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Abstract: This paper investigates an improved criterion to synthesize dissipative observer-based
controllers for Markovian jump fuzzy systems under model uncertainties. Since fuzzy-basis functions
include some immeasurable state variable or uncertain parameters, there are differences in the fuzzy-
basis functions between controller and plant, which is a mismatched phenomenon. This work presents
the first attempt for applying double-fuzzy summation-based Lyapunov functions for the observer-
based control scheme of the Markov jump fuzzy system regarding the mismatched phenomenon. To
be specific, the dissipative conditions are formulated in terms of uncertain parameterized bilinear
matrix inequalities. Based on the improved relaxation techniques, a linear-matrix-inequality (LMI)-
based algorithm is proposed in the framework of sequence linear programming matrix method. The
obtained observer-based controller ensures that the closed-loop system is stochastically stable, and
the dissipative performances produce less conservative results compared to preceding works via two
numerical examples.

Keywords: markov jump fuzzy systems; dissipative control; mismatched phenomenon; model
uncertainties
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1. Introduction

The development of control engineering is faced with a class of hybrid systems with
probabilistic sudden changes to their behavior, named the stochastic hybrid system. The
systems have attracted a huge consideration from many control theorists due to their
abilities in showing hybrid dynamics with probabilistic changes. Markov jump systems
(MJSs) whose jumping parameters are governed by the Markov process belong to the class
of the stochastic hybrid system, and have expressed great potential to represent random
abrupt variations such as component fault or failures, sudden environmental changes, and
changing subsystem interconnections. In the view of realistic problems, discrete-time MJSs
have played important roles to implement digital experiments including network control
systems [1–3], power systems [4–6] and communication systems [7,8].

The Takagi–Sugeno (T-S) fuzzy model is well known as an effective tool to describe
nonlinear dynamics via an average sum of given linear models. Recent years have wit-
nessed a massive increase of studies related to the systematic control design of nonlinear
systems using The T–S fuzzy model [9–11] According to this trend, the T-S fuzzy model
has been investigated intensively to cover various nonlinear control problems [12,13]. In
many situations, all state variables are not fully measurable. The observer-based fuzzy
control scheme needs to estimate FBFs and state variables, then establish fuzzy control
laws [13–15]. When the premise variables of the T–S fuzzy system are related to the im-
measurable state, that leads to a mismatched phenomenon between fuzzy-basis functions
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(FBFs) in the plant and those of the controller, there have been fruitful works devoted to
observer-based output-feedback control synthesis, such as stability and stabilization [16,17],
H∞ and dissipative control [18,19].

Over the past decade, the extensions of the T-S fuzzy model to MJSs has established the
framework of Markov jump fuzzy systems (MJFSs), and particularly to the output-feedback
control of MJFSs [20,21]. However, So far as we know, in the presence of model uncertainties,
there has been little progress toward the output-feedback scheme with consideration to the
mismatched phenomenon. Studies on [22] have used interval type 2 fuzzy MJFSs to deal
with the mismatched phenomenon, while [21] presenting a sliding mode output-feedback
with uncertain transition rates. The authors in [23] present a two-step LMI-based method
to design dissipative output-feedback controllers for MJFS. To improve the dissipative
performance, the work in [24] develops a single-step LMI-based method regarding sensor
failures. Lately, relaxed results for observed-based controllers for discrete-time MJFSs
have been investigated in [25] by nonparallel distributed compensation (non-PDC) scheme.
However, a common limitation of the above studies is relaxed attempts to overcome the
conservatism of the output-feedback scheme by a single-step or two-step LMI solution.
As reported in [13], the two-step approach has much conservatism and sensitivity due to
the weak selection of decision variables in the first step [23], while the single-step requires
excessive use of free weighting matrices [24]. Thus, it is necessary to develop an innovative
method based on the progress of relaxation techniques and modified Lyapunov functions.

Motivated by these discussions, this paper presents improved results of the output-
feedback dissipative control of MJFSs with model uncertainties. By taking advantage of
the mode-fuzzy-dependent Lyapunov functions in terms of a double-fuzzy summation,
our work can obtain better computed dissipative performance compared to existing results.
In short, besides proposing the dissipative observer-based controller for the discrete-time
MJFSs regarding the model uncertainties and mismatched phenomenon, our contributions
also contain:

• The model uncertainties and mismatch phenomenon entail difficulties in handling
multiple parameterized matrix inequalities when deriving LMI-based dissipative
conditions. Thus, a refined relaxation process with the sequence linear programming
matrix method (SLPMM) is proposed to solve dissipative conditions by LMI-based
algorithm.

• Apart from this, our work takes advantage of the double-fuzzy summation-based
mode-fuzzy-dependent Lyapunov functions to relax the dissipative conditions. The
Lyapunov function collaborates with the relaxation process to release less conservative
LMI-based dissipative conditions compared to [13,23,24,26]. The results are verified
through two illustrative examples.

In accordance with the contributions, this work can be applied to stabilize the nonlin-
ear systems with jumping and certainties in system parameters, e.g., tracking control of
unmanned ground vehicles over network communications with packet losses and stabiliza-
tion power grids under sudden load changes.

The notations X ≥ Y and X > Y mean that X−Y is positive semi-definite and positive
definite, respectively. In symmetric block matrices, the asterisk (∗) is used as an ellipsis for
terms induced by symmetry. E{·} denotes the mathematical expectation; L2[0, ∞) stands
for the space of square summable sequences over [0, ∞); diag(·) stands for a diagonal
matrix with diagonal entries; col(v1, v2, · · · , vn) = [vT

1 vT
2 · · · vT

n ]
T for scalar or vector

vi; ⊗ denotes the Kronecker product; He{P} = P + PT for a square matrix P ; N1 \N2
indicates the set of elements in the set N1, but not in the set N2; and n(N) denotes the
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number of elements in set N. For N = {a1, a2, · · · , as}, the following matrix expansion
notation is used:[

Mi
]d

i∈N = diag
(
Ma1 , · · · ,Mas

)
,

[
Mi
]

i∈N =

 Ma1
...
Mas

,
[
Mij

]
i,j∈N

=

Ma1a1 · · · Ma1as
...

