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Abstract: This review covers the diagnostic potential of urinary biomarkers, shedding light on their
linkage to cancer progression. Urinary biomarkers offer non-invasive avenues for detecting cancers,
potentially bypassing the invasiveness of biopsies. The investigation focuses primarily on breast and
prostate cancers due to their prevalence among women and men, respectively. The intricate interplay
of urinary proteins is explored, revealing a landscape where proteins exhibit context-dependent
behaviors. The review highlights the potential impact of physical activity on urinary proteins,
suggesting its influence on tumorigenic behaviors. Exercise-conditioned urine may emerge as a
potential diagnostic biomarker source. Furthermore, treatment effects, notably after lumpectomy
and prostatectomy, induce shifts in the urinary proteome, indicating therapeutic impacts rather than
activating oncogenic signaling. The review suggests further investigations into the double-sided,
context-dependent nature of urinary proteins, the potential role of post-translational modifications
(PTM), and the integration of non-protein markers like mRNA and metabolites. It also discusses a
linkage of urinary proteomes with secretomes from induced tumor-suppressing cells (iTSCs). Despite
challenges like cancer heterogeneity and sample variability due to age, diet, and comorbidities,
harnessing urinary proteins and proteoforms may hold promise for advancing our understanding of
cancer progressions, as well as the diagnostic and therapeutic role of urinary proteins.

Keywords: urinary proteins; breast cancer; prostate cancer; physical activities; surgery; induced
tumor-suppressing cells (iTSCs)

1. Introduction

Tumor biomarkers are detectable within bodily fluids like peripheral blood and
urine [1–6]. Due to their direct involvement in urine generation or their close anatomical
proximity to the urinary tract, cancers affecting organs like the bladder, kidney, prostate, and
ovary stand to benefit from the utility of urinary biomarkers in diagnostic processes [2,7–13].
Urine biomarkers also hold diagnostic potential for breast cancer [14–16]. While urine
contains cancerous cells or constituents derived from compromised cells, encompassing
cellular debris and fragments of DNA, as well as diverse metabolites [17–19], this compre-
hensive review predominantly centers on urinary proteins in breast and prostate cancers,
both being prominently diagnosed among women and men, respectively [20–22].

A specific question revolves around the contrasting roles that urinary proteins can
assume in both promoting and inhibiting tumor growth. While serum protein markers
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employed for cancer detection are predominantly perceived as oncoproteins due to the
synthesis and secretion of growth-promoting proteins by cancer cells, recent discoveries
have unveiled the other side of perspectives [11,23]. We may consider interferon beta 1
(IFNβ1), which breast cancer cells secrete to reprogram stromal fibroblasts and foster tumor
expansion [24,25]. Recent investigations, however, have highlighted the dual-faced nature
of numerous oncoproteins contingent on the context [26,27]. This context-dependent be-
havior manifests in their potential to stimulate intracellular cancer cell proliferation, while
simultaneously exhibiting tumor-suppressive qualities in their extracellular forms [28].
In the realm of breast cancer, enolase 1 (ENO1) stands as an illustrative example. As a
glycolytic enzyme, ENO1 plays a significant role in cancer progression [29,30]. However,
we have previously reported that its extracellular manifestation takes on a contrary role,
functioning as a tumor suppressor [31]. This intricate interplay underscores the contex-
tually driven, dual-faceted nature of proteins like ENO1, thereby paving the way for the
identification of urinary proteins that can similarly act as both stimulators and suppressors
of tumorigenesis.

