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Abstract: Although 14-3-3 proteins have been implicated in plant growth, development, and stress
response, their roles in pepper immunity against R. solanacearum remain poorly understood. In this
study, a 14-3-3-encoding gene in pepper, Ca16R, was found to be upregulated by R. solanacearum
inoculation (RSI), its silencing significantly reduced the resistance of pepper plants to RSI, and its
overexpression significantly enhanced the resistance of Nicotiana benthamiana to RSI. Consistently, its
transient overexpression in pepper leaves triggered HR cell death, indicating that it acts positively in
pepper immunity against RSI, and it was further found to act positively in pepper immunity against
RSI by promoting SA but repressing JA signaling. Ca16R was also found to interact with CaASR1,
originally using pull-down combined with a spectrum assay, and then confirmed using bimolecular
fluorescence complementation (BiFC) and a pull-down assay. Furthermore, we found that CaASR1
transient overexpression induced HR cell death and SA-dependent immunity while repressing JA
signaling, although this induction and repression was blocked by Ca16R silencing. All these data
indicate that Ca16R acts positively in pepper immunity against RSI by interacting with CaASR1,
thereby promoting SA-mediated immunity while repressing JA signaling. These results provide new
insight into mechanisms underlying pepper immunity against RSI.
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1. Introduction

The coevolution with various pathogens has equipped plants with elaborate immune
mechanisms to activate rapid and efficient defense responses against pathogen attacks.
These defense responses are regulated by complicated signaling networks and are initiated
upon perception of pathogen infection by plants with various immune receptors. Ca2+

signaling; hormones including SA (Salicylic acid), JA (jasmonic acid), and ET (Ethylene);
ROS including H2O2; MAPK cascades; and transcriptional cascades have been found to be
involved in and shared by immune signaling initiated by plants’ immune receptors upon
perception of pathogens [1–4]. Moreover, defense responses of a different nature that are
activated to protect plants from attacks of different pathogens are finely regulated by the
signaling networks made up of these components, and protein–protein interaction is one of
the main methods of plant immune signal transmission [5,6], with the targeting proteins
being activated or repressed through the modification of phosphorylation, methylation, or
acetylation [7]. However, the underlying mechanisms remain to be elucidated.

14-3-3 proteins are phosphoserine-binding proteins and constitute a family of conserved
proteins present in all eukaryotic organisms. The members of this family act as adaptors for
protein–protein interactions, regulators of the localization of proteins or their activities [8], and
thus crucial regulators of a wide range of target proteins in signal transduction in plant growth,
development, and defense response to stress. 14-3-3 proteins have been found to be involved
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in the regulation of plant immunity [9–14] by targeting NLRs [15], MAPKKKs [9,14,15],
substrates of CDPKs [16], RIN4 and GCN4 [17], and transcription factors such as GRAS
proteins (by regulating its stability) [18]. Their roles as crucial regulators in plant immunity is
reflected in their frequent attack or hijacking by pathogen effectors to weaken plant immune
responses or increase pathogen virulence [10,19–24]. However, the roles of 14-3-3 proteins in
plant immunity and the underlying mechanisms are not fully understood.

Pepper (Capsicum annuum) belongs to the Solanaceae and is of great agricultural impor-
tance. Bacterial wilt caused by Ralstonia solanacearum is one of the most important soil-borne
diseases in the production of pepper and other solanaceous crops, especially in tropical or
subtropical regions, causing heavy loss in the productivity of these crops [25,26]. According
to our previous studies, transcription factors including CaWRKY27b [27], CaWRKY28 [28],
CaWRKY40 [29], CabZIP23 [30], CabZIP63 [30], CaNAC2c [31], and CaNAC029 [31],
as well as other proteins such as CaCDPK29 [27] and chromatin remodeling-related
CaSWC4 [32], are involved and constitute regulatory networks in pepper immunity against
R. solanacearum and also participate in pepper thermotolerance. CaWRKY40 and CabZIP23
act crucially in this network, with CaWRKY40 being directly regulated by CabZIP23, to
activate pepper immunity and thermotolerance that are distinct in their nature. Both
CaWRKY40 and CabZIP63 are modulated by other regulatory proteins post-translationally,
for example, to activate pepper immunity, CaWRKY40 is regulated by CaWRKY28 [28]
and CabZIP63 is modulated by CaASR1, an abscisic acid-, stress-, and ripening-inducible
protein [33]. In addition, it has recently been found that the 14-3-3 proteins SlTFT4 and
SlTFT7 have been targeted by R. solanacearum type III effectors to suppress host immu-
nity [19,20], implying that 14-3-3 proteins might be involved in pepper immunity against R.
solanacearum. However, no 14-3-3 protein has been found to play a role in pepper immunity
against R. solanacearum. In the present study, a gene whose encoding amino acid sequence
showed the highest similarities to 16R, among all of the 14-3-3 proteins in potato, was found
to act positively in pepper immunity against R. solanacearum by interacting with CaASR1.

2. Results
2.1. Sequence Analysis of Ca16R

In a set of RNA-seq data in pepper plants challenged with R. solanacearum infec-
tion [34], a gene-encoding 14-3-3 protein was found to be upregulated by R. solanacearum
infection (RSI) at 24 hpi (hours post inoculation) from two pepper inbred lines (Figure 1B).
This implies its possible role in pepper immunity against R. solanacearum, since a gene
that is transcriptionally regulated by a pathogen infection is generally involved in plant
immunity against this pathogen [29]. The 14-3-3 protein (XP_016550580.1) exhibits high
amino acid sequence similarity to 16R among all of the 14-3-3 proteins in potato and to
its orthologues in other Solanaceae (Figure S1), so we named it Ca16R. To test whether
Ca16R was upregulated by RSI, the enrichment of cis-elements related to plant immunity
was scanned and it was found that a TGACG motif, which is bound by TGACG motif-
binding (TGA) transcription factors involved in the regulation of the salicylic acid (SA)
and methyl jasmonate (MeJA) signaling pathways [35], was present in the promoter of
Ca16R (Figure 1A). Consistently, Ca16R was found to be upregulated by RSI from 1 hpi to
48 hpi (Figure 1B) and by exogenously applied SA but downregulated by the exogenous
application of MeJA at 12 hpt (Figure 1C). In addition, the subcellular localization of Ca16R
in epidermal cells of Nicotiana benthamiana leaves was assayed, and the results showed that
Ca16R might locate in the cytoplasm and nuclei (Figure S2). All these data indicate that
Ca16R is upregulated by RSI, probably in an SA-signaling-dependent manner.
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Figure 1. Ca16R was upregulated by R. solanacearum inoculation. (A) Schematic diagram of the dis-
tribution of cis-elements on the promoter of Ca16R. (B) Ca16R was upregulated by R. solanacearum 
inoculation from 1 to 48 hpi, reaching the highest expression level at 12 hpi; FPKM: fragments per 
kilobase of exon model per million mapped fragments. (C) Ca16R was upregulated by the exoge-
nous application of SA but downregulated by exogenously applied MeJA. Data in (B,C) represent 
the mean ± SD from four independent experiments. Error bars indicate SD. Uppercase letters above 
the bars indicate significant differences (p < 0.01) calculated with Fisher’s protected t-test. 

