
Citation: Niculescu, V. On

Generalizing Divide and Conquer

Parallel Programming Pattern.

Mathematics 2022, 10, 3925. https://

doi.org/10.3390/math10213925

Academic Editor: Alfonso Niño

Received: 28 September 2022

Accepted: 18 October 2022

Published: 23 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

On Generalizing Divide and Conquer Parallel Programming Pattern
Virginia Niculescu

Department of Computer Science, Faculty of Mathematics and Computer Science, “Babeş-Bolyai” University,
400084 Cluj-Napoca, Romania; virginia.niculescu@ubbcluj.ro

Abstract: (1) Background: Structuring is important in parallel programming in order to master its
complexity, and this structuring could be achieved through programming patterns and skeletons.
Divide-and-conquer computation is essentially defined by a recurrence relation that links the solution
of a problem to the solutions of subproblems of the same type, but of smaller sizes. This pattern
allows the specification of different types of computations, and so it is important to provide a general
specification that comprises all its cases. We intend to prove that the divide-and-conquer pattern
could be generalized such that to comprise many of the other parallel programming patterns, and
in order to prove this, we provide a general formulation of it. (2) Methods: Starting from the
proposed generalized specification of the divide-and-conquer pattern, the computation of the pattern
is analyzed based on its stages: decomposition, base-case and composition. Examples are provided,
and different execution models are analyzed. (3) Results: a general functional specification is provided
for a divide-and-conquer pattern and based on it, and we prove that this general formulation could
be specialized through parameters’ instantiating into other classical parallel programming patterns.
Based on the specific stages of the divide-and-conquer, three classes of computations are emphasized.
In this context, an equivalent efficient bottom-up computation is formally proved. Associated
models of executions are emphasized and analyzed based on the three classes of divide-and-conquer
computations. (4) Conclusion: A more general definition of the divide-and-conquer pattern is
provided, and this includes an arity list for different decomposition degrees, a level of recursion, and
also an alternative solution for the cases that are not trivial but allow other approaches (sequential
or parallel) that could lead to better performance. Together with the associated analysis of patterns
equivalence and optimized execution models, this provides a general formulation that is useful both
at the semantic level and implementation level.

Keywords: divide-and-conquer; patterns; skeletons; parallel computation; execution models

MSC: 68Q10; 68W10; 68Q85

1. Introduction

Structuring is essential in order to master the complexity, the correctness and the
reliability issues of parallel programming. In general, solutions adopted for structured
parallel programming were based on using programming patterns and skeletons.

Divide-and-conquer is a very important programming paradigm that has been adapted
to become a parallel programming pattern, too. Informally, the classical form of it could be
described as being a recursive method defined by the following steps [1,2]:

* If the input corresponds to the base case (input ∈ BasicInput):

- Solve it in a straightforward manner;

* Otherwise:

- Decompose the problem into a number (k) of subproblems of the same type and
then recursively solve the subproblems;

- Compose the solutions of the subproblems into a solution for the overall problem.

Mathematics 2022, 10, 3925. https://doi.org/10.3390/math10213925 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10213925
https://doi.org/10.3390/math10213925
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9981-0139
https://doi.org/10.3390/math10213925
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10213925?type=check_update&version=2

Mathematics 2022, 10, 3925 2 of 22

The applicability of the divide-and-conquer is very diverse: from classical sorting
algorithms such as quick-sort [3] and merge-sort [1], to complex applications such as
model checking [4], recommendation systems [5], or even in testing the gamification
effectiveness [6].

In general, parallelization is about computation partitioning that leads to several tasks
that could be solved in parallel, and then the aggregation of the results of these tasks.

Since subproblems could be solved independently, the parallelization of the divide-
and-conquer pattern is straightforward:

- Allow each subproblem that resulted from a decomposition to be solved in parallel.