. . .
...

Masa1 · · · Masas


whereMi andMij are real matrices with appropriate dimensions or scalar values.

The rest of the paper is sketched as follows. The next section presents problem state-
ments and fundamental definitions of MJFSs, and the preceding useful results exploited in
the paper. Section 3 includes control synthesis for LMI-based dissipative conditions of the
concerned observer-based controller. The last section shows two numerical implementa-
tions to verify the validity and effectiveness of the proposed method.

2. Preliminaries

For a given complete probability space (Ω,F ,P), consider a discrete-time homo-
geneous Markov chain ψ as a sequence of random variables ψ0, ψ1, . . . whose values
belong to a finite set of state Nψ = {1, 2, · · · , s} and satisfy Markov properties. Let
πpq = Pr

(
ψk+1 = q|ψk = p

)
be a time-invariant one-step probability of jumping from

state (or mode) p to q. Accordingly, we have πpq ∈ [0, 1] and ∑r
q=1 πpq = 1. Based on the

definitions, let us consider a class of Markovian jump fuzzy systems (MJFSs) as follows:
xk+1 =

(
A(ψk, ξ) + ∆A(ψk, k)

)
xk +

(
B(ψk, ξ) + ∆B(ψk, k)

)
uk + E(ψk, ξ)dk,

zk = G(ψk, ξ)xk + H(ψk, ξ)uk + J(ψk, ξ)dk,

yk = C(ψk, ξ)xk + D(ψk, ξ)dk,

(1)

in which xk ∈ Rnx , uk ∈ Rnu , yk ∈ Rny , zk ∈ Rnz , and dk ∈ Rnd represent for the
state variable, the control input, the measured output, the performance output, and the
bounded-energy disturbance (belonging to L2[0, ∞)), respectively. In addition, ψk is the
discrete-time homogeneous Markov chain standing for sudden changes in system matrices
Ap(ξ), Bp(ξ), Ep(ξ), Gp(ξ), Hp(ξ), Jp(ξ) where A B E

C 0 D
G H J

(ψk = p, ξ) =

 Ap(ξ) Bp(ξ) Ep(ξ)
Cp(ξ) 0 Dp(ξ)
Gp(ξ) Hp(ξ) Jp(ξ)

 =
r

∑
i=1

ξi

 Api Bpi Epi
Cpi 0 Dpi
Gpi Hpi Jpi

,
where Api, Bpi, Cpi, Dpi, Epi, Gpi, Hpi, and Jpi are constant system matrices with appropriate
dimensions. To be more specific, r indicates the number of fuzzy rules, and we denote
the fuzzy-basis function vector as ξ = ξ($(xk)) (or simply ξk) =

[
ξ1($(xk)), ξ2($(xk)), . . . ,

ξr($(xk))
]T ∈ Rr where $(xk) = [$1(xk), $1(xk), . . . , $d(xk)]

T ∈ Rd stands for premise
variable. Please note that ξi($(xk)) denotes the ith element of fuzzy-basis vector ξ who
fulfill ∑r

i=1 ξi = 1 and ξi ∈ [0, 1] for all i ∈ Nξ = {1, 2, · · · , r}.
In this paper, we assume that the model uncertainties ∆A(ψk, k) and ∆B(ψk, k) can be

decomposed into matrix multiplications of the following forms:{
∆A(ψk = p, k) = ∆Ap(k) = Ta,pUa(k)Ya,p,
∆B(ψk = p, k) = ∆Bp(k) = Tb,pUb(k)Yb,p

(2)

where Ta,p, Tb,p, Ya,p and Yb,p are given constant matrices with appropriate dimensions;
Ua(k) and Ub(k) are time-varying matrices with Ua(k)UT

a (k) ≤ I, Ub(k)UT
b (k) ≤ I.

Since the premise variable vector depends on several immeasurable state variables
xk or on uncertain parameters, fuzzy control laws to be designed is impossible to share
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the same premise variables with the plant (1). In this light, we deal with the mismatched
phenomenon by the observer-based fuzzy in the following form:{

x̂k+1 = Ap(ξ̂)x̂k + Bp(ξ̂)uk + Lp(ξ̂)
(
yk − Cp(ξ̂)x̂k

)
,

uk = Kp(ξ̂)x̂k,
(3)

where ψk = p and x̂k ∈ Rnx stands for the observed state; ξ̂ = ξi($(x̂k)) = col(ξ1($(x̂k)),
ξ2($(x̂k)), · · · , ξr($(x̂k))) represents for the observed fuzzy-basis function vector calculated
on the controller side based on observed states at time step k; Lp(ξ̂) and Kp(ξ̂) are the
fuzzy-dependent matrices needed to be designed, respectively; and

Ap(ξ̂) =
r

∑
i=1

ξ̂i Api, Bp(ξ̂) =
r

∑
i=1

ξ̂iBpi, Cp(ξ̂) =
r

∑
i=1

ξ̂iCpi.