2.2. Silencing of Ca16R by Means of Virus-Induced Gene Silencing Reduced Pepper Resistance 
to RSI 

The upregulation of Ca16R by RSI and the exogenous application of SA indicate its 
involvement in pepper immunity against RSI. To test this possibility, the effect of Ca16R 
silencing on pepper resistance to RSI was assayed, the success of Ca16R in pepper plants 
by VIGS was confirmed, and the transcript level of Ca16R in RSI-challenged TRV::Ca16R 
plants at 12 hpi was only 10% of that in the TRV::00 plants (Figure 2A). To detect the spec-
ificity of the Ca16R silencing, we tested the transcript levels of Ca14-3-3 6 
(Capana05g000289), Ca14-3-3 2 (Capana12g001301), and Ca14-3-3 C (Capana04g000995), 
which belong to different 14-3-3 subfamilies in the pepper genome. We found that the 
silencing of Ca16R did not reduce the transcript levels of the tested genes compared to the 
mock treatment (Figure S3), indicating the specificity of Ca16R silencing. The VIGS results 
showed that TRV::Ca16R plants exhibited reduced resistance to RSI compared to the 
TRV::00 plants, a higher dynamic disease index from 3 to 12 dpi was found in TRV::Ca16R 
plants than that in TRV::00 plants (Figure 2B,C), and higher bacterial growth was found 
in RSI-challenged TRV::Ca16R plants at 24 and 48 hpi than the wild-type plants (Figure 
2D). Consistent with the results of the expression of Ca16R upon exogenous application 
of SA and MeJA, we found that SA-signaling-dependent CaPR1 and CaNPR1 were re-
pressed by Ca16R silencing, while the expression of JA-dependent CaDEF1 and CaCOI1 
was upregulated by Ca16R silencing in pepper plants. These data indicate that Ca16R acts 
positively in pepper immunity against RSI in an SA-signaling-dependent manner and also 
plays a role in the antagonism between SA and JA signaling. 

Figure 1. Ca16R was upregulated by R. solanacearum inoculation. (A) Schematic diagram of the
distribution of cis-elements on the promoter of Ca16R. (B) Ca16R was upregulated by R. solanacearum
inoculation from 1 to 48 hpi, reaching the highest expression level at 12 hpi; FPKM: fragments per
kilobase of exon model per million mapped fragments. (C) Ca16R was upregulated by the exogenous
application of SA but downregulated by exogenously applied MeJA. Data in (B,C) represent the
mean ± SD from four independent experiments. Error bars indicate SD. Uppercase letters above the
bars indicate significant differences (p < 0.01) calculated with Fisher’s protected t-test.

2.2. Silencing of Ca16R by Means of Virus-Induced Gene Silencing Reduced Pepper Resistance to RSI

The upregulation of Ca16R by RSI and the exogenous application of SA indicate its
involvement in pepper immunity against RSI. To test this possibility, the effect of Ca16R
silencing on pepper resistance to RSI was assayed, the success of Ca16R in pepper plants by
VIGS was confirmed, and the transcript level of Ca16R in RSI-challenged TRV::Ca16R plants
at 12 hpi was only 10% of that in the TRV::00 plants (Figure 2A). To detect the specificity
of the Ca16R silencing, we tested the transcript levels of Ca14-3-3 6 (Capana05g000289),
Ca14-3-3 2 (Capana12g001301), and Ca14-3-3 C (Capana04g000995), which belong to differ-
ent 14-3-3 subfamilies in the pepper genome. We found that the silencing of Ca16R did not
reduce the transcript levels of the tested genes compared to the mock treatment (Figure S3),
indicating the specificity of Ca16R silencing. The VIGS results showed that TRV::Ca16R
plants exhibited reduced resistance to RSI compared to the TRV::00 plants, a higher dy-
namic disease index from 3 to 12 dpi was found in TRV::Ca16R plants than that in TRV::00
plants (Figure 2B,C), and higher bacterial growth was found in RSI-challenged TRV::Ca16R
plants at 24 and 48 hpi than the wild-type plants (Figure 2D). Consistent with the results
of the expression of Ca16R upon exogenous application of SA and MeJA, we found that
SA-signaling-dependent CaPR1 and CaNPR1 were repressed by Ca16R silencing, while the
expression of JA-dependent CaDEF1 and CaCOI1 was upregulated by Ca16R silencing in
pepper plants. These data indicate that Ca16R acts positively in pepper immunity against
RSI in an SA-signaling-dependent manner and also plays a role in the antagonism between
SA and JA signaling.
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Figure 2. Silencing of Ca16R significantly reduced pepper resistance to R. solanacearum inoculation. 
(A) The transcript level of Ca16R in R. solanacearum TRV::Ca16R plants inoculated after 12 h is only 
10% of that in the wild-type plants. (B) TRV::Ca16R pepper plants exhibited a significantly lower 
level of resistance to RSI compared to the wild-type plants. (C) TRV::Ca16R pepper plants exhibited 
a significantly higher level of dynamic disease index from 3 to 12 dpi compared to the wild-type 
plants. (D) TRV::Ca16R pepper plants provided a higher level of bacterial growth than the wild-type 
plants. Data are shown as the mean ± standard error of eight replicates. Different uppercase letters 
above the bars indicate significant differences (p < 0.01) calculated using Fisher’s protected t-test; 
CFU/cm2: the number of R. solanacearum colonies in 1 cm2 of leaf. (E) The R. solanacearum TRV::Ca16R 
pepper plants inoculated after 12 h exhibited a lower expression level of CaPR1 and CaNPR1 but a 
higher expression level of CaDEF1 and CaCOI1. Data in (A,E) represent the mean ± SD from four 
independent experiments. Error bars indicate SD. Uppercase letters above the bars indicate signifi-
cant differences (p < 0.01) calculated using Fisher’s protected t-test. 
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and SA-Signaling-Dependent PR Genes While Downregulating JA-Dependent PR Genes in Pep-
per Plants 