This leads to a tree type of the task dependency graph [7] associated to the compu-
tation. For k = 3, the task dependency graph has the shape presented in Figure 1. The
maximum degree of parallelization is defined by the maximum number of subproblems
that are attained through the decomposition, which is equal to kl , where l is the num-
ber of decomposition steps (in the example shown in Figure 1, the maximum degree of
parallelization is 9).

Figure 1. Task dependency graph of a divide-and-conquer computation with k equal to 3 and with
the number of decomposition steps equal to 2.

Parallel divide-and-conquer implementations were extensively studied and they lead
to very efficient efficient solutions. If we consider, for example, just the classical sorting
algorithms, even these days improvements through different parallelization techniques are
proposed [8–11].

The main goal of this research was to analyze different types of computation that could
be designed based on divide-and-conquer pattern, to prove that the divide-and-conquer
pattern could be generalized such that to comprise many of the other parallel programming
patterns, and to find possible optimizations of it.
The resulting contributions are:

• A new general formal functional specification of the divide-and-conquer pattern;
• Proof that through specific parameters’ instantiation of this general formulation, other

classical parallel programming patterns could be obtained;
• A structured analysis of the possible optimizations and execution models of this

generalized pattern.

1.1. Paper Outline

The next section gives a brief introduction on parallel programming patterns and
skeletons. Section 3 introduces the general formulation proposal of the divide-and-conquer
pattern and gives several examples that illustrate different types of divide-and-conquer
solutions. The differences between data and task decomposition in the context of the

Mathematics 2022, 10, 3925 3 of 22

divide-and-conquer pattern are treated in Section 4. Next, in Section 5, the general stages
of the divide-and-conquer pattern computation are analyzed along with the possible
optimizations that could be obtained by excluding some of them in certain situations; in this
context, bottom-up computation is analyzed. Section 6 proves the equivalence between the
generalized divide-and-conquer and some of the most common parallel patterns (skeletons).
In order to go closer to the implementation level, we analyze in Section 7 different models
of execution for divide-and-conquer pattern computation. In Section 8, we analyze the
connections with the similar approaches, emphasizing the differences and the advantages.

1.2. Notations

Function application is denoted by a dot (.), and it has the highest binding power and
association from left to right:

- f .x corresponds to f (x) classical mathematical notation,
- f .x.y.z corresponds to f (x, y, z) mathematical notation.

Function composition:

- f .g.x corresponds to f (g(x)) classical mathematical notation.

The minimum of two numbers a and b is denoted by a ↓ b, and the maximum by a ↑ b.
The quantification notation that has been used has the following general definition:

(� k : Q : E) (1)

where � is a quantifier (e.g., ∑, ∀, ∃), or a binary associative operator; k is a list of bounded
variables; Q is a predicate describing the domain of the bounded variables; and E is an
expression. For example, (∑ k : 0 < k ≤ 10 : k2) is a computation of the sum of the first
10 square numbers.

Proofs derivations are specified following the styles due to W.F.H. Freijen:

E0
= {why E0 = E1l}

E1
(2)

Tuples are denoted using angle brackets—e.g., <a, b>, < f1, f2, f3>. A tuple function
< f , f , . . . , f > is denoted by f k and is applied to tuples or lists of k length.

The sets are denoted using curly brackets—e.g., {}, {a}, {1, 2, 3}, {i : 0 ≤ i < n : i}.
The lists are denoted using square brackets—e.g., [], [a], [0, 1, 0], [i : 0 ≤ i < n : i].

Lists operators:

- Concatenation operator—++—that creates a new list by concatenating two given lists
(it could be extended to k lists);

- cons operator—B—that adds an element in front of a given list;
- snoc operator—-C—that adds an element at the end of a given list;
- tie operator—|—is a concatenation of two given lists of the same size (it could be

extended to k lists).
- zip operator—\—that creates a new list by alternatively taking elements from two

given lists of the same size (it could be extended to k lists).

These operators are in the same time constructor operators since they facilitate the
construction of new lists from smaller existing lists, and destructor operators since they could
be used in order to extract the sublists from a given list.