Prompted by the potential dual actions of these proteins, a thought-provoking query
arises: Could oncoproteins, commonly perceived and detected within urine, potentially
serve as either agents of oncogenesis or as antidotes to oncogenesis? While the therapeutic
merits of urine remain empirically unverified, the prospect of isolating anti-tumor proteins
or peptides from urine stands as a notion not easily dismissed. Noteworthy is the identi-
fication, by us and other researchers, of tumor-suppressing proteins like serine protease
8 (PRSS8) and nidogen 1 (NID1) within the urine of prostate cancer patients [32–35]. The
levels of these urinary proteins could undergo modifications contingent on external stim-
uli or therapeutic interventions. In the context of this assessment, our focus rests upon
two illustrative examples: the impact of physical activities and surgical interventions, par-
ticularly lumpectomy for patients with breast cancer and prostatectomy for patients with
prostate cancer. Both instances possess the potential to substantially reshape the profile of
urinary proteins.

2. Urinary Biomarkers for Breast Cancer and Prostate Cancer

It has been debatable whether screening breast cancer and prostate cancer does more
harm than good [36,37], whereas precise screening and diagnostics are recommendable
in determining the suitable course of cancer treatment [38]. Early detection not only
facilitates timely decision making but also augments both the quality of life and the overall
survival rate [39]. Leveraging urinary constituents as diagnostic indicators proves especially
advantageous for cancers intricately tied to the urinary tract, encompassing urothelial
carcinoma, bladder cancer, and non-muscle invasive bladder cancer [5,39–41]. Beyond this
domain of urinary tract-related cancers, urinary markers have demonstrated their utility in
detecting breast cancer and prostate cancer (Table 1).

Breast cancer: Breast biopsies, a commonly employed method, entail invasiveness
that can potentially expose patients to potential risks such as bruising, swelling, infection,
and bleeding at the biopsy site [42]. In contrast, urine-based diagnostics present a non-
invasive avenue [43]. A cluster of biomarkers is intertwined with the modulation of the
extracellular matrix, exemplified by the matrix metalloproteinase 9 (MMP9) and neutrophil
gelatinase-associated lipocalin (NGAL) complex [44].

According to Table 1, the elevated NGAL level correlates with the advancement of
breast cancer, with NGAL-overexpressing tumors coinciding with heightened MMP9 lev-
els. Comparative studies indicate that an escalated urinary MMP9 level corresponds to a
fivefold risk of atypical hyperplasia and a more than thirteenfold risk of lobular carcinoma
in situ (LCIS) compared to normal controls. Additionally, an augmented urinary concen-
tration of disintegrin and metalloproteinase domain-containing protein 12 (ADAM12) is
evident in women with atypical hyperplasia and LCIS [45].

Findings also indicate the significant elevation of a matrix metalloproteinase 1 (MMP1)
and CD63 complex in the urine of breast cancer patients [46]. CD63, a cell surface molecule,
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binds with tissue inhibitor of metalloproteinases 1 (TIMP1). Furthermore, extracellular
matrix protein 1 (ECM1), microtubule-associated serine/threonine kinase family member
4 (MAST4), and Filaggrin (FLG) exhibit heightened levels in the urine of breast cancer
patients [47]. Apart from extracellular matrix proteinases, endothelial-derived gene 1 (EG1),
expressed in both endothelial and epithelial cells, displays elevated levels not only in breast
cancer but also in colon, prostate, and lung cancers [48]. Similarly, trefoil factor 1 (TFF1), a
small secretory protein, demonstrates elevated levels across various cancer types, including
breast cancer [30]. Moreover, ECM1, MAST4, FLG, and MAST4 are implicated as potential
biomarkers for the preliminary indication of breast cancer presence [49].

Prostate cancer: At present, the serum prostate-specific antigen (PSA) stands as the
foremost pivotal biomarker for discerning, tracking, and overseeing the treatment of
prostate cancer [4,50–53]. Despite its instrumental role in substantially reducing prostate-
cancer-related mortality, however, its utilization has also brought about the unintended con-
sequences of excessive diagnosis and overtreatment of low-risk prostate cancer cases [54–56].
Consequently, an imperative exists for the development of more dependable, non-invasive
approaches to prostate cancer diagnosis. Beyond PSA, another notable biomarker is prostate
cancer antigen 3 (PCA3), marked by robust expression in individuals afflicted with prostate
cancer [57]. This led to the FDA’s 2012 approval of PCA3’s use as a urine-based diagnostic
tool for prostate cancer. Notably, the PCA3 level has been indicated to be independent
of prostate size and serum PSA level [58–60]. Furthermore, within the urine of prostate
cancer patients, the presence of Golgi membrane protein 1 (GOLM1) immunoreactivity
has been identified, suggesting its potential as a biomarker for clinically localized prostate
cancer [61].