To confirm the results of the VIGS assay, we studied the effect of the transient over-
expression of Ca16R in leaves of pepper plants using the agroinfiltration method [30]. The 
success of Ca16R-GFP transient overexpression in pepper leaves was assayed using RT-
qPCR as well as Western blotting using anti-GFP (Figure 3A). HR cell death was found to 
be produced in pepper leaves by the transient overexpression of Ca16R; consistently, a 
darker trypan blue staining was also found to be produced by Ca16R transient overex-
pression (Figure 3B). Correspondingly, the higher ion leakage displayed by conductivity 
(Figure 3C) was found to be produced by the transient overexpression of Ca16R. In addi-
tion, the SA-signaling-dependent CaPR1 and CaNPR1 were upregulated, while the tested 
JA-dependent genes CaDEF1 and CaCOI1 were downregulated by the transient overex-
pression of Ca16R (Figure 3D). All these data confirmed the results of the VIGS that 
showed that Ca16R acts positively in pepper immunity against RSI. 

Figure 2. Silencing of Ca16R significantly reduced pepper resistance to R. solanacearum inoculation.
(A) The transcript level of Ca16R in R. solanacearum TRV::Ca16R plants inoculated after 12 h is only
10% of that in the wild-type plants. (B) TRV::Ca16R pepper plants exhibited a significantly lower
level of resistance to RSI compared to the wild-type plants. (C) TRV::Ca16R pepper plants exhibited
a significantly higher level of dynamic disease index from 3 to 12 dpi compared to the wild-type
plants. (D) TRV::Ca16R pepper plants provided a higher level of bacterial growth than the wild-type
plants. Data are shown as the mean ± standard error of eight replicates. Different uppercase letters
above the bars indicate significant differences (p < 0.01) calculated using Fisher’s protected t-test;
CFU/cm2: the number of R. solanacearum colonies in 1 cm2 of leaf. (E) The R. solanacearum TRV::Ca16R
pepper plants inoculated after 12 h exhibited a lower expression level of CaPR1 and CaNPR1 but
a higher expression level of CaDEF1 and CaCOI1. Data in (A,E) represent the mean ± SD from
four independent experiments. Error bars indicate SD. Uppercase letters above the bars indicate
significant differences (p < 0.01) calculated using Fisher’s protected t-test.

2.3. Transient Overexpression of Ca16R Enhanced HR (Hypersensitive Response) Cell Death and
SA-Signaling-Dependent PR Genes While Downregulating JA-Dependent PR Genes in Pepper Plants

To confirm the results of the VIGS assay, we studied the effect of the transient over-
expression of Ca16R in leaves of pepper plants using the agroinfiltration method [30].
The success of Ca16R-GFP transient overexpression in pepper leaves was assayed using
RT-qPCR as well as Western blotting using anti-GFP (Figure 3A). HR cell death was found
to be produced in pepper leaves by the transient overexpression of Ca16R; consistently,
a darker trypan blue staining was also found to be produced by Ca16R transient overex-
pression (Figure 3B). Correspondingly, the higher ion leakage displayed by conductivity
(Figure 3C) was found to be produced by the transient overexpression of Ca16R. In addi-
tion, the SA-signaling-dependent CaPR1 and CaNPR1 were upregulated, while the tested
JA-dependent genes CaDEF1 and CaCOI1 were downregulated by the transient overexpres-
sion of Ca16R (Figure 3D). All these data confirmed the results of the VIGS that showed
that Ca16R acts positively in pepper immunity against RSI.
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Figure 3. Transient overexpression of Ca16R triggered clear HR cell death and upregulated the ex-
pression of SA-dependent genes while repressing JA-dependent immunity-related genes. (A) Con-
firmation of the transient overexpression of Ca16R-GFP with RT-qPCR and with Western blotting 
using anti-GFP. (B) Transient overexpression of Ca16R after 96 hpi triggered HR cell death dis-
played by darker trypan blue staining. (C) Transient overexpression of Ca16R triggered higher ion 
leakage displayed by conductivity at 48 hpi. Data are shown as the mean ± standard error of six 
replicates. Different uppercase letters above the bars indicate significant differences (p < 0.01) based 
on Fisher’s protected t-test; µS/cm: microsiemens per centimeter. (D) SA-dependent CaPR1 and 
CaNPR1 were upregulated but JA-dependent CaDEF1 and CaCOI1 were downregulated by the tran-
sient overexpression of Ca16R. Data in (A,D) represent the mean ± SD from four independent ex-
periments. Error bars indicate SD. Uppercase letters above the bars indicate significant differences 
(p < 0.01) calculated using Fisher’s protected LSD test. The RSI pepper leaves were harvested 12 h 
after R. solanacearum inoculation. 
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To further confirm the results that indicate that Ca16R acts positively in pepper im-
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naceae, we generated Ca16R-overexpressing N. benthamiana T3 homozygous lines, in 
which two lines (#1 and #2) were randomly selected for further assay. The success of the 
ectopic overexpression of Ca16R was confirmed with RT-qPCR as well as Western blotting 
using anti-GFP (Figure 4A); the two overexpressing lines exhibited increased resistance to 
RSI compared to the wild-type plants (Figure 4B) and a lower level of dynamic disease 
index from 2 to 12 dpi (Figure 4C). In addition, a lower level of bacterial growth was found 
in the RSI-challenged Ca16R-overexpressing N. benthamiana plants than that in the wild-
type plants at 48 and 96 hpi (Figure 4D), and a higher level of NbPR1 but a lower level of 
NbCOI1 was found in the RSI-challenged Ca16R-overexpressing N. benthamiana plants 
than that in the wild-type plants (Figure 4E). All these data indicate that Ca16R acts in 
pepper immunity against RSI, and this mechanism might be conserved in Solanaceae. 