The length of a list l is given by the function length.l.
Generally, we choose to specify the programs using a functional programming ap-

proach only because of the conciseness of this variant. An imperative approach would be
different only in the description formulation.

Mathematics 2022, 10, 3925 4 of 22

2. Parallel Programming Patterns and Skeletons

The latest developments of the computation systems lead to an increase of the re-
quirements in using parallel computation. In parallel programming, as in programming
in general, computation patterns have been defined in order to structure the computa-
tion, increase the productivity, and facilitate the analysis and possible implementation
improvements. Patterns provide a systematic way of developing the parallel software, and
also facilitate a high level of performance and robustness, which are essential in parallel
computation. Patterns were generally defined as commonly recurring strategies for dealing
with particular problems, and they have been used in architecture [12], natural language
learning [13], object-oriented programming [14], and software architecture [15,16].

Classical software engineering approaches based on patterns driven design were
proposed for parallel programming, too. Parallel programming patterns lead to better
understanding of the parallel computing landscape and to facing challenges of parallel pro-
gramming developers. In [17], a pattern language was proposed for parallel programming,
and this was extended and improved in [18]. Depending on the level of abstraction, patterns
could be oriented on design, algorithms or implementations. A structured presentation
depending on the patterns level is done in [18]. Four main design spaces were identified:

• Concurrency design space (e.g., Group Tasks; Order Tasks; Data Sharing),
• Algorithm structure design space (e.g., Task Parallelism; Divide and Conquer, Geo-

metric Decomposition; Recursive Data; Pipeline; Event-based Coordination),
• Supporting structures design space (e.g., SPMD–Single Program Multiple Data; Mas-

ter/Worker; Loop Parallelism; Fork/Join; Shared Data; Shared Queue; Distributed Array),
• Implementation mechanisms design space (e.g., Thread creation/destruction; Process

creation/destruction; Synchronization: memory synchronization and fences; barriers;
exclusion; Communication: message passing; collective communication).

Algorithm strategy patterns treat how the algorithms are organized, and they are
also known as algorithmic skeletons [19,20]. Algorithmic skeletons have been used for
the development of various tools providing the application programmer with suitable
abstractions. They initially came from the functional programming world, but in time, they
have been taken by the other programming paradigms, too.

Skeletons have been treated from two perspectives: semantics and implementation.
The semantic view is an abstraction that describes how the skeleton is used as template
of an algorithm, and consists of a certain arrangement of tasks and data dependencies.
The semantic view is an abstraction that intentionally hides some details, in opposition
to the implementation view that provides detailed implementations of a specific skeleton
by choosing different low-level approaches on different platforms. The semantic views
allow formal approaches that are important for proving correctness, which is an essential
issue in a parallel computing setting. Different implementations of a skeleton provide
different performances. Through the implementation view, the skeletons differentiate from
simple patterns, with skeletons often being used as building blocks for parallel libraries
and frameworks such as those presented in [21–25]. These skeleton-based libraries allow a
high level of productivity and portability.

If we may reduce the number of patterns (or skeletons) without restraining their power
of expressiveness (the power to specify a large class of computation) we may simplify the
development of such frameworks.

Divide-and-conquer is one of the most powerful and used parallel computing pat-
terns/skeletons. Early in 1980s and 1990s, there were suggestions in the literature that there
is a promising case for considering the divide-and-conquer paradigm as a fundamental
design principle with which to guide the design parallel programming [26–30]. Starting
from this idea, divide-and-conquer was used even as a base for an experimental parallel
programming language—Divacon [31]. The divide-and-conquer skeleton was analyzed
using either formal [27,32] or implementation-oriented [33,34] approaches.

Mathematics 2022, 10, 3925 5 of 22

3. Divide and Conquer Generalized Pattern

We propose a generalization of the definition of the divide-and-conquer pattern of
computation, for which we provide a formal specification.