In addition, Engrailed 2 protein (EN2), a transcription factor bearing a homeodomain,
is secreted into the urine by prostate cancer cells, distinct from normal prostate tissue and
benign prostatic hypertrophic cells that do not exhibit EN2 secretion [62]. The levels of
urinary EN2 before radical prostatectomy have been linked to the stage of the tumor [63].
Another notable biomarker, TMPRSS2-ERG (V-ets erythroblastosis virus E26 oncogene
homolog), fused with SAM-pointed domain-containing Ets-like factor (SPDEF), is recog-
nized as a prostate-cancer-specific marker in urine [64,65]. Elevated SPDEF levels correlate
with heightened aggressiveness and metastatic potential [48]. Furthermore, the urinary
levels of β-2-microglobulin (β2M), pepsinogen A3 (PGA3), and mucin 3 (MUC3) were
found to be elevated in prostate cancer patients [66]. Furthermore, urinary CD105 exhibited
increased levels in men with biopsy-positive prostate cancer in comparison to those with
biopsy-negative results [67]. The interleukin 18 binding protein (IL18BP), a potent inhibitor
of IL-18, was also noted to be elevated in the urine of individuals with prostate cancer [47].

It is worth noting that urinary proteins are derived from blood filtration processes
occurring in the kidneys. In cases where the filtration membrane of the kidneys is com-
promised by prostate cancer, it can result in the excretion of abnormal substances into the
urine through this damaged filtration system. This condition, known as proteinuria, may
arise due to various factors including kidney diseases and immune disorders [68,69].

Table 1. Urinary biomarkers for breast cancer and prostate cancer.

Breast Cancer

Gene Name Function FDA
Approval * Ref.

MMP9
NGAL

matrix metalloproteinase 9
facilitating angiogenesis and tumor growth

Yes
[44]neutrophil gelatinase-associated

lipocalin Yes

MMP1
CD63

matrix metalloproteinase 1
involved in the cancer development of breast cancer

Yes
[46]

CD63 Yes
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Table 1. Cont.

Breast Cancer

Gene Name Function FDA
Approval * Ref.

MMP9
ADAM12

matrix metalloproteinase 9 urinary MMP9 and ADAM12 levels significantly
increase with disease progression in breast cancer

patients and correlate with the disease stage

Yes
[45]

a disintegrin and metalloprotease 12 No

EG1 endothelial-derived gene 1 EG1 stimulates cellular proliferation No [70]

TFF1 trefoil factor 1 the tumor grade was correlated with TFF1 No [48]

ECM1
MAST4

Filaggrin

extracellular matrix protein 1

expression is highly significantly correlated with
survival in breast cancer patients

No

[49]microtubule-associated serine/
threonine kinase family member 4 No

filaggrin No

Prostate Cancer

Gene Name Function FDA
Approval * Ref.

PCA3 prostate cancer-associated 3 predict the tumor volume, extracapsular extension, and
positive surgical margins in prostatectomy specimens Yes [58,71]

EN2 engrailed 2
pre-surgical urinary EN2 levels were associated

with increasing tumor stage and closely reflected
the volume of cancer in prostate cancer specimens

No [62,63]

TMPRSS2-ERG
SPDEF

transmembrane proteinase serine
2:v-ets erythroblastosis virus E26

oncogene homolog predicting initial biopsy results in prostate cancer
No

[64,65]
SAM-pointed domain-containing

Ets-like factor No

β2M
PGA3
MUC3

β-2-microglobulin
distinguish between benign prostate hyperplasia

(BPH) and localized prostate cancer

No
[66]pepsinogen A3 No

mucin 3 No

CD105 endoglin urinary endoglin levels in men with prostate cancer
correlated with radical prostatectomy tumor volume No [67]

IL18BP interleukin-18 binding protein IL18BP merits further study as a marker of
aggressive prostate cancer and as a therapeutic target No [47]

GOLM1 Golgi membrane protein 1 GOLM1 is a resident cis-Golgi membrane protein of
unknown function No [61]

* Searched for the list of qualified biomarkers [72].