Figure 3. Transient overexpression of Ca16R triggered clear HR cell death and upregulated the expression
of SA-dependent genes while repressing JA-dependent immunity-related genes. (A) Confirmation
of the transient overexpression of Ca16R-GFP with RT-qPCR and with Western blotting using anti-
GFP. (B) Transient overexpression of Ca16R after 96 hpi triggered HR cell death displayed by darker
trypan blue staining. (C) Transient overexpression of Ca16R triggered higher ion leakage displayed
by conductivity at 48 hpi. Data are shown as the mean ± standard error of six replicates. Different
uppercase letters above the bars indicate significant differences (p < 0.01) based on Fisher’s protected
t-test; µS/cm: microsiemens per centimeter. (D) SA-dependent CaPR1 and CaNPR1 were upregulated
but JA-dependent CaDEF1 and CaCOI1 were downregulated by the transient overexpression of Ca16R.
Data in (A,D) represent the mean ± SD from four independent experiments. Error bars indicate SD.
Uppercase letters above the bars indicate significant differences (p < 0.01) calculated using Fisher’s
protected LSD test. The RSI pepper leaves were harvested 12 h after R. solanacearum inoculation.

2.4. Ectopic Overexpression of Ca16R Promoted Resistance of Nicotiana benthamiana to RSI

To further confirm the results that indicate that Ca16R acts positively in pepper
immunity against RSI and to determine whether the function of Ca16R is conserved in
Solanaceae, we generated Ca16R-overexpressing N. benthamiana T3 homozygous lines, in
which two lines (#1 and #2) were randomly selected for further assay. The success of the
ectopic overexpression of Ca16R was confirmed with RT-qPCR as well as Western blotting
using anti-GFP (Figure 4A); the two overexpressing lines exhibited increased resistance
to RSI compared to the wild-type plants (Figure 4B) and a lower level of dynamic disease
index from 2 to 12 dpi (Figure 4C). In addition, a lower level of bacterial growth was
found in the RSI-challenged Ca16R-overexpressing N. benthamiana plants than that in the
wild-type plants at 48 and 96 hpi (Figure 4D), and a higher level of NbPR1 but a lower level
of NbCOI1 was found in the RSI-challenged Ca16R-overexpressing N. benthamiana plants
than that in the wild-type plants (Figure 4E). All these data indicate that Ca16R acts in
pepper immunity against RSI, and this mechanism might be conserved in Solanaceae.
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Figure 4. Overexpression of Ca16R-GFP enhanced the resistance of N. benthamiana to RSI. (A) The 
success of Ca16R with RT-qPCR and with Western blotting using anti-GFP. (B) The plants of Ca16R-
overexpressing N. benthamiana lines #1 and #2 exhibited enhanced resistance to RSI compared to the 
wild-type plants. (C) The plants of Ca16R-overexpressing N. benthamiana lines #1 and #2 exhibited 
a lower disease index from 2 to 12 dpi compared to the wild-type plants. Data are shown as the 
mean ± standard error of twelve replicates. (D) The R. solanacearum-inoculated plants of Ca16R-
overexpressing N. benthamiana lines #1 and #2 supported a lower level of bacterial growth at 48 and 
96 hpi compared to the wild-type plants. Uppercase letters above the bars indicate significant dif-
ferences between mean values (p < 0.01), as calculated with an LSD test. The center line represents 
the median value and the boundaries indicate the 25th percentile (upper) and the 75th percentile 
(lower). Whiskers extend to the largest and smallest values. (E) The R. solanacearum-inoculated 
plants of Ca16R-overexpressing N. benthamiana lines #1 and #2 exhibited a higher level of NbPR1 
expression and a lower level of NbCOI1 expression compared to the wild-type plants. Data in (A,E) 
represent the mean ± SD from four independent experiments. Error bars indicate SD. Uppercase 
letters above the bars indicate significant differences (p < 0.01) calculated using Fisher’s protected 
LSD test. The RSI N. benthamiana leaves were harvested 12 h after R. solanacearum inoculation. 
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As 14-3-3 proteins fulfill their function mainly by interacting with other proteins, to 

isolate the possible interactors of Ca16R, we performed a coIP (co-immunoprecipitation) 
combined with a spectrum mass assay, and a subset of putative interacting proteins of 
Ca16R were isolated and determined (Table S2). CaASR1, which was previously found to 
act positively in pepper immunity against RSI by interacting with CabZIP63, was found. 
Its interaction with Ca16R was first confirmed with BiFC (Figure 5A), the results of which 
showed that the CaASR1-Ca16R interaction occurred outside the nuclei. The interaction 
between CaASR1 and Ca16R was further confirmed by means of a pull-down assay using 
prokaryotically expressed CaASR1-6×His and Ca16R-GST (Glutathione S-transferases) 
(Figure 5B). 

Figure 4. Overexpression of Ca16R-GFP enhanced the resistance of N. benthamiana to RSI. (A) The
success of Ca16R with RT-qPCR and with Western blotting using anti-GFP. (B) The plants of Ca16R-
overexpressing N. benthamiana lines #1 and #2 exhibited enhanced resistance to RSI compared to
the wild-type plants. (C) The plants of Ca16R-overexpressing N. benthamiana lines #1 and #2 ex-
hibited a lower disease index from 2 to 12 dpi compared to the wild-type plants. Data are shown
as the mean ± standard error of twelve replicates. (D) The R. solanacearum-inoculated plants of
Ca16R-overexpressing N. benthamiana lines #1 and #2 supported a lower level of bacterial growth at
48 and 96 hpi compared to the wild-type plants. Uppercase letters above the bars indicate significant
differences between mean values (p < 0.01), as calculated with an LSD test. The center line represents
the median value and the boundaries indicate the 25th percentile (upper) and the 75th percentile
(lower). Whiskers extend to the largest and smallest values. (E) The R. solanacearum-inoculated plants
of Ca16R-overexpressing N. benthamiana lines #1 and #2 exhibited a higher level of NbPR1 expression
and a lower level of NbCOI1 expression compared to the wild-type plants. Data in (A,E) represent the
mean ± SD from four independent experiments. Error bars indicate SD. Uppercase letters above the
bars indicate significant differences (p < 0.01) calculated using Fisher’s protected LSD test. The RSI
N. benthamiana leaves were harvested 12 h after R. solanacearum inoculation.