Definition 1 (General Divide-and-Conquer). A general functional definition of divide-and-
conquer computation on inputs of type Input and outputs of type Output is defined using the
following formulation:

dac :
ArityLists× SplitFunctions× CombineFunctions× BaseFunctions
×RecursionLevel × AlternativeFunctions
×Input→ Output

(3)

dac.[].δ.θ.α.0.β.X = α.X, if X ∈ BasicInput
dac.p.δ.θ.α.0.β.X = β.X, if X /∈ BasicInput
dac.[kB p].δ.θ.α.l.β.X = θ.(i : 0 ≤ i < k : dac.p.δ.θ.αi.(l−1).βi.(δ.k.i.X)),

if X /∈ BasicInput and l > 0
where

α = < α0, . . . , αn−1 >
β = < β0, . . . , βn−1 >
and BasicInput ⊆ Input

(4)

where the parameters have the following meaning:

1. The arity list, which defines the number of the subproblems into which the problem is de-
composed at each level; for example, if it is equal to [2, 3, 3, 5, 5], then the first time the
decomposing is done into two subproblems, next time, each of these subproblems is decomposed
into 3 subproblems, and so forth;

2. The decomposition function—δ; this function returns the subdivisions that result through the
input decomposition;

3. The combine function—θ; this function may use other auxiliary functions in order to combine
the solutions of the subproblems;

4. The basic functions—α = <α0, . . . , αn−1> that defines the computation applied for basic
cases; we consider that depending on the subproblem’s number, different basic functions could
be applied;

5. The maximum recursion level (l); this is decremented at each decomposition phase, and if it
becomes equal to 0, the decomposition stops even if the arity list is not empty, and the problem
is solved using a different method (the alternative computation function β);

6. The alternative function—β = <β0, . . . , βn−1); this function is used when the null recursion
level is attained before the termination of the arity list, and before arriving at inputs of type
BasicInput; it supposes to solve the same problem, but using a different approach (method);

Simplification: The dac function specification could be simplified in the following cases:

• When the arity-list contains only equal numbers, then the specification could be
simplified by replacing the type of the first argument from lists of natural numbers into
natural numbers. For example, if the splitting is always done in k subproblems, the dac
function receives a natural number k as the first argument (the decomposition degree).

• The recursion level may be excluded, in which case the alternative specification
function (β) will not be specified, too.
If the recursion level is not specified, and the arity list is also replaced with the degree
(k) of the decomposition, the recursion depth is implicitly induced by the steps needed
to obtain the base cases; it could be computed based on the decomposition function,
the degree k, and the given input.

• If the same function is applied for the base cases, then it can be specified as a simple
function instead of as a tuple of functions. If the base function (α) is the identity
function, this may be completely excluded from the specification.

Mathematics 2022, 10, 3925 6 of 22

• For the function β, the same simplification as for the function α could be applied, too.

Property 1 (Well-defined). A dac function is well-defined if:

- If a recursion level l is given, then l is smaller or equal to length.arity_list.
- When the arity-list is empty, the input belongs to BasicInput ⊆ Input, which is a subdomain

of the input data for which the computation of the problem could be solved using the α function.

Property 2 (Correctness). Semantic correctness: If a problem is specified using Hoare triple
{P}C{Q} [35], a dac function that resolves that problem is correct if for any input from the Input
domain that respects the preconditions {P}, the computation terminates and the obtained output
respects the postconditions {Q}.

In general, this correctness could be proven by induction.
Termination: The termination of the computation of the dac function is assured if the function

is well-defined and the basic function—α, and the alternative function—β (if it is provided) terminate
for each possible input derived through splitting from the Input domain.