Furthermore, let ek = xk − x̂k, ζk = [x̂T
k , eT

k ]
T ∈ R2nx×2nx , and ξ̃ =

[
ξ̃1, ξ̃2, · · · , ξ̃r

]T

with ξ̃i = ξi − ξ̂i, the closed-loop control system of (1) and (3) is represented as follows:{
ζk+1 = Āp(ξ̃, ξ, ξ̂)ζk + Ep(ξ, ξ̂)dk,

zk = Gp(ξ, ξ̂)ζk + Jp(ξ)dk,
(4)

where Āp(ξ̃, ξ, ξ̂) = Ap(ξ̃, ξ, ξ̂) +

[
0 0

∆Ap(k) + ∆Bp(k)Kp(ξ̂) ∆Ap(k)

]
,

Ap(ξ̃, ξ, ξ̂) =

[
Ap(ξ̂) + Bp(ξ̂)Kp(ξ̂) + Lp(ξ̂)Cp(ξ̃) Lp(ξ̂)Cp(ξ)

Ap(ξ̃) + Bp(ξ̃)Kp(ξ̂)− Lp(ξ̂)Cp(ξ̃) Ap(ξ)− Lp(ξ̂)Cp(ξ)

]
,

Ep(ξ, ξ̂) =

[
Lp(ξ̂)Dp(ξ)

Ep(ξ)− Lp(ξ̂)Dp(ξ)

]
,

Gp(ξ, ξ̂) =
[

Gp(ξ) + Hp(ξ)Kp(ξ̂) Gp(ξ)
]
.

Before going ahead, this paper presents the following definitions for stochastic analy-
ses.

Definition 1 ([27,28]). For dk ≡ 0, the closed-loop system (4) is stochastically stable if for any
ζ0 = [x̂T

0 , eT
0 ]

T and φ0, the following inequality holds

E

{
∞

∑
k=0
‖ζk‖2

∣∣∣ζ0, φ0

}
< ∞. (5)

Definition 2 ([29,30]). For given real matrices Z , S and D such that Z = −ZT
1 Z1, Z1 ∈

Rnq×nz(nq ≤ nz), S ∈ Rnd×nz , and D = DT ∈ Rnd×nd , let us define a quadratic energy supply
rate as follows

Q(zk, dk) =

[
zk
dk

]T[ Z (∗)
S D

][
zk
dk

]
=

[
zk
dk

]T[ Z (∗)
S D

][
Gp(ξ, ξ̂) Jp(ξ)

0 I

][
ζk
dk

]
. (6)

Then, for ζ0 ≡ 0, system (4) is said to be (Z ,S ,D)-γ-dissipative if the following condition holds
for γ > 0 and T > 0:

T

∑
k=0

E
{
Q(zk, dk)

}
≥ γ

T

∑
k=0

E
{

dT
k dk

}
, (7)
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where γ stands for the dissipative performance level.

Remark 1. It follows [22,31] that there are two particular performances deduced from the (Z ,S ,D)-
γ-dissipativity (7): (i) H∞-performance by Z = −I, S = 0, and D = (γ2 + γ)I, (ii) passivity
performance by Z = 0, S = I, and D = 2γI.

The mismatch phenomenon here is the difference between fuzzy basic functions in the
system model ξi($(xk)) and the observed-based controller ξi($(x̂k)). The difference tends
to ruin the stability of the closed-loop system (4) if it is not considered in the controller
design. Thus, this paper aims to design the observed-based controller (3) that guarantees
the stochastic stability and dissipative performance of the closed-loop system (4) with the
following constraint:

−1 ≤ αi ≤ ξi($(xk))− ξi($(x̂k)) ≤ ᾱi ≤ 1, ∀i ∈ Nξ = {1, 2, · · · , r}, (8)

where ᾱi and αi are given scalars. Next, the following well-known lemmas are used

Lemma 1 ([32]). For any matrixMij =MT
ij , the condition 0 ≤ ∑r

i=1 ∑r
j=1 ξiξ jMij holds if

0 ≤Mii, ∀i ∈ Nξ , (9)

0 ≤ 1
r− 1

Mii +
1
2
(Mij +Mji), ∀(i, j) ∈ Nξ ×Nξ \ {j}. (10)

Lemma 2 ([33]). Let real matricesM =MT , N1, N2 and U with appropriate dimensions and
UUT ≤ I. The inequality 0 > A+ He{N1UN2} is true if

0 >

[
M+ βN1N T

1 (∗)
N2 −βI

]
. (11)

3. Control Synthesis

To establish the dissipative condition of a closed-loop system (4), this paper considers
a Lyapunov function in the following form:

Vk = V(ζk, ψk) = ζT
k P(ξ̂, ψk)ζk, (12)

where P(ξ̂k, ψk = p) = Pp(ξ̂k) = PT
p (ξ̂) > 0, the double-fuzzy summation Pp(ξ̂) =

∑r
i=1 ∑r

j=1 ξ̂i ξ̂ jPpij, and symmetric matrices Ppij. The Lyapunov function does not require
Ppij > 0 for all (p, i, j) ∈ Nψ ×Nξ ×Nξ \ {i}. The conditions can be relaxed by Lemma 1.

Then, by letting ξ̂+ = ξ($̂k+1) and Pp(ξ̂
+) =

s

∑
q=1

πpqPh(ξ̂
+), we can obtain

E{∆Vk} = E
{

V(ζk+1, ψk+1 = h
∣∣ψk = p)

}
−V(ζk, ψk = p)

= ζT
k+1Pp(ξ̂

+)
(
Ap(ξ̃, ξ, ξ̂)ζk + Ep(ξ, ξ̂)dk

)
− ζT

k Pp(ξ̂)ζk. (13)

Lemma 3. Suppose that there exist symmetric matrices 0 < Pp(ξ̂) ∈ R2nx×2nx and 0 < Ph(ξ̂
+) ∈

R2nx×2nx such that for all p ∈ Nψ:

0 >

 −Pp(ξ̂) (∗) (∗)
−SGp(ξ, ξ̂) −He

{
S Jp(ξ)