3. Effects of Physical Activities

Physical activities have been known to be beneficial by strengthening bone and
muscle and reducing inflammatory reactions, which are evidenced by serum proteome
analyses [73–77]. Urine represents a filtrate of blood, thus rendering its protein constituents
qualitatively akin to those present in the bloodstream. However, in comparison to serum
proteins, urinary proteins tend to be more dilute and generally exhibit less complexity.
Robust epidemiological evidence substantiates the protective impact of physical activity
on breast cancer risk, recurrence, and mortality [78–82]. Research studies have elucidated
that moderate exercise can distinctly enhance the prognosis of cancer patients by curbing
tumor growth and forestalling metastasis [83–87]. Hydroxyproline serves as a prevalent
urinary marker, indicative of the extent of connective tissue degradation encompassing
bone, muscle, and other collagen and/or elastin-rich tissues [88–90]. Furthermore, research
has indicated that physical exercises, particularly aerobic modalities, bring about a reduc-
tion in urinary liver-type fatty acid binding protein (L-FABP) levels, as well as a decrease in
urinary albumin excretion [91–93].

It is reported that mice bearing mammary tumors that had access to running wheels
displayed diminished growth in both MCF-7 and MDA-MB-231 tumors [94–96]. In a
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prior study of ours, alterations in urinary proteins were observed by collecting samples
from mice subjected to 5 min tibia loading, as well as from human individuals before
and after a 30 min session of step aerobics. In comparison to urine samples collected
before these loading activities or step aerobics, post-activity urine exhibited a reduction
in cellular viability, proliferation, migration, and invasion of tumor cells in cell culture
investigations [97]. After the activity, post-activity urine exhibited a significant increase in
dopamine and melatonin levels while concurrently decreasing cholesterol, a compound
associated with tumor promotion (Figure 1).
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Figure 1. Proposed regulatory mechanism of the action of loading/aerobics-conditioned urine. Tibia
loading in mice elevates urinary levels of tumor-suppressing dopamine and melatonin, simultane-
ously reducing tumor-promoting cholesterol. Similarly, in humans, activities like step aerobics yield
these effects, inhibiting tumor-promoting genes such as Snail, MMP9, and Runx2 in tumor cells
through the downregulation of Lrp5. Of note, Lrp5: low-density lipoprotein receptor-related protein
5, CSF1: macrophage colony-stimulating factor 1, CD105: endoglin, MMP9: matrix metallopro-
teinase 9, Runx2: runt-related transcription factor 2, and PPARγ: peroxisome proliferator-activated
receptor gamma.

Prior research has established that dopamine and melatonin can downregulate Lrp5, a
co-receptor involved in Wnt signaling pathways [91–93]. On the contrary, cholesterol is
known to upregulate Lrp5, aligning with the observed effects of urine on Lrp5 expression.
Furthermore, individuals conditioned by aerobic exercise displayed a substantial reduction
in CD105 levels in their urine. CD105 is positioned downstream of Lrp5 and CSF1, with the
latter being a hematopoietic growth factor linked to bone homeostasis and the progression
of various cancers [93]. Additionally, CD105 is a component of the TGFβ receptor complex,
and its role extends to tumor-associated angiogenesis [94]. These findings collectively
contribute to the suppression of genes known to promote tumorigenesis, such as Snail,
MMP9, Runx2, and PPARγ, within tumor cells. Additionally, administering diluted post-
activity urine samples via intraperitoneal injection led to decreased tumor weight in the
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mammary fat pad within a mouse model of breast cancer [97]. These outcomes collectively
underscore the potential of loading-conditioned urine not only as a prospective tumor
suppressor but also as a wellspring of diagnostic biomarkers [98–100].