2.5. Ca16R Interacted with CaASR1

As 14-3-3 proteins fulfill their function mainly by interacting with other proteins, to isolate
the possible interactors of Ca16R, we performed a coIP (co-immunoprecipitation) combined
with a spectrum mass assay, and a subset of putative interacting proteins of Ca16R were
isolated and determined (Table S2). CaASR1, which was previously found to act positively
in pepper immunity against RSI by interacting with CabZIP63, was found. Its interaction
with Ca16R was first confirmed with BiFC (Figure 5A), the results of which showed that the
CaASR1-Ca16R interaction occurred outside the nuclei. The interaction between CaASR1 and
Ca16R was further confirmed by means of a pull-down assay using prokaryotically expressed
CaASR1-6×His and Ca16R-GST (Glutathione S-transferases) (Figure 5B).
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Figure 5. Ca16R interacted with CaASR1 using BiFC and a pull-down assay. (A) The data from BiFC 
showed that CaASR1 interacted with Ca16R in plasma membrane and cytoplasm in epidermal cells 
of N. benthamiana leaves; bar is 25 um. (B) The data from the pull-down assay showed that CaASR1 
interacted with Ca16R. Ni Smart beads and CaASR1-6×His were incubated with Ca16R-GST for 
three hours at 4 °C with gentle rotation. Eluting the bound proteins from the beads, they were found 
using either an anti-GST or an anti-6×His antibody. 

2.6. CaASR1 Was Promoted to Activate SA-Signaling-Mediated Immunity with Ca16R 
To test the possible role of the CaASR1-Ca16R interaction in pepper immunity 

against RSI, we studied the effect of Ca16R silencing on the immunity triggered by CaASR1 
transient overexpression, which was found in our previous study to activate SA-signaling-
mediated immunity through physical interaction with CabZIP63 [30,33,36] in RSI-chal-
lenged pepper plants; the success of CaASR1 transient overexpression and Ca16R silenc-
ing were confirmed using RT-qPCR (Figure 6A). The results showed that the transient 
overexpression of CaASR1 produced clear HR cell death, indicated by darker trypan blue 
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Figure 5. Ca16R interacted with CaASR1 using BiFC and a pull-down assay. (A) The data from BiFC
showed that CaASR1 interacted with Ca16R in plasma membrane and cytoplasm in epidermal cells
of N. benthamiana leaves; bar is 25 um. (B) The data from the pull-down assay showed that CaASR1
interacted with Ca16R. Ni Smart beads and CaASR1-6×His were incubated with Ca16R-GST for
three hours at 4 ◦C with gentle rotation. Eluting the bound proteins from the beads, they were found
using either an anti-GST or an anti-6×His antibody.

2.6. CaASR1 Was Promoted to Activate SA-Signaling-Mediated Immunity with Ca16R

To test the possible role of the CaASR1-Ca16R interaction in pepper immunity against
RSI, we studied the effect of Ca16R silencing on the immunity triggered by CaASR1 transient
overexpression, which was found in our previous study to activate SA-signaling-mediated
immunity through physical interaction with CabZIP63 [30,33,36] in RSI-challenged pepper
plants; the success of CaASR1 transient overexpression and Ca16R silencing were con-
firmed using RT-qPCR (Figure 6A). The results showed that the transient overexpression of
CaASR1 produced clear HR cell death, indicated by darker trypan blue staining (Figure 6B);
consistently, ion leakage reflected by conductivity was found to be triggered by CaASR1
transient overexpression (Figure 6C), but these were all significantly repressed by Ca16R si-
lencing in pepper leaves. In addition, SA-dependent CaPR1 and CaNPR1 were upregulated,
while JA-dependent genes including CaDEF1 and CaCOI1 were downregulated by the
transient overexpression of CaASR1 in TRV::00 pepper leaves; the upregulation of CaPR1
and the downregulation of CaDEF1 and CaCOI1 by the transient overexpression of CaASR1
were also blocked by Ca16R silencing (Figure 6D). These results indicate that CaASR1
and Ca16R synergistically activate SA-dependent immunity but repress JA-dependent
immunity against RSI in pepper plants.
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(B,C) Hypersensitive response-like cell death was observed by means of UV, trypan blue staining,
and intensive ion leakage displayed by conductivity. CaASR1 was transiently overexpressed in WT
and Ca16R-silenced pepper leaves, and silenced Ca16R weakened the hypersensitive response. Data
are shown as the mean ± standard error of six replicates. Different uppercase letters above the bars
indicate significant differences (p < 0.01) according to Fisher’s protected LSD test. (D) The activation
of SA-dependent CaPR1 and CaNPR1 by CaASR1 was weakened by Ca16R silencing upon RSI at 48
hpi with RT-qPCR. In (A,D), the mean ± SD of four duplicate results are shown. Based on Fisher’s
least significant difference (LSD) test, discrete capital letters on the bar graphs denote statistically
significant differences (p < 0.01) between mean values. The RSI pepper leaves were harvested 12 h
after R. solanacearum inoculation.

3. Discussion

Although 14-3-3 proteins have been implicated in plant immunity, their roles in
pepper immunity against RSI remain poorly understood. We provided evidence that
Ca16R, a 14-3-3 protein in pepper, has an active role in the defense of pepper against RSI
by interacting with CaASR1.