}
+ γI −D (∗)

Z1Gp(ξ, ξ̂) Z1 Jp(ξ) −I


+
[

Āp(ξ̃, ξ, ξ̂) Ep(ξ, ξ̂) 0
]TPp(ξ̂

+)
[

Āp(ξ̃, ξ, ξ̂) Ep(ξ, ξ̂) 0
]
. (14)

Then, closed-loop system (4) is stochastically stable and (Z ,S ,D)-γ-dissipative.
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Proof. The formulation (6) can be rearranged as follows

Q(zk, dk) =

[
ζk
dk

]T([ 0 (∗)
SGp(ξ, ξ̂) He

{
S Jp(ξ)

}
+D

]
−
[

GT
p (ξ, ξ̂)ZT

1
JT
p (ξ)ZT

1

][
Z1Gp(ξ, ξ̂) Z1 Jp(ξ)

])[ ζk
dk

]
.

Following (13), it yields

E
{

∆Vk + γdT
k dk −Q(zk, dk)

}
= ζ̄T

k Ψk ζ̄k, (15)

where ζ̄k = col(ζk, dk) = col(x̂k, ek, dk),

Ψk =
[

Āp(ξ̃, ξ, ξ̂) Ep(ξ, ξ̂)
]TPp(ξ̂

+)
[

Āp(ξ̃, ξ, ξ̂) Ep(ξ, ξ̂)
]

+
[
Z1Gp(ξ, ξ̂) Z1 Jp(ξ)

]T[ Z1Gp(ξ, ξ̂) Z1 Jp(ξ)
]

+

[
−Pp(ξ̂) (∗)

−SGp(ξ, ξ̂) −He
{
S Jp(ξ)

}
+ γI −D

]
. (16)

Furthermore, from (15), it follows that ∑T
k=0 ζ̄T

k Ψk ζ̄k = ∑T
k=0 E{∆Vk} −∑T

k=0 E{Q(zk, dk)−
γdT

k dk} = E{VT+1 −V0} −∑T
k=0 E{Q(zk, dk)} − γ ∑T

k=0 E{dT
k dk}. As a result,

• for dk ≡ 0, it follows from (13) that

E{∆Vk} = ζT
k
(
ĀT

p (ξ̃, ξ, ξ̂)Pp(ξ̂
+)Āp(ξ̃, ξ, ξ̂)− Pp(ξ̂)

)
ζk.

Thus, condition Ψk < 0 guarantees that E{∆Vk} < 0, i.e., E{∆Vk} ≤ −ε‖ζk‖2 for a
small scalar ε > 0. Sum up the inequality from 0 to T, it holds that

E

{
T

∑
k=0

∥∥ζk
∥∥2
∣∣∣ζ0, φ0

}
≤ 1

ε
E{V0} < ∞,

for all T > 0, then, closed-loop system (4) with dk ≡ 0 is stochastically stable by
Definition 1.

• for V0 = 0 (i.e., x0 ≡ 0), with the inequality Ψk < 0, it has E{VT+1}−∑T
k=0 E{Q(zk, dk)}

−γ ∑T
k=0 E{dT

k dk} < 0 or ∑T
k=0 E{Q(zk, dk)} − γ ∑T

k=0 E{dT
k dk} > E{VT+1} ≥ 0.

With the two particular cases, Ψk < 0 implies the stochastic stability and (Z ,S ,D)-γ-
dissipative performance of the closed-loop system (4). Finally, the condition 0 > Ψk can be
converted into (14) according to the Schur’s complement.

The following lemma aims to address the encountered relaxation problem for Lemma 3
with fewer dimensions of slack matrix variables and the asymmetric range of mismatch
level (8).

Lemma 4. For given a double-parameterized LMI in the following form:

0 > Φ0 +
r

∑
i=1

ξiHe
{

ΓT
1 Φ1,iΓ2

}
+

r

∑
i=1

ξ̂iΦ2,i

+
r

∑
i=1

r

∑
j=1

ξi ξ̂ jHe
{

ΓT
1 Φ3,ijΓ2

}
+

r

∑
i=1

r

∑
j=1

ξ̂i ξ̂ jΦ4,ij (17)

subject to

α` ≤ ξ̃` = ξ` − ξ̂` ≤ ᾱ`, (18)
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where Φ0 ∈ Rp×p, Φ1,i ∈ Rn1×n2 , Φ2,i ∈ Rp×p, Φ3,ij ∈ Rn1×n2 , and Φ4,ij ∈ Rp×p; Γ1 ∈ Rn1×p

and Γ2 ∈ Rn2×p are full rank matrices, the condition (17) subjected to (18) holds if there exist
matrices Sij = ST

ij ∈ Rn1×n1 and Ni ∈ Rn1×n2 such that:

0 > Φ̄ii, (19)

0 >
1

r− 1
Φ̄ii +

1
2
(
Φ̄ij + Φ̄ji

)
, (20)

for all (i, j) ∈ Nξ × (Nξ \ {i}), where

Φ̄ij =

 Φ0 + He
{

ΓT
1
(
Φ1,i + Φ3,ij

)
Γ2
}
+ Φ2,i + Φ4,ij +

r

∑
`=1

α`ᾱ`Ω
T
1 S`iΓ1 (∗)[

(Φ1,` + Φ3,`i + Ni)Γ2 − 1
2 (α` + ᾱ`)S`iΓ1

]
`∈Nξ

[
S`i

]d

`∈Nξ

.