Aerobic exercise can also reduce the adverse effects of prolonged sitting, hypertension,
and interstitial damage in patients with chronic kidney disease, by decreasing the level of
urinary liver-type fatty acid binding protein (L-FABP) [91]. The level of urinary alkaline
phosphatases is also reported to change in young men before and after 3 km running [101].
Similarly, swimming exercises can alter urine proteomics [102]. A study has been conducted
to investigate the effects of long-distance cycling on specific urinary biomolecules [103].
The participants exhibited significant increases in the levels of serum lactate, uric acid,
and bilirubin, even though they are not proteins. Notably, uric acid plays a crucial role in
vascular regulation by increasing oxidative stress and promoting nitric oxide clearance,
thereby inducing vasodilation [104]. An increase in bilirubin levels may contribute to
a reduction in cardiovascular risk [105]. In summary, the growing body of evidence
supports the beneficial impact of physical activity on both urinary proteins and non-protein
biomolecules.

4. Treatment Effects

As surgical treatment affects urinary proteomes, two studies are reported for lumpec-
tomy for breast cancer and prostatectomy for prostate cancer. When compared to healthy
subjects, a noteworthy increase in the concentration of urinary protein ADAM 12 was
observed in patients with breast cancer who underwent lumpectomy. While the reported
study cannot definitively establish a direct connection between the concentration of urinary
protein ADAM 12 and the status and stage of breast cancer, it does suggest that surgical
tumor resection has an impact on urinary protein [106]. Additionally, in the case of urine
samples collected from patients with breast cancer following surgery or other treatments, a
correlation has been established between urinary estrogen metabolism levels and breast
cancer risk [107].

Regarding prostatectomy, distinct discrepancies in urinary proteomes were discerned
between two groups of prostate cancer patients: those with positive surgical margins
and those with negative margins. Notably, the positive margin group exhibited ele-
vated levels of three proteins—cyclin-dependent kinase 6, galectin-3-binding protein, and
L-lactate dehydrogenase C chain [108]. In a separate study, urine samples were procured
from patients with prostate cancer and breast cancer, all of whom underwent external
beam radiation therapy, without concurrent chemotherapy. The findings illuminated el-
evated levels of VEGF and MMP in patients with cancer compared to those in normal
controls [109,110]. Furthermore, individuals with metastatic cancer displayed even higher
VEGF and MMP levels when contrasted with patients diagnosed with non-metastatic
cancer [109].

One of the primary objectives is to harness urinary proteins as a dual-purpose
tool—both for diagnosis and as an indicator of the effectiveness of treatments like chemother-
apy, radiotherapy, and surgery. Our earlier research unveiled distinctive shifts in the urinary
proteomes of prostate cancer patients, showcasing variable levels of tumor-modulating
proteins in urine samples taken before and after prostatectomy (Figure 2). Initially, we
found that applying diluted urine obtained from patients after prostatectomy, a proce-
dure entailing the surgical removal of the prostate led to a substantial reduction in the
tumorigenic behaviors exhibited by prostate tumor cells. In post-prostatectomy urine, the
levels of angiogenin [32,111]—a promoter of blood vessel formation—were significantly
diminished [32]. Additionally, the post-prostatectomy urine demonstrated heightened
concentrations of three cell-membrane proteins: PRSS8 [112], nectin 2 (PVRL2) [113], and
NID1 [114]. Notably, these proteins exerted tumor-suppressive actions within the extracel-
lular domain by inhibiting the expression of oncogenic genes such as Snail and TGFβ.
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Figure 2. Putative tumor-suppressing mechanism by urine from the post-prostatectomy patients. Post-
prostatectomy patient urine samples exhibit higher concentrations of PRSS8, PVRL2, and NID1. These
elements, recognized as tumor suppressors, effectively decrease the presence of tumor-promoting
proteins like TGFβ and Snail. Simultaneously, they enhance the expression of p53 and c-caspase 3,
thereby triggering the apoptosis of prostate cancer cells. Of note, ANG: angiogenin, PRSS8: prostasin,
PVRL2: nectin 2, and NID1: nidogen 1.