Property 3 (Complexity). Parallel Time Complexity: The parallel time-complexity of the dac
function with the decomposition degree k could be estimated, under the condition of unbounded
parallelism, using a recurrent formula as:

Tdac(n, l) = D(δ, k) + C(θ, k) + (max i : 0 ≤ i < k : Tdac(ni, l − 1)) if l > 0

Tdac(n, 0) =
{

T(α), if n is the size of a BasicInput
T(β), otherwise

(5)

where n is the initial size of the problem, and ni are the sizes of the subproblems, l is the level of
recursion, D(δ, k) is the time-complexity associated with decomposition operation, and C(θ, k) is
the time complexity associated with aggregation of the k results.

Sequential Time Complexity: For the sequential time complexity, the operator max in the
Equation (5) is replaced with the sum operator ∑.

If the input type is an aggregated type of data and the division is based on data
decomposition, then the decomposition function defines a data partition. The sets of the
resulted partition may or may not be disjunctive.

Additionally, in general, the number of subproblems into which the problem is decom-
posed is equal or greater than two (k ≥ 2). Still, in the literature, it is also accepted that the
decomposition could be done into one or more subproblems [36]. We may accept for this
generalized definition that the degree is equal or greater than one (k ≥ 1). In [2], the variant
with k = 1 is called “decrease-and-conquer”, and as it is shown in this reference, there are
many algorithms that could be solved using this technique. Even if only one subproblem
is used, the potential parallelism still exists—the subproblem could be used in several
contexts (e.g., Gray code generation—discussed in the next subsection), or when additional
computation should be done, and this is independent on the subproblem computation (e.g.,
scan computation using Ladner and Fischer algorithm—discussed in the next subsection).

3.1. Examples

For the following examples, we will start from functional recursive definitions and
from these, instantiations of the dac general divide-and-conquer pattern are extracted.

3.1.1. Sum

The addition of a given list of numbers could be defined by splitting the list into two
parts:

sum2.[a] = a
sum2.(p ++q) = sum2.p + sum2.q
which lead to
sum2 = dac.2. ++.+

(6)

Mathematics 2022, 10, 3925 7 of 22

In this case, the decomposition degree is equal to 2, the α function is the identity
function (and so it is excluded from the arguments’ list), the recursion level is not given
and it will be implicitly computed based on the length of the input list, and the β function
is not given since the decomposition is done until the base case is attained.

If the length of the list is a power of two, then the decomposition list operator should
be | (tie operator) that assures decomposition into equally sized lists.

For the addition, we may also define a multi-way divide-and conquer definition as:

summ.k.[a] = a
summ.k.[++ i : 0 ≤ i < k : pi] = (+ i : 0 ≤ i < k : sum.k.pi)
which lead to
summ.k = dac.k. ++.+

(7)

or more general using an arity list, and imposing the decomposition into lists of equal
lengths using operator | (tie):

sum.[].[a] = a
sum.[kB l].[| i : 0 ≤ i < k : pi] = (+ i : 0 ≤ i < k : sum.l.pi)
which lead to
sum.al = dac.al.|.+

(8)

The last variant is useful if the number of elements is not a power of a number k and
we would like to obtain a balanced decomposition. For example, if the length of the list of
given elements is n = 23 × 32 × 5, then the arity list could be equal to [2, 2, 2, 3, 3, 5], and
each time the equal size decomposition operator tie (|) could be used. The arity list should
be provided as a parameter since the decomposition into factors could be different (e.g.,
[4, 6, 15] is another possibility for the same n = 360).

The sum problem is naturally extended to the more general problem—reduce, where
the addition operator is replaced with any associative binary operator.

3.1.2. Merge-Sort

Another popular example is the problem of sorting a list of numbers using the
merge-sort method:

mergesort2.[a] = [a]
mergesort2.(p ++q) = (mergesort2.p) ./ (mergesort2.q)
which lead to
mergesort2 = dac.2. ++. ./ .p

(9)

where ./ (merge operator) is an operator that takes two sorted lists and combine them into
a sorted list that contains all the elements from the both input lists. The definition may use
the | decomposition operator instead of ++ if it is possible to split into equally sized lists.