Proof. Since ∑r
`=1 ξ̃` = 0, it stands that ∑r

`=1 ∑r
i=1 ξ̃` ξ̂iHe

{
ΓT

1 NiΓ2
}
= 0 by which we can

rewrite (17) as

0 > Φ0 + Z(ξ̂) + He

{
r

∑
`=1

ξ̃`Γ
T
1 Z`(ξ̂)Γ2

}
, (21)

where Z(ξ̂) = ∑r
i=1 ξ̂i

(
He
{

ΓT
1 Φ1,iΓ2

}
+ Φ2,i

)
+∑r

i=1 ∑r
j=1 ξ̂i ξ̂ j

(
He
{

ΓT
1 Φ3,ijΓ2

}
+ Φ4,ij

)
, and

Z`(ξ̂) = Φ(1)
` + ∑r

i=1 ξ̂iΦ
(3)
`i + ∑r

i=1 ξ̂i Ni. In accordance with the above expressions and

He

{
r

∑
`=1

ξ̃`Γ
T
1 Z`(ξ̂)Γ2

}
= He

{(
ξ̃ ⊗ Γ1

)T
[
Z`(ξ̂)Γ2

]
`∈Nξ

}
,

the condition (21) is rearranged as

0 >

[
I

ξ̃ ⊗ Γ1

]T
 Φ0 + Z(ξ̂) (∗)[

Z`(ξ̂)Γ2

]
`∈Nξ

0

[ I
ξ̃ ⊗ Γ1

]
. (22)

Meanwhile, since (19) implies S`i = ST
`i < 0, it follows from (18) that

0 ≤
r

∑
i=1

ξ̂i

r

∑
`=1

(
ξ̃` − ᾱ`

)(
ξ̃` − α`

)
ΓT

1 S`iΓ1

=

[
I

ξ̃ ⊗ Γ1

]T


r

∑
i=1

ξ̂i

(
r

∑
`=1

α`ᾱ`Γ
T
1 S`iΓ1

)
(∗)[

− 1
2

r

∑
i=1

ξ̂i(α` + ᾱ`)S`iΓ1

]
`∈Nξ

[
r

∑
i=1

ξ̂iS`i

]d

`∈Nξ


[

I
ξ̃ ⊗ Γ1

]
. (23)

Supported by the S-procedure, the combination of (22) with (23) ensures

0 >


Φ0 + Z(ξ̂) +

r

∑
i=1

ξ̂i

(
r

∑
`=1

α`ᾱ`Γ
T
1 S`iΓ1

)
(∗)

[
Z`(ξ̂)Γ2 − 1

2

r

∑
i=1

ξ̂i(α` + ᾱ`)S`iΓ1

]
`∈Nξ

[
r

∑
i=1

ξ̂iS`i

]d

`∈Nξ


=

r

∑
i=1

r

∑
j=1

ξ̂i ξ̂ jΦ̄ij, (24)
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and by Lemma 1, condition (19) implies (24).

Remark 2. To deal with presence of two different types of parameters in (17) induced by the
mismatch phenomenon, Lemma 4 presents a relaxation technique based on parameterized-LMIs
given in Lemma 1 to avoid the excessive use of free slack matrix variables. Compared to other
relaxation techniques for the mismatch phenomenon, our work concerns asymmetric range of
mismatch level (18) and reduces dimensions of slack matrix variables by introducing constant
matrices Γ1 and Γ2.

With the help of Lemma 4, the following theorem presents a parameter-independent
criteria from Lemma 3

Theorem 1. Suppose that there exist scalars γ > 0 and β, matrices 0 < Ppi = PT
pi ∈ R2nx×2nx ,

0 < X = XT ∈ R2nx×2nx , 0 < X̄ = X̄T ∈ R2nx×2nx , Kpi ∈ Rnu×nx , Lpi ∈ Rnx×ny , Npi ∈
R(2nx+nd)×(2nx+nd+nq), and Sp`i = ST

p`i ∈ R(2nx+nd)×(2nx+nd) such that the following inequalities
hold for all p ∈ Nψ, (m, i, j) ∈ Nξ ×Nξ ×Nξ \ {i}:

0 < Ppii, 0 <
1

r− 1
Ppii +

1
2
(

Ppij + Ppji
)
, (25)

0 < X−Λpii, 0 <
r

r− 1
X− 1

r−1
Λpii−

1
2
(
Λpij+Λpji

)
, (26)

0 > Φ̄pmii, 0 >
1

r− 1
Φ̄pii +

1
2
(
Φ̄pij + Φ̄pji

)
, ∀j ∈ Nξ \ {i}, (27)

XX̄ = I, (28)

where Λpij = ∑s
q=1 πpqPqij,

Φ̄pmij =

Φ(0)
p +He

{
ΓT

1

(
Φ(1)

pi +Φ(3)
pij

)
Γ2

}
+Φ(2)

pi + Φ(4)
pij +

r

∑
`=1

α`ᾱ`Γ
T
1 Sp`iΓ1 (∗)[ (

Φ(1)
p` + Φ(3)

p`i + Npi

)
Γ2 − 1

2 (α` + ᾱ`)Sp`iΓ1

]
`∈Nξ

[
Sp`i

]d

`∈Nξ

,

Φ(0)
p = diag

(
0, γI−D,−I,−X̄ + βdiag

(
0, Ta,pTT

a,p + Tb,pTT
b,p

)
,−βI

)
,

Φ(1)
pi =

 −GT
piST GT

piZT
1 0 AT

pi
−GT

piST GT
piZT

1 0 AT
pi

−JT
piST JT

piZT
1 0 ET

pi

, Φ(2)
pi =



0 0 0 (∗) (∗)
0 0 0 0 0
0 0 0 0 0[

Api 0
−Api 0

]
0 0 0 0[

Ya,p Ya,p
0 Sb,qKpi

]
0 0 0 0


,

Φ(3)
pij =

 −KT
pj H

T
piST KT

pj H
T
piZT

1 CT
piL

T
pj KT

pjB
T
pi − CT

piL
T
pj

0 0 CT
piL

T
pj −CT

piL
T
pj

0 0 DT
piL

T
pj −DT

piL
T
pj

,

Φ(4)
pij =



−Ppij 0 0 (∗) 0
0 0 0 0 0
0 0 0 0 0[

BpiKpj−LpjCpi 0
−BpiKpj + LpjCpi 0

]
0 0 0 0

0 0 0 0 0


, ΓT

1 =


I 0
0 I
0 0
0 0

 ∈ Rn1×(2nx+nd),

Γ2 =

 0 I 0 0
0 0 I 0
0 0 0 I

 ∈ R(nd+nq+nx)×n1 , n1 = 4nx + nd + nq.
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The closed-loop system (4) is (Z ,S ,D)-γ-dissipative with the following observer and control gains