3.1. Ca16R Acts Positively in Pepper Immunity against RSI

Our data showed that Ca16R silencing reduced pepper resistance to RSI (Figure 2).
By contrast, the Ca16R transient overexpression triggered clear HR cell death (Figure 3), and
the ectopic overexpression of Ca16R consistently promoted the resistance of N. benthamiana
to RSI (Figure 4). In addition, Ca16R was upregulated by RSI from 1 to 48 hpi and reached
the maximum expression level at 12 hpi. Based on these data, we can speculate that in
non-stressed pepper plants, due to the silencing of Ca16R, no immunity is activated; how-
ever, when the plants are challenged by RSI, the upregulated Ca16R activates SA immunity.
These results are consistent with those of a previous study which found that 14-3-3s includ-
ing SlTFT4 and SlTFT7 in tomato are targeted by effectors from R. solanacearum [20], indi-
cating that multiple 14-3-3s might be involved in plant immunity against R. solanacearum.
The immune response of plants is produced by a large amount of transcription reprogram-
ming [37]. After plants perceive the invasion of pathogenic bacteria, a large number of
positive regulatory factors of immune response will be activated by transcription, thus
making plant cells enter a stress-resistant state [38]. These results also support the notion
that a gene upregulated by a given pathogen might play a role in plant immunity against
this pathogen [29,39,40].

3.2. Ca16R Acts Positively in SA-Dependent but Negatively in JA-Dependent Pepper Immunity
during Its Response to RSI at an Early Stage

As a hemibiotrophic pathogen, R. solanacearum infects the host plants biotrophically
and transforms into a necrotrophic pathogen when the tissue of the host plants are de-
stroyed [41]. Thus, plants might employ SA-signaling-mediated immunity to protect
themselves from R. solanacearum attack while repressing JA-mediated immunity [34] due to
its antagonistic effect on SA signaling. SA signaling has mainly been found to be involved in
plant immunity against pathogens of a biotrophic lifestyle, while JA-signaling-mediated im-
munity is mainly employed by plants to protect themselves from attack from necrotrophic
pathogens [42], and there is antagonism in general between SA- and JA-mediated signal-
ing [43–45]. Our data also showed that Ca16R act positively in pepper immunity against
RSI by activating SA-dependent CaPR1 and CaNPR1 [46,47] while repressing JA-responsive
CaDEF1 [48] and CaCOI1 [49,50], which is in agreement with the data that indicate that
clear HR cell death was triggered by Ca16R transient overexpression and is also consistent
with the upregulation of Ca16R during the early stage of RSI from 1 to 48 hpi, with its
maximum expression level found at 12 hpi. Thus, it can be speculated that Ca16R acts
positively in SA-dependent but negatively in JA-dependent pepper immunity during its
response to RSI at the early stage. The antagonism between these defense hormones shapes
the signal transduction pathway in plant immune response [44]. This is related to plant
response to different lifestyle pathogens. Cell death induced by SA accumulation can
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effectively prevent pathogens from plundering and spreading nutrients to hosts when
dealing with biotrophic and hemibiotrophic pathogens, while the situation is completely
opposite when dealing with necrotrophic pathogens [51]. It is important for plants to
maintain the survival of cells and tissues [52]. The transient overexpression of Ca16R in
pepper leaves accelerates cell death and supports the idea that it may be a member of SA
signaling (Figure 3B). Similar to Ca16R, some members of SA signaling also maintain a
correct immune response by inhibiting JA [53]. In conclusion, our findings suggest that
Ca16R not only acts as a positive immune regulator, but also contributes to the accurate
activation of pepper resistance to R.solanacearum infection.

3.3. Ca16R Potentiates SA Signaling but Represses JA Signaling through Physical Interaction
with CaASR1

It has been found that 14-3-3 proteins fulfill their functions in regulation of plant immu-
nity by interacting with client proteins as adaptor molecules stimulating protein–protein
interactions, or as regulators to regulate the subcellular localization of proteins or their
activity [14]. Our data showed that Ca16R interacts with CaASR1 (Figure 5), and CaASR1
was previously found to promote SA-signaling-mediated immunity by interacting with
CabZIP63, thereby promoting the binding of CabZIP63 to its SA-dependent immunity-
related target genes and their corresponding transcriptional activation [33]. Thus, it can
be speculated that Ca16R activates SA-signaling-mediated immunity by interacting with
CaASR1, which in turn causes CabZIP63 to activate SA-signaling-mediated immunity-
related target genes. The repression of JA signaling might be due to the antagonistic effect
of SA signaling [43–45].

Because CaASR1 interacts with CabZIP63 in the nucleus and with Ca16R outside the
nucleus (Figure 5A), Ca16R, CaASR1, and CabZIP63 do not play a role in forming the same
protein complex. We also found that Ca16R influences the expression of CabZIP63-targeted
downstream genes (CaPR1, CaNPR1, and CaDEF1), and Ca16R also supports the function of
CaASR1 in promoting SA and antagonizing JA. Therefore, we speculate that Ca16R affects
the transcriptional regulation of CabZIP63 by affecting the function of CaASR1, which
mediates the antagonism between SA and JA. Signal cascade mediated by phosphorylation
modification is an important transmission mechanism of plant immune signals in the
cytoplasm [54]. It works mainly through protein kinase, in which 14-3-3 protein plays an
auxiliary role [55,56]. Ca16R may support the function of CaASR1 by affecting phosphory-
lation modification so that it can affect the transcriptional regulation of CabZIP63 in the
nucleus. Given that CaCDPK15 [57] and CaCDPK29 [27] are involved in pepper immunity
against RSI, and CDPKs and MAPKs coordinate with 14-3-3s in regulating diverse aspects
of plant biology including metabolism, development, and stress responses [14,16], we
speculate that some unidentified kinases might be involved in the functional relationship
between Ca16R and CaASR1; however, further study is required to confirm this speculation.

Based on all the results, it can be concluded that Ca16R acts positively in pepper
immunity by interacting with CaASR1 to activate SA signaling at the early stage during
R. solanacearum infection.

4. Materials and Methods
4.1. Plant Materials and Pathogen Preparation

The pepper inbred lines HN42 and Nicotiana benthamiana were used in the present study;
the seeds were sown and plants were cultivated in pots in a growth room or growth chamber
under the same conditions described in our previous study [58]. Ralstonia solanacearum strain
FJC100301 [29] was used and the activation and culture methods of Ralstonia solanacearum
followed our previous study [58].

