions from
the U-Net model are notably close to the reference values, indicating a higher accuracy
in capturing SST dynamics. This observation is corroborated by numerical evaluations
presented in Table 3, where the R, ME, and RMSE values highlight the superior performance
of the U-Net model. The ME and RMSE metrics for U-Net surpass those of DINEOFs across
all locations, showing significant differences in accuracy. However, DINEOFs’ predictions
tend to be systematically biased toward lower SST values, indicating an underestimation.
Pengjiayou (Figure 11a) serves as an exception, where DINEOFs demonstrates good estima-
tion accuracy. Nevertheless, our U-Net model not only exceeds DINEOFs in Pengjiayou but
also achieves a closer alignment of the regression line with the identity line, emphasizing
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its superior accuracy and reliability in capturing SST variations. Conversely, the scatter
plot for Xiaoliuqiu (Figure 11i) depicts a less favorable scenario. DINEOFs consistently
underestimates SST values, leading to a regression line with a divergent slope, indicating
that lower predicted SST values often correlate with higher actual values. Although our
U-Net model also shows reduced accuracy in Xiaoliuqiu, it does not exhibit the same level
of underestimation as DINEOFs. During typhoon periods, the Double U-Net method exhib-
ited high correlation in SST at 7 out of 10 stations, while the DINEOFs method only did so
at 2 stations (Table 3). The calculated RMSE and ME results both indicate that the Double
U-Net method performs better than DINEOFs. Specifically, during typhoons, the Double
U-Net method achieved an average RMSE of 1.91 ◦C and an ME of –1.04 ◦C, whereas the
DINEOFs method had a significantly higher RMSE of 7.42 ◦C and an ME of –3.94 ◦C.
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Figure 11. A comparison of SST data during the passage of a typhoon through the seas near Taiwan
(see Figure 9), as calculated by the Double U-Net (red dots) and DINEOFs (blue dots) methods (shown
on the vertical axis), versus buoy observation data (shown on the horizontal axis). (a) Pengjiayu,
(b) Fugui, (c) Lond Dong, (d) Guishandao, (e) Hsinchu, (f) Taichung, (g) Hualien, (h) Chimi, (i) Xiao
Liuqiu, and (j) Lanyu.

Table 3. The comparison results of SST calculated by the Double U-Net and DINEOFS methods with
buoy observations at each station (see Figure 11) include the correlation coefficient (R), Root Mean
Square Error (RMSE), and Mean Error (ME).

Buoy Number of
Samples

R RMSE (◦C) ME (◦C)

DINEOF U-Net DINEOF U-Net DINEOF U-Net

Pengjiayu 13 0.79 0.92 2.02 0.98 –1.21 –0.22
Fugui 24 0.05 0.66 7.57 1.97 –2.35 0.42

Long Dong 24 0.20 0.83 8.29 1.51 –3.18 0.33
Guishandao 25 0.04 0.81 9.67 0.94 –4.75 –0.34

Hsinchu 31 0.13 0.78 9.22 1.90 –5.08 –1.56
Taichung 13 0.61 0.81 3.51 2.30 –2.61 –1.62
Hualien 29 0.03 0.57 8.23 1.76 –4.10 –1.16
Chimi 25 0.15 0.54 8.88 2.44 –5.24 –1.93

Xiao Liuqiu 22 −0.11 −0.03 11.68 3.18 −7.37 −2.45
Lanyu 19 0.45 0.72 5.08 2.15 –3.46 –1.82