Kp(ξ̂) =
r

∑
i=1

ξ̂iKpi, Lp(ξ̂) =
r

∑
i=1

ξ̂iLpi. (29)

Proof. Following the definition of the Lyapunov function (12), Pp(ξ̂+) = ∑r
i=1 ∑r

j=1 ξ̂+i ξ̂+j Ppij

which in turn leads to Λp(ξ̂) = ∑r
i=1 ∑r

j=1 ξ̂i ξ̂ jΛpij. Then, by (25) and Lemma 1, it follows
that Λp(ξ̂) > 0 and Pp(ξ̂+) > 0. Furthermore, with the help of (26) and Lemma 1, it has
∑r

i=1 ∑r
j=1 ξ̂+i ξ̂+j

(
X−Λpij

)
> 0 and then

Pp(ξ̂
+) =

r

∑
i=1

r

∑
j=1

ξ̂+i ξ̂+j Λpij < X = X̄−1.

Thus, condition (14) satisfies if

0 >

 −Pp(ξ̂) (∗) (∗)
−SGp(ξ, ξ̂) −He

{
S Jp(ξ)

}
+ γI −D (∗)

Z1Gp(ξ, ξ̂) Z1 Jp(ξ) −I


+
[

Āp(ξ̃, ξ, ξ̂) Ep(ξ, ξ̂) 0
]TX̄−1[ Āp(ξ̃, ξ, ξ̂) Ep(ξ, ξ̂) 0

]
. (30)

Moreover, the inequality (30) is guaranteed by Schur’s complement

0 >


−Pp(ξ̂) (∗) (∗) (∗)
−SGp(ξ, ξ̂) −He

{
S Jp(ξ)

}
+ γI −D (∗) (∗)

Z1Gp(ξ, ξ̂) Z1 Jp(ξ) −I (∗)
Āp(ξ̃, ξ, ξ̂) Ep(ξ, ξ̂) 0 −X̄



=


−Pp(ξ̂) (∗) (∗) (∗)
−SGp(ξ, ξ̂) −He

{
S Jp(ξ)

}
+γI−D (∗) 0

Z1Gp(ξ, ξ̂) Z1 Jp(ξ) −I (∗)
Ap(ξ̃, ξ, ξ̂) Ep(ξ, ξ̂) 0 −X̄



+ He




0 0
0 0
0 0

Ta,p Tb,p

[Ua(k) 0
0 Ub(k)

]
YT

a,p 0
YT

a,p KT
p (ξ̂)YT

b,p
0 0
0 0


T.

Then, buy using Lemma 2, the above inequality can be deduced from

0 >


−Pp(ξ̂) (∗) (∗) (∗) (∗)
−SGp(ξ, ξ̂) −He

{
S Jp(ξ)

}
+γI−D (∗) (∗) (∗)

Z1Gp(ξ, ξ̂) Z1 Jp(ξ) −I 0 0
Ap(ξ̃, ξ, ξ̂) Ep(ξ, ξ̂) 0 −X̄ + βTp 0

Up(ξ̂) 0 0 0 −βI

. (31)

where Yp(ξ̂) =

[
Ya,p Ya,p
0 Yb,pKp(ξ̂)

]
and Tp = diag

(
0, Ta,pTT

a,p + Tb,pTT
b,p

)
. It can be rear-

ranged in the form of (17) as follows:

0 > Φ(0)
p +

r

∑
i=1

ξiHe
{

ΓT
1 Φ(1)

pi Γ2

}
+

r

∑
i=1

ξ̂iΦ
(2)
pi

+
r

∑
i=1

r

∑
j=1

ξi ξ̂ jHe
{

ΓT
1 Φ(3)

pij Γ2

}
+

r

∑
i=1

r

∑
j=1

ξ̂i ξ̂ jΦ
(4)
pij . (32)
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In accordance with Lemma 4, the inequality (32) is ensured by (27) and (28).

The following algorithm based on SLPMM [34] is presented to solve the set of condi-
tions in Theorem 1.

Remark 3. In contrast with the cone complementarity linearization (CCL) method [35], the
SLPMM [34] can provide the non-decreasing sequence {Ji}i∈N and also point out feasibility of the
problem. Consequently, we can define a terminal condition by giving a threshold for decrease of
sequence {Ji}i∈N when the problem is infeasible.

4. Illustrative Examples

The simulation part is carried out using MATLAB software, MathWorks, Inc., Seoul,
Korea. The LMI problem (33) and (34) in Algorithm 1 are numerically solved by LMI solver
in Robust Control Toolbox, MATLAB. To use the LMI solver, we program our code using the
MATLAB script files in a computer with i7 CPU Intel and 16 GB RAM DDR4. The coding
program can be found in https://github.com/thanhbinh91/Ro-OuFe-DissCtrl-MJFSs,
accessed on 2 October 2022.