4.2. Inoculation of Pepper or Nicotiana benthamiana with R. solanacearum Cells

For the assay of the tolerance of plants to R. solanacearum inoculation, each pepper (6- to
8-leaf stage) or N. benthamiana (10- to 12-leaf stage) plant, with its roots being mechanically
damaged, was inoculated using 0.5 mL of cell suspension of R. solanacearum (OD600 = 1.0)
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with root irrigation. The inoculated plants were placed in the growth room under the
conditions of 28 ◦C, 90% humidity. For leaf inoculation with R. solanacearum, we inoculated
leaves with 100 µL of R. solanacearum cell suspension (OD600 = 0.3) at each inoculating site
using a syringe without needle.

4.3. Sequence Analysis and Primer Design

The ORF sequence of a given gene was found on the Solanaceae Genome Database
(https://solgenomics.net/, accessed on 4 June 2023), and ORF and virus-induced gene-
silencing (VIGS) primers were designed on DNAMAN6 software based on Gateway tech-
nology. In order to carry out amino acid homologous sequence alignment, we used the
Blast function of NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi) (accessed on 4 June 2023)
to obtain its homologous sequence in other species. We selected and downloaded some
homologous amino acid sequences from some Solanaceae plants and other non-Solanaceae
plants, and used DNAMAN software for homologous sequence alignment and evolutionary
tree analysis. Primers for RT-qPCR were designed using the NCBI Primer Blast function.

4.4. SA and MeJA Application

External spraying methods were used to treat SA and MeJA. The methods of external
spraying SA (5 mM) and MeJA (100 mM) were performed following our previous study [34].
SA and MeJA solution as well as distilled water (ddH2O) as a negative control were evenly
sprayed on the surface of pepper leaves using a sprayer, and transparent plastic bags were
used for isolation. The leaves were harvested at the corresponding time point and used for
subsequent experiments.

4.5. RNA Extraction and RT-qPCR Assay

The total RNA was isolated following the method in our previous study [27], using
2 mL RNase-free microcentrifuge tubes and three stainless beads and Tissue Lyser II
(Qiagen, Dusseldorf, Germany) to disrupt plant material frozen by liquid nitrogen, using
Trizol (Invitrogen, Carlsbad, CA, USA) and chloroform to isolate total RNA, and using
isopropyl alcohol to precipitate RNA. The RNA was cleaned with 75% ethanol and then
dissolved using ddH2O. The concentration and quality of RNA were determined with the
NanoDrop 2000 (ThermoScientific, Massachusetts, MA, USA). Then, 50 ng RNA with DNA
being digested, 250 ng of oligo dT(15) primer, and 200 unit reverse transcriptase and a One
Step PrimeScript™ cDNA Synthesis Kit (TaKaRa, Shigo, Japan) were used for a reverse
transcription reaction according to the following procedure: 42 ◦C, 60 min; 85 ◦C, 5 s; 4 ◦C
to produce cDNA. To detect the relative transcript levels of the target genes, a Bio-Rad
Real-Time PCR system (Bio-Rad Laboratories, Hercules, CA, USA) and SYBR Premix Ex
Taq (Perfect Real Time; TaKaRa, Shigo, Japan) were used with the specific primer pairs
listed in Table S1, using CaActin and NbEF1a as an internal reference gene to normalize the
transcript expression levels [59]. The Livak method was used to analyze the data [60].

4.6. Subcellular Localization and Bimolecular Fluorescence Complementation (BiFC) Assay

The subcellular localization of Ca16R was performed following the method previously
used [58]; GV3101 cells containing 35S:Ca16R-YFP were grown, collected, and re-suspended
with infection buffer; and an appropriate amount of the GV3101 cells was infiltrated into the
leaves of the Nicotiana benthamiana plants. The GV3101 cells containing 35S:NbH2B-RFP were
co-infiltrated into leaves as a nuclear marker. To assay the interaction between Ca16R and
CaASR1, GV3101 cells containing pSPYCE-Ca16R construct were mixed with pSPYNE-CaASR1
construct at a 1:1 ratio, and then were infiltrated into Nicotiana benthamiana leaves. A laser
scanning confocal microscope (TCS SP8; Leica Microsystems, Wetzlar, Germany) was used
to capture images in subcellular localization and BiFC at 48 hpi. The emission filter and
excitation wavelength were set to 488 nm (GFP), 510 nm (YFP), and 532 nm (RFP), with a
band-pass of 500 to 550 nm (GFP and YFP) and 590 to 640 nm (RFP). The picture size was
150 × 150 µm, the format was 1024 × 1024, the objective lens was 100×, and the scanning
frequency was 20 Hz for fluorescence photography and 144 Hz for cell observation.

https://solgenomics.net/
https://blast.ncbi.nlm.nih.gov/Blast.cgi


Plants 2024, 13, 1289 11 of 15

4.7. Vector Construction

A specified region in a gene’s CDS or 3′ or 5′ UTR was amplified with PCR using
specific primer pairs (Table S1) to create a vector for gene silencing; similarly, a full-length
ORF of a Ca16R was amplified using PCR employing appropriate primer pairs (Table S1)
to create a vector for overexpression. The PCR product was then cloned using a Gateway
cloning system (Invitrogen, 11789020) into the entry vector pDONR207 with BP reaction.
To construct a vector for overexpression, the subcellular location assay, and the BiFC
assay, the ORF was further cloned from the entry vector to the pEarleyGate plasmid
vectors pEarlyGate103, pEarlyGate201 [61]; pSPYCE, pSPYNE [62]; pDEST-17 (Invitrogen,
11803012) or pDEST-15 (Invitrogen, 11802014) using LR reaction. To construct a vector for
the gene-silencing assay, the specific gene fragment in CDS or 3′ or 5′UTR of a given gene
was cloned into the destination vector pPYL279 using LR reaction.