Of significant importance, NID1 emerges as a multifaceted protein with a dual role,
whereby its functional impact varies based on its cellular location. In its extracellular
milieu, NID1 exhibits tumor-suppressive qualities [115], while its intracellular presence
potentiates tumor-promoting effects [116,117]. This dichotomy is notably demonstrated in
the context of cell migration, where the introduction of recombinant NID1 or conditioned
medium from cells overexpressing NID1 led to diminished migratory behavior in triple-
negative breast cancer. These observations suggest that NID1’s role as a tumor suppressor
could potentially be harnessed as a valuable therapeutic avenue for the treatment of triple-
negative breast cancer.

Utilizing quantitative-mass-spectrometry-based proteomic analysis, it was unveiled
that NID1 proteins are secreted by endothelial cells, exerting an inhibitory effect on the
migration of cancer cells induced by endothelial cells [115]. However, it is noteworthy that
NID1’s association with ovarian cancer reveals a contrasting facet. In this context, NID1
contributes to a poor prognosis by promoting invasion, migration, and chemoresistance
in ovarian cancer through the activation of ERK/MAPK signaling [114]. On a related
note, the role of the serine protease PRSS8 emerges as a potential suppressor in colorectal
carcinogenesis and metastasis [118–120]. Its ectopic expression has demonstrated the
capability to inhibit tumor growth both in vitro and in vivo, in addition to curbing the
migration and invasion of non-small-cell lung cancer cells [121].

An advantage of using urine as a medium over blood is the relative stability of
urinary proteins, as they do not undergo significant proteolysis within several hours of
collection. Therefore, urinary proteomics offers an attractive avenue for the discovery of



Proteomes 2024, 12, 1 8 of 16

cancer biomarkers [122]. In the urinary proteomes of human prostate cancer specimens
obtained after prostatectomy, variations have been observed between groups of patients
with positive and negative surgical margins [108]. These differences can be linked to the
underlying molecular mechanisms of prostate cancer development [108].

5. Double-Sided Role of Urinary Proteins

Not only urinary proteins but also some tumor suppressor proteins are double-sided
and very dependent on the environment. Some oncogenic proteins in the cytoplasm and
cell membrane are thought to promote tumor cell proliferation and migration but may
conversely act as tumor suppressor proteins in the extracellular domain. For instance,
extracellular Eno1 recombinant proteins are reported to suppress the metabolic activities
of breast cancer cells and act as cytotoxic agents by downregulating Snail, TGFβ, and
MMP9 [123]. By contrast, the overexpression of Eno1 in breast cancer cells upregulated the
above tumorigenic genes and elevated their proliferation and transwell invasion [124]. The
protein NID1 in urine and its recombinant protein reduced the EdU-based proliferation
and scratch-based motility of TRAMP prostate cancer cells. In contrast, overexpression of
NID1 stimulated the EdU-based proliferation and scratch-based motility of TRAMP cells.
This shows that extracellular NID1 acts as a tumor suppressor gene, while intracellular
NID1 acts as a tumor-promoting gene [32]. In addition, urinary protein CD14 inhibits
gastric cancer cell invasion and epithelial-mesenchymal transition after knockout in gastric
cancer cells MGC-803, and our previous study showed that recombinant protein CD14 can
significantly inhibit the proliferation and invasion of TRAMP cells outside cells [32,125].