Algorithm 1 SLPMM to solve Theorem 1

1: Initialize matrices X0 and X̄0 that satisfy

LMIs: (25)–(27) and
[

X0 (∗)
I X̄0

]
≥ 0. (33)

2: Chose a sufficiently small real number ε > 0 for the error bound of the solution
precision and i = 0. For given positive scalars β > 0 and γ > 0.

3: for i = i + 1 do
4: Find Ppij, Kpi, Lpi, X∗ and X̄∗ by solving the optimization problem:

J ∗i = min Tr{XiX̄ + X̄iX}

s.t. (25), (26), (27) and
[

X (∗)
I X̄

]
≥ 0. (34)

5: if
∣∣J ∗i − 4nx

∣∣ < ε then
6: return Ppij, Kpi, Lpi as a solution of Theorem 1 with respect to performance γ .
7: end if

8: Find σ∗ = minσ∈[0,1]Tr
{(

Xi+σ
(
X∗−Xi

))
(X̄i+σ(X̄∗−X̄i))

}
.

9: if σ∗ 6= 0 then
10: Xi+1 = (1− σ∗)Xi + σ∗X∗, X̄i+1 = (1− σ∗)X̄i + σ∗X̄∗,
11: else return set of conditions in Theorem 1 is infeasible.
12: end if
13: end for

Example 1 (Improved results). Without jumping parameter (no Markov process), let us consider
the truck-trailer system, used in [13,26,36] with the sampling time Ts = 2.0 [s], length between
center of truck and trailer to connection point and maximum velocity `1 = 5.5 [m] and `2 = 2.8 [m],
and maximum velocity v = −1.0 [m/s].

https://github.com/thanhbinh91/Ro-OuFe-DissCtrl-MJFSs
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A1 =


1− vTs

`1
0 0

vTs

`1
1 0

(vTs)2

`1
vTs 1

, A2 =


1− vTs

`1
0 0

vTs

`1
1 0

δ
(vTs)2

`1
δvTs 1

, B1 = B2 =


vTs

`2
0
0

,

E1 = E2 =

 0
0.2
0.1

, C1 =

 1 0 1
0 2 1
1 2 2

, C2 =

 1 0 1
0 1 1
1 1 1

,

D1 = D2 = 0, G1 =
[

0.1 0 0
]
, G2 =

[
−0.1 0 0

]
,

H1 = H2 = −0.1, J1 = 3, J2 = −3, (35)

where δ = 0.01/π. There are two fuzzy-basis functions defined as

ξ1($k) =

{(
sin($k)− δ$k

)
/
(
(1− δ)$k

)
, $k 6= 0,

1, $k = 0,

ξ2($k) = 1− ξ1($k), (36)

where $k is premise variable is established as follows:

$k = x2,k +
v · Ts

2`2
x1,k.

with x1,k and x2,k stands for sampling at time step k of the angle difference between the truck and
trailer, and the angle of trailer, respectively.

The above setups aim at a particular case where the output-feedback controller is
synthesized with the matched fuzzy-basis functions, i.e., no mismatched phenomenon
(αi ≡ 0 set in (8)), to asymptotically stabilize the truck-trailer system (36). Accordingly, the
comparison of the smallestH∞ performance indices obtained by [12,13,26] and Theorem 1
is shown in Table 1. To create the comparison, LMI-based conditions in Theorem 1 are
solved by Algorithm 1 with β = 0.02. It is shown in Table 1 that Theorem 1 provides much
improved results (the lower the better) in comparison with preceding works [12,13,26].
For more details, Theorem 1 releases about 98%, 51% and 15% better H-index than that
of [12,13,26], respectively. With γmin = 3.18, Algorithm 1 provides the following solution

F1 =
[
2.921 −1.568 0.076

]
, F2 =

[
2.152 −0.510 0.034

]
,

L1 =

 0.9655 −1.0692 0.2855
−0.8570 −0.6130 0.7821

0.2938 −1.1399 0.5619

, L2 =

 0.9205 −0.9312 0.2135
−0.6855 −0.1369 0.6408
−0.2100 −0.2520 0.4045

.

In accordance with the following initial setups

x̂0 =
[

0 0 0
]T , x0 =

[
0.2 −0.3 0.1

]T , dk = e−0.3k sin(k), for k ≥ 0,

state behavior and control input are shown in Figure 1a–d, in which Figure 1a–c present the
asymptotic convergence of x1,k, x2,k and x3,k. Moreover, the observed states x̂1,k, x̂2,k and x̂3,k
asymptotically track the real x1,k, x2,k and x3,k, respectively. In addition, Figure 1d shows
the behavior of control input that proves the well-defined control problem. Eventually,
Figure 1 shows the availability and validity of the observer and controller gains designed
by Theorem 1 for (35),



Mathematics 2022, 10, 3620 12 of 16

Table 1. A comparison of minimumH∞-performance indices in Example 1 between several studies.

Methods [12] [Th. 3] [26] [Th. 1] [13] [Th. 3.4] [23] [Th. 9] [24] [Cor. 1] Th. 1

ᾱi = αi = 0 6.27 4.77 3.63 3.54 Infeasible 3.18

0 10 20 30 40 50

-0.6

-0.4

-0.2

0

0.2

0.4

(a) (b)

0 10 20 30 40 50

-0.5

0

0.5

(c)

0 10 20 30 40 50

-1

-0.5

0

0.5

1

(d)

Figure 1. Time evolution of the truck-trailer system (35): (a–c) real and observed state and (d) control
input.