3.2. Spatial Patterns of Gap-Filled SST from Daily to Monthly Scale

Due to the excessive number of missing values in the original satellite observations on
the oceanic spatial grid, the key to a successful gap-filled SST lies in its ability to capture
the temporal and spatial variations from daily timescales to monthly averages. Five critical
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locations in the seas near Taiwan were selected to determine whether the SST calculated
by the Double U-Net method accurately reflects daily SST variations. These locations
include the Northern Taiwan Strait (120.3◦ E, 25.6◦ N), Northern Taiwan (121.5◦ E, 25.6◦ N),
Northeastern Taiwan (122.3◦ E, 25.4◦ N), Penghu Channel (119.9◦ E, 23.6◦ N), and the
KC region (122◦ E, 23.5◦ N). The Northern Taiwan Strait site, located at the southern end
of the East China Sea (ECS), is dominated by the warm Taiwan Strait Current (TSC) in
summer and the cold China Coastal Current and the relatively warmer Northern Taiwan
Coastal Current (NTCC) in winter [41], resulting in dramatic SST changes throughout the
year, with seasonal temperature variations reaching up to 15 ◦C. The Northern Taiwan site,
along the northern coast of Taiwan, experiences daily tidal current shifts, with extensions
of the northeastward TSC in summer [46] and westward inflows from the KC branch in
winter [41], leading to seasonal temperature differences of 10–12 ◦C and significant oceanic
frontal formations. The Northeastern Taiwan site is located at the boundary between
the ECS shelf and the KC, experiencing cold domes due to seabed topography effects
in summer [47] and KC branch intrusions into the shelf in winter [48], with seasonal
temperature variations of only 5–6 ◦C. The Penghu Channel site, between the western coast
of Taiwan and the Penghu Islands, sees SST influenced by the northwestward KC branch
in winter, the northward South China Sea monsoon flow in summer, and the southward
NTCC in winter [44], with significant wind direction effects, resulting in high temperatures
in summer and SSTs between KC and ECS waters in winter. The KC site, located along
the main axis of the KC east of Taiwan, sees temperatures of about 20–22 ◦C in winter and
28–30 ◦C in summer [41]. Figure 12 presents the daily scale SST time series filled by the
Double U-Net method, calculated with an 11-day moving average. The SST time series
variation characteristics align well with the results mentioned in previous studies, allowing
for further geospatial information analysis to understand SST variation characteristics.
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Figure 13 shows the monthly average variations at the aforementioned five character-
istic locations, with the largest temperature difference occurring in the northern Taiwan
Strait region, where SST ranges from 13 to 27 ◦C, and the smallest difference in the KC
region, with SST ranging from 23 to 28 ◦C. The SSTs of other sea areas fluctuate within the
temperature ranges of these two regions. Figure 14 presents the spatial features of SST data
filled by the Double U-Net method, spanning from July 2015 to December 2022. Monthly
SST exhibits excellent temperature dynamics, including oceanic fronts at the boundary
between the KC and the ECS shelf, strong mesoscale oceanic fronts caused by currents off
the northern coast of Taiwan, summer upwelling in the Taiwan Bank due to topographic
effects, the boundary between I-Lan Bay and the western edge of the KC, the path of the
KC branch intrusion into the Penghu Channel in winter, mesoscale cold domes off the
northeastern corner of Taiwan in summer, and even the sub-mesoscale cold wake waters
of Green Island are visible. The results combined in Figures 12 and 14 underscore that
using machine learning’s Double U-Net to fill missing spatial grid SST data can effectively
analyze daily timescale variations and trends in monthly average spatial patterns, and
these results have high spatial resolution.
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4. Discussion

The development of advanced gap-filling techniques is crucial for creating complete
SST datasets that accurately represent the intricate ocean dynamics across temporal and
spatial scales. Our U-Net model has shown several advantages over prevailing methods
like DINEOFs in reconstructing missing satellite SST data. A key advantage of our model
is its ability to capture finer-scale SST features, outperforming DINEOFs in this aspect. As
illustrated in Figure 7, the U-Net prediction reveals a distinctly sharper KC front, in contrast
to the more diffused representation offered by DINEOFs. This enhanced capability is likely
due to the support from the L4 Himawari dataset, contributing to the U-Net’s superior
performance. The accurate depiction of major ocean currents such as the KC is pivotal
for a comprehensive analysis of their impact on both regional and global climates. The
KC is known for its high spatiotemporal SST variability, driven by meandering and eddy
formations that result from complex bathymetric interactions and instabilities. Our U-Net
model’s flexible nonlinear framework is effectively able to learn these nuanced dynamics
from the training data, unlike DINEOFs’ linear empirical orthogonal function approach,
which tends to smooth over intricate signals induced by currents. Resolving the sharp KC
front and associated mesoscale features is also critical for applications in ocean modeling
and ship navigation that rely on the accurate resolution of strong SST gradients.

The U-Net model, while demonstrating considerable advantages, also produced po-
tentially spurious lower SSTs in data-sparse areas near 23◦ N and 123◦ E, which lack in situ
validation. This issue underscores the risk of overfitting that deep neural networks face
when exploiting wider contextual patterns in regions with limited constraints. Achieving
a balance between higher resolution reconstruction and avoiding unphysical artifacts re-
mains a significant research challenge. Hybrid techniques, which combine physics-based
regularization with data-driven modeling, could offer a solution to this trade-off. Despite
the U-Net model’s advantages, DINEOFs displayed superior accuracy in open ocean re-
gions, particularly in areas like Lanyu, as evidenced by correlation metrics. This suggests
that empirical orthogonal functions may be more adept at capturing mesoscale SST sig-
natures, especially in environments influenced by less complex bathymetric interactions
and without internal tides. The data-driven U-Net model relies heavily on representative
training data that cover diverse oceanic conditions. A lack of sufficient samples from
specific areas, such as Lanyu, may limit the model’s ability to generalize. Expanding in
situ sensor coverage to enrich the training dataset, along with comprehensive validation,
is vital for ensuring robust global reconstructions by the U-Net model. Incorporating
additional satellite measurements could also help mitigate observational gaps caused by
factors like cloud cover, which intermittently limit Himawari’s visibility. Integrating mi-
crowave and infrared SST data using the U-Net model has the potential to create complete
high-resolution maps by synergistically blending diverse datasets. No single technique uni-
versally outperforms others across all oceanic conditions. Hybrid approaches that combine
multivariate optimization, empirical orthogonal functions, and deep neural networks could
optimally harness their respective strengths for SST reconstruction. For example, integrat-
ing physics-based constraints can regularize the U-Net model to avoid unphysical artifacts,
while its nonlinear flexibility enhances representations of major currents and eddies that
DINEOFs might miss. Developing integrated frameworks represents an important ongoing
area of research.