An intriguing question arises when considering the dual role of urinary proteins and
their potential connection to proteoforms, which denote the diverse molecular forms of
proteins. It remains uncertain whether a protein’s functionality is influenced solely by
distinct cellular locations, such as cytoplasmic and extracellular domains, or if variations in
functions, like those in cell signaling, cell adhesion, and interactions, stem from modifica-
tions, cleavage, and other alterations. Addressing this question requires further studies
to unravel the intricate relationships between urinary proteins, proteoforms, and their
multifaceted roles. It is important to note that the double-sided role of urinary proteins may
differ depending on not only their locations in the cytoplasm, extracellular space, or urine
but also the distinctive microenvironments associated with cancer and interacting cells.
The role in the urine can also be affected by age, diet, and hydration status. Given these
complexities, further analyses are recommended to characterize their value as diagnostic
and prognostic tools.

6. Future Perspective

To comprehensively unravel the intricate role of urinary proteins in individuals af-
flicted with breast and prostate cancer, it is advisable to delve into the following four
avenues of investigation (Figure 3).
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Comparison with Serum Components: Exploring the parallelisms and divergences
between urinary and serum proteins holds immense potential [126,127]. Establishing both
the similarities and disparities could shed light on the unique attributes of urinary pro-
teins and enable a more comprehensive understanding of their diagnostic and prognostic
significance. An essential aspect of this endeavor involves standardizing the collection
methodologies and ensuring consistency and reliability in the data obtained from serum
and urine samples.

Dual-Faced Functionality: Recognizing the dual roles of urinary proteins—whether
they act as oncogenic agents or antioncogenic factors like tumor-suppressing proteins from
iTSCs—requires meticulous examination [128]. This investigation would entail deciphering
the intricate interplay of these proteins in different contexts and disease stages. By delineat-
ing the mechanisms through which they can either stimulate or inhibit tumorigenesis, a
clearer picture of their contributions to cancer development and progression can be formed.

Proteoform Changes: Understanding the diverse proteoforms of urinary proteins
holds critical importance in the realms of biomarker discovery, disease diagnostics, and
comprehending the dynamic nature of the urinary proteome. Proteoform alterations, en-
compassing post-translational modifications (PTMs), the cleavage of larger proteins into
smaller subunits, and amino acid sequence variants, play a pivotal role in distinguishing
both normal and pathological conditions. PTMs can occur shortly after translation or at
any stage in a protein’s lifecycle, contributing significantly to our functional understand-
ing of biology. Phosphorylation, one of the most extensively studied modifications, can
dynamically and rapidly regulate various signaling pathways in both health and disease
conditions [129].

Studies report altered patterns of protein tyrosine phosphorylation in the urine of
patients with bladder cancer [130]. Additionally, disease-associated modifications in the
glycosylation of urinary proteins have been well documented [131], with anomalies in
glycosylation linked to the development and progression of malignant tumors. Notably,
research has indicated the presence of sialylated N-glycans in PSA found in the serum of pa-
tients with prostate cancer [132]. Despite urine being a widely accessible biological sample,
easily obtained for analysis, there remains a scarcity of PTM information, such as phos-
phorylation, glycosylation, acetylation, and SUMOylation, for urine protein analysis [133].
The development of phosphorylation information related to urine proteins in patients with
breast and prostate cancers could pave the way for personalized medical approaches.

Beyond the protein modifications such as phosphorylation and glycosylation, the
dynamic world of urinary proteins extends to a fascinating realm of cleavage, giving rise
to fragmented proteoforms with potential implications as antigens or pro-/anticancer
peptides. Notably, there is an ongoing exploration of peptides derived from tumor anti-
gens, presenting a promising avenue for the advancement of peptide-based cancer vac-
cines [134,135]. Moreover, a noteworthy stride in anticancer research involves the synthesis
of peptides sourced from the secretome of both cancer cells and iTSCs [136,137]. It is
imperative to delve into the intricate landscape of these urinary protein fragments, par-
ticularly the smaller subunits, intending to unlock their full potential for diagnostic and
therapeutic applications. The potential utility of these subunits in precision medicine, as
well as their role in unraveling novel pathways for targeted therapies, underscores the
significance of advancing our understanding and application of urinary proteins. Thus, a
concerted effort to unravel the complexities and nuances of these urinary protein fragments
is recommended, offering a promising frontier for future breakthroughs in diagnostics
and therapeutics.