Example 2 (Relaxed practical example). Let us consider the following single-link robot arm
system with plant mode ψ(t) ∈ Nψ = {1, 2, 3}, adopted in [37]:ϕ̈(t) =−M(ψ(t))ga`

J(ψ(t))
sin(ϕ(t))− cv ϕ̇(t)

J(ψ(t))
+

1
J(ψ(t))

u(t) + d(t),

y(t) = ϕ(t),
(37)

where ϕ(t), ϕ̇(t), y(t), u(t), and d(t) stands for the angle, angular velocity, the controlled torque
input, the load torque of the arm, and the measurement noise, respectively; and payload mass
M(ψ(t)), inertia moment J(ψ(t)), arm length ` = 0.5 [m], the gravity acceleration ga = 9.81
[m/s2], and viscous friction coefficient cv = 2.0 [N.s/m]. Then, by defining x(t) = [x1(t) x2(t)]T =
[ϕ(t) ϕ̇(t)]T and d(t) and performing the same process with the sampling time Ts = 0.1 as
in [38,39], we can obtain the following discrete-time T-S fuzzy model for (37) with p ∈ Nψ =
{1, 2, 3}:
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Ap1 =

 1 Ts

−
Ts Mpga`

Jp
1− Tscv

Jp

, Ap2 =

 1 Ts

−
δTs Mpga`

Jp
1− Tscv

Jp

,

Bp1 = Bp2 =

[
0
Ts
Jp

]
, Ep1 = Ep2 =

[
0
Ts

]
,

Cp1 = Cp2 =
[

1 0
]
, Dp1 = Dp2 =

[
0 0.05

]
,

Gp1 = Gp2 =
[

1 0
]
, Hp1 = Hp2 = 0.1, Jp1 = Jp2 = 0,

where δ = 0.01/π, M1 = M(ψ(t) = 1) = 1.0 [kg], M2 = M(ψ(t) = 2) = 1.5 [kg],
M3 = M(ψ(t) = 3) = 2.0 [kg], J1 = J(ψ(t) = 1) = 1.0 [kg.m/s2], J2 = J(ψ(t) = 2) =
2.0 [kg.m/s2], and J3 = J(ψ(t) = 3) = 2.5 [kg.m/s2]. In addition, for x1,k ∈ (−π, π), we define
FBFs as

ξ1(x1,k) =


sin(x1,k)− δx1,k

(1− δ)x1,k
, x1,k 6= 0,

1, x1,k = 0,

ξ2(x1,k) = 1− ξ1(x1,k),

and the mismatched FBFs were given by ξ̂1 = ξ1(x̂1,k) and ξ̂2 = 1− ξ̂1.

Furthermore, the transition probabilities are chosen similarly [23]:

[
πpq
]

p,q∈Nψ
=

 0.8 0.1 0.1
0.2 0.7 0.1
0.5 0.2 0.3

. (38)

Based on the setup as [23], a comparison of (Z = −0.01,D = 5,S = 0.2)-dissipative
andH∞-performance indices obtained by Algorithm 1 and preceding studies, are shown
in Table 2. Intuitively, Theorem 1 provides higher dissipative indices (the higher the
better) compared to [23] and lower H∞-indices compared to [23,24]. In particular, since
mismatched level increases ᾱi = −αi = 0.1, 0.2, our advantages are shown clearly, i.e., at
ᾱi = −αi = 0.2 [23] failed to obtain a solution and our result is 18% less than that of [24]. In
the case where ᾱi = −αi = 0.2, Theorem 1 provides a solution for dissipative performance
at γmin = 3.64:[

F11 F21 F31
F12 F22 F32

]
=

[
0.9701 −1.5750 2.1238 −6.2871 4.0832 −7.5086
−2.7655 −2.2250 −5.4372 −6.0615 −7.0027 −7.5363

]
,

[
L11 L21 L31
L12 L22 L32

]
=


1.2946 1.5475 1.8345
−1.3860 −1.0266 −0.4478
1.5122 1.4357 1.3936
0.4437 1.1962 1.2943

.

With x̂0 =
[

0 0 0
]T , x0 =

[
0.2 −0.3 0.1

]T , and dk = e−0.4k sin(k), the time
evolution of the single-link robot arm is shown in Figure 2. As can be seen in the Figure 2a,b,
real state variables asymptotically converge, and the observed error converges to zero as
time increases. Despite sudden changes in system mode, the closed-looped systems are
asymptotic stable.
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Table 2. Three performance levels for different mismatch phenomena ᾱi = −αi in (8).

Dissipativity H∞ Performance

Th. 1 [23] [24] Th. 1 [23] [24]

ᾱi = −αi = 0 (matched) 4.65 4.30 - 1.61 1.85 1.71

ᾱi = −αi = 0.1 4.38 2.89 - 2.42 5.13 3.64

ᾱi = −αi = 0.2 3.64 Infeasible - 4.78 Infeasible 5.78
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0.6
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-0.5

0

0.5
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(c)

0 10 20 30 40 50 60

1

2

3

(d)

Figure 2. Time evolution of single-link robot arm (37): (a,b) real and observed state variables and (c)
control input, (d) system mode.

5. Conclusions

This paper addresses the problem of observer-based dissipative control design for
MJFSs under model uncertainties and a mismatched phenomenon entailed by the output-
feedback scheme of fuzzy systems. The (Z ,S ,D)-dissipative conditions first were formu-
lated in terms of multiple parameterized matrix inequalities. In light of proper relaxation
techniques, the conditions were cast into parameter-independent bilinear matrix inequali-
ties. Then we proposed an LMI-based algorithm to obtain the observer-based dissipative
controller. The key success of our work is an achievement of much less conservative dis-
sipative performance compared to other studies via the refined relaxation process and
double-fuzzy summation Lyapunov function. The better results and validity of the LMI-
based algorithm were verified via two numerical examples with different mismatch levels.
In light of the success, future works should take asynchronous phenomena of operation
mode between controller and plant into account to cover more realistic problems.
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