4.8. Virus-Induced Gene-Silencing (VIGS) Assay

To evaluate the role of Ca16R, VIGS was utilized following the protocol outlined in a
previous study [27]. The conversion of GV3101 cells was accomplished through a process
involving cold melting [63]. After mixing GV3101 cells carrying pTRV1 with GV3101 cells
containing pTRV2:00, pTRV2:CaPDS, and pTRV2:Ca16R in a 1:1 proportion, the mixture
was incubated at 28 ◦C with a speed of 60 rpm for 3 h. Subsequently, the combined bacterial
solution was injected into the cotyledons of pepper seedlings that were 2 weeks old, and
the seedlings were kept in conditions of darkness at 16 ◦C for 56 h.

4.9. Colony-Forming Units (CFU) and Disease Index Determination

To evaluate the growth of R. solanacaerum in plants, bacterial colony-forming units
were measured in the plant material inoculated with R. solanacearum, and four biological
replicates were performed in each group following the method described previously [58].
To measure the dynamic disease index in R. solanacearum-inoculated plants, the wilt symp-
toms of 12 plants were monitored from 1 to 12 hpi using a 0 to 4 score according to the
method described previously [58].

4.10. Electrolyte Leakage and Trypan Blue

Electrolyte leakage was measured as previously described [33]. The harvested pepper
leaves were washed with water, and then a hole punch was used to make leaf disks.
The disks (6 mm in diameter) were excised from the leaves of pepper plants and incubated
in 5 mL of ddH2O for 1 h at room temperature. The conductivity was measured using
Mettler Toledo 326 (Mettler Toledo, Zurich, Switzerland).

Trypan blue staining was employed to assess HR cell death and was performed
following the method used in our previous study [31].

4.11. Genetic Transformation of Nicotiana benthamiana

The genetic transformation of Nicotiana benthamiana followed the method used by
Regner et al. [64] and Bardonn et al. [65]. Leaf discs were transformed with GV3101 cells
containing objective vector and the acquired T0 plants were selected with 10% PPT (glu-
fosinate, Sigma-Aldrich, Shanghai, China, 45520) and later confirmed by using PCR with
specific primers (Table S1). The confirmed T0 plants were self-pollinated to produce the
seeds of T1 lines, which were separately harvested; the acquired seeds were selected with
10% PPT during germination. Similarly, the seeds of T2 and T3 lines were acquired, and the
homozygous T3 line plants were used for functional assays of the tested genes.

4.12. LC-MS/MS Analysis

To isolate interacting proteins of Ca16R, a LC-MS/MS approach was employed follow-
ing the method used by us previously [27,58]. The Agrobacterium tumefaciens GV3101 cells
containing Ca16R-GFP were transiently overexpressed in pepper leaves using agroinfiltration
(the GV3101 cells containing 35S:GFP as control); the agroinfiltrated leaves were harvested at
48 hpi for total protein isolation, Ca16R was IPed using anti-GFP, and the leaves were isolated
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and processed following Yang et al.’s method [58]. The samples were then analyzed using
an LTQ-Orbitrap XL mass spectrometer (Thermo Fisher Scientific, Massachusetts, USA), as
described earlier [66]. After dissolving the peptides in 10 µL of a 10% formic acid solution, an
online sodium spray ion source was used for LC-MS/MS analysis. Proteome Discoverer 2.4
was used to import the original mass spectrometry collection files and retrieve them. (MS1
tolerance: 10 ppm; MS2 tolerance: 0.05 Da; missed cleavage: 2). The pepper Zunla-1 database
(https://solgenomics.net/ftp/genomes/Capsicum_annuum/C.annuum_zunla/) (accessed
on 12 April 2022) was searched against the peptide fragments, and a BLAST search of the
UniProt database was used to annotate the protein functions.

4.13. Prokaryotic Expression

To obtain sufficient amounts of Ca16R-GST, CaASR1-6×His, pDEST-15, or pDEST-17,
a plasmid harboring an appropriate vector was transformed into the E. coli strain BL21
(DE3). The bacterial transformation, bacterial cultivation, induction of fused protein, and
protein isolation and purification were all performed following the method used by us
previously [27]. The soluble fusion protein’s presence in the E. coli cell lysate supernatant
was confirmed through the SDS-PAGE assay. Coomassie brilliant blue R250 (Sigma-Aldrich,
Shanghai, China, 1.12553) was used to stain the electrophoretic SDS-PAGE gel, followed
by de-colorization with a solution of 10% acetic acid and 5% ethanol to eliminate the
background. Observing the gel bands determined the successful expression of the protein.

4.14. Pull-Down Assay

Taking the interaction between two proteins, for example, Ca16R and CaASR1, the
prokaryotically expressed Ca16R-GST was incubated with CaASR1-6×His, using 6×His
and GST as negative controls. The protein mixture was subjected to 50 µL BeaverBeadsTM

IDA-Nickel (Beaver Biosciences Inc, Suzhou, China) magnetic beads to isolate and purify
CaASR1-6×His. The purified protein mixture was added to a 5×SDS-PAGE loading buffer
of 10 µL and denatured at 99 ◦C for 10 min. The protein mixture was separated using
SDS-PAGE, and the presence of Ca16R was detected with Western blotting using anti-GST
following the method we used previously [27].

4.15. Immunoblot Analysis

The pull-down eluted protein was examined with immunoblotting using anti-6×His and
anti-GST (Abmart, Shanghai, China). The protein mixture was separated using SDS-PAGE
and the protein in gel was transferred to a PVDF membrane activated by methanol, and the
PVDF membrane containing the protein was sealed with TBST-5% non-fat milk powder. After
that, the PVDF membrane was fully incubated with the antibody, and the excess antibody
was cleaned using TBST. The PVDF membrane was subjected to chemiluminescence reaction
with ECL luminescent (Biosharp, Guangzhou, China) substrate for 15 s, and the membrane
was photographed under a GE ImageQuant LAS 4000 (General Electric, Chicago, IL, USA).

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/plants13101289/s1. Figure S1: Sequence comparison of Ca16R with its
orthologues in other plant species; Figure S2: Subcellular localization of Ca16R in epidermal cells of
Nicotiana benthamiana leaves; Figure S3: Specificity of Ca16R silencing; Table S1: Primers used in the
present study; Table S2: List of the potential interacting partners of Ca16R revealed using IP-MS analysis.
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