The U-Net model boasts a significant advantage with its robust performance in filling
extensive SST data gaps during typhoons, which are characterized by heavy cloud cover
constraints. As illustrated in Figure 10, DINEOFs encountered difficulties in reconstructing
SSTs during Typhoons Megi and Barijat, whereas the U-Net generated complete maps
that aligned well with available observations. Accurately capturing typhoon-induced
ocean dynamics is crucial for analyzing their impacts on vertical mixing, upper ocean heat
content, and the sea state. The U-Net’s data-driven framework facilitates the modeling
of complex physical interactions between storms and the ocean. However, the U-Net’s
response to typhoons revealed some inconsistencies. Specifically, during Typhoon Nepar-
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tak, it produced anomalous SST discontinuities between neighboring regions. Moreover,
the predictions from U-Net and DINEOFs diverged significantly for Nepartak compared
to other storms, underscoring the challenges of extrapolating beyond observations under
certain extreme conditions. Introducing physical constraints and regularization methods
would aid in preventing unphysical artifacts in the reconstructed SST fields. Additionally,
both models produced questionable remote cold wakes without observational validation,
as observed in Figure 10. Distinguishing true cold wakes from spurious artifacts remains
a critical area of ongoing research. Implementing statistical flagging of potential model
errors, informed by storm positions, could help mitigate this issue. Overall, the U-Net
model demonstrates considerable potential in reconstructing SSTs under the meteorolog-
ically challenging conditions presented by typhoons. With further refinement, guided
by oceanographic principles, it can offer a robust gap-filling technique for enabling more
reliable SST analysis on a global scale.

5. Conclusions

This study introduces a Double U-Net model specifically designed for filling data gaps
in SST observations and conducts a comparative performance analysis with the widely used
DINEOFs method. Utilizing three consecutive days of Himawari satellite observation data,
both methods successfully generated complete SST maps by effectively filling in the gaps.
However, the Double U-Net model demonstrated several key advantages, notably its ability
to capture a broader range of SST dynamics and provide more detailed spatial patterns. This
advantage was particularly evident in its representation of the KC, where the U-Net model
produced sharper and more distinct images compared to the more interpolated appearance
of DINEOFs. Comparative analysis with buoy observations revealed the Double U-Net
model’s superior correlation results and lower RMSE and ME values, underscoring its
enhanced accuracy over DINEOFs in most study areas. Despite the inherent challenges
posed by the differences between satellite-observed skin SST and buoy-measured bulk SST,
the U-Net model’s performance marks a significant advancement in the methodology for
filling SST data gaps, contributing to a more accurate and comprehensive understanding of
ocean temperature dynamics.

Through detailed comparisons and visual analyses of typhoon events, the Double
U-Net model has shown superior performance in capturing complex SST variations and
accurately filling data gaps more effectively than DINEOFs. It highlights the U-Net model’s
enhanced ability to fill SST data gaps under challenging conditions, such as during ty-
phoons, outperforming the DINEOFs method. However, it also points out the U-Net
model’s potential for generating anomalous patterns or underestimations, emphasizing the
importance of careful validation and interpretation of the reconstructed SST data.

The study demonstrates the effectiveness of the Double U-Net method in accurately
filling data gaps in SST observations across critical locations near Taiwan, effectively captur-
ing both daily and monthly SST variations. By analyzing SST dynamics at five key locations,
including the Northern Taiwan Strait, Northern Taiwan, Northeastern Taiwan, Penghu
Channel, and the KC region, the research highlights the method’s ability to reflect complex
oceanographic features and temperature dynamics, such as oceanic fronts, mesoscale varia-
tions, and upwelling effects. The findings, illustrated through detailed SST time series and
spatial feature analyses, affirm the Double U-Net’s potential for high-resolution SST data
reconstruction, offering valuable insights into understanding and analyzing SST variation
characteristics with enhanced accuracy and spatial resolution. Nonetheless, further inves-
tigations and refinements are needed to address the model’s limitations and improve its
performance in specific areas.
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