Beyond Protein Markers: While proteins are vital players, delving into the realm
of non-protein markers can broaden our understanding. The inclusion of markers like
mRNA [138,139], metabolites [140,141], and volatile organic compounds (VOC) [39,142,143]
offers a multi-dimensional perspective on cancer-related alterations. Exploring these
components in tandem with urinary proteins could provide a more holistic view of the
molecular signatures associated with breast and prostate cancer. This comprehensive



Proteomes 2024, 12, 1 10 of 16

approach might uncover novel diagnostic, prognostic, and therapeutic insights, potentially
enhancing patient care.

In sum, through an integrated investigation spanning comparisons with serum compo-
nents, an exploration of dual roles, and the incorporation of non-protein markers, a deeper
comprehension of the intricate role of urinary proteins in breast and prostate cancer patients
can be attained. It is highly desirable to identify biomarkers that could be monitored in
urine for the follow-up of cancer progression, their role in survival, diagnosis, response,
and changes due to the effect of interventions.

7. Limitations of This Review

Amidst the intricate array of constituents found within the urine, the urinary proteome
remarkably lends itself to clinical investigation due to several key advantages. These advan-
tages stem from the abundant availability of urine samples, the noninvasive methodology
of collection, and the potential for repeated sampling. The study of urinary proteomes
offers significant advantages for clinical research, yet the complexities associated with
sample variability, proteome intricacies, diagnostic specificity, and sample standardization
warrant careful consideration.

Several reports highlight potential challenges and limitations in analyzing urinary
proteomes. One significant consideration is the influence of diet, specifically diet-induced
hypercholesterolemia, which has been observed to affect the expression of oxidized low-
density lipoprotein [144]. Notably, oxidized low-density lipoprotein has been identified
as a potential biomarker for bladder cancer. Furthermore, age dependence represents
another constraint. For example, while S100 calcium-binding protein A16 (S100A16) holds
promise as a prognostic biomarker for bladder cancer, its expression is associated with
age, recurrence rates, and cancer-specific mortality [145]. It is also important that the
biomarkers for cancer should be distinguished from those for common urinary problems
such as bladder infections and kidney diseases.

Despite these limitations, harnessing the potential of urinary proteins provides a
valuable avenue for advancing our understanding of diseases like breast and prostate
cancer. The advancing field of comprehensive genetic analysis, made possible by the strides
in next-generation sequencing, could significantly impact the future utilization of urinary
markers [146].

8. Conclusions

Urine composition, influenced by physiological factors and external stimuli like physi-
cal activity, holds crucial diagnostic information, especially for breast and prostate cancer.
Examining urinary proteomes reveals a dual-role landscape, with proteins exhibiting both
tumor-promoting and tumor-suppressive roles. In breast cancer, non-invasive detection
through urinary biomarkers, such as MMP9, NGAL, CD63, ECM1, MAST4, and Filaggrin,
offers insights into disease progression. For prostate cancer, PSA, PCA3, GOLM1, and
EN2 serve as valuable markers, highlighting diagnostic and prognostic potential. The
impact of physical activity on urinary proteins, including loading-conditioned urine, shows
promise as a tumor suppressor and diagnostic source. Post-lumpectomy and prostatectomy-
induced shifts in the urinary proteome also indicate the potential for these proteins to reflect
treatment effects. Further investigations comparing urinary and serum components, un-
derstanding the dual roles of urinary proteins, and incorporating non-protein markers can
deepen insights into their role in cancer. Despite challenges, harnessing urinary proteins
holds the potential to enhance disease understanding and patient care. Acknowledging
the inherent heterogeneity and variations arising from factors like age and diet, the utiliza-
tion of urinary proteins holds the potential to enhance our understanding of cancers and
improve patient care.
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