For this problem, it could be useful to provide an alternative function definition that
specifies a hybrid method, which first decomposes the list using merge-sort and then uses
quicksort for sorting small size lists:

mergesortq.l.[a] = [a]
mergesortq.0.p = quicksort.p
mergesortq.l.(p ++q) = (mergesortq.(l−1).p) ./ (mergesortq.(l−1).q)
which lead to
mergesortq.l = dac.2. ++. ./ .l.quiksort

(10)

In this case, the recursion level (l) could stop the recursion before arriving at lists with
only one element (the base case), and then apply an alternative sorting method (Quicksort)
on the sublists. This is beneficial for the practical parallel execution because the degree of

Mathematics 2022, 10, 3925 8 of 22

parallelism could be better controlled: when the desired degree of parallelism is achieved,
the sorting of the sublists is done sequentially with a very efficient algorithm.

Oppositely, we may increase the degree of parallelization by defining the merging
operator (./) of two sorted lists also as a divide-and-conquer problem, for which parallel
computation is possible:

[a] ./par [b] = [a ↓ b, a ↑ b]
(p1\p2) ./par (q1\q2) = (p1 ./par q1)♦(p2 ./par q2)

iff p = (p1\p2), and q = (q1\q2) are two sorted lists
(11)

where the list operator ♦ is defined by:

a♦b = [a ↓ b, a ↑ b]
(aC p)♦(qB b) = aC (p� q)B b

(12)

and the operator � defined by:

a� b = [a ↓ b, a ↑ b]
(p1|p1)� (q1|q2) = (p1� q1) | (p1� q2)

(13)

So,
./par= dac.\.♦.� (14)

Sequential merge operation could be specified with a recursion based on the cons and
snoc list operators, as it follows:

./secv .[a].[b] = [a ↓ b, a ↑ b]

./secv .[a].(bB q) = (a ↓ b)B (./secv .(a ↑ b).q)

./secv .(aB p).[b] = (a ↓ b)B (./secv .p.(a ↑ b))

./secv .(aB p).(bB q) =
{

(a ↓ b)B ./secv .p.(bB q), if a = (a ↓ b)
(a ↓ b)B ./secv .(aB p).q, if b = (a ↓ b)

(15)

3.1.3. Reflected Binary Gray Code

Even when the decomposition leads to the computation of only one subproblem, if
this is used in several contexts, the potential for parallelization still exists. Such an example
is the generation of the Gray code, also named reflected binary code; this is an ordering of
the binary numeral system such that two successive values differ in only one bit (binary
digit). For example, the classical representation of the decimal value “1” in binary is “001”
and of “2” is “010”. In the Gray code, these values are represented as “001” and “011”. In
this way, incrementing a value from 1 to 2 requires only one bit to change, instead of two.
The recursive definition of the function that computes the binary-reflected Gray code list
for n bits is as follows:

BRGC.1 = [0, 1]
BRGC.n = 0 BRGC.(n− 1) | 1 rev.BRGC.(n− 1)
where the operator is defined by:
x [a] = [xa]
x [aB l] = [xa] ++(x l)
and the reverse function rev :
rev.x = x
rev.(aB p) = rev.pC a

(16)

By applying fusion to and rev, we obtain rev1:

rev1.x = [1x]
rev1.(aB p) = rev.pC (1a)

(17)

Mathematics 2022, 10, 3925 9 of 22

Thus, BRGC can be expressed using the general pattern dac as:

BRGC = dac.1.dec.θ. f01
where
dec.n = n− 1
f01.x = [0, 1]
θ.p = 0 p | rev1.p
Input = N∗, and BasicInput = {1}

(18)

The subproblem is computed for an argument with a value decremented by 1, but this
result is used in two contexts: the first when a 0 is appended in front of the subproblem
result, and the second when a 1 is appended in front of the reverse of it, too. Because there
are two contexts in which the subproblem is used, the parallelization is still possible: each
time two tasks are created. If the parallelization is done in a distributed multiprocessing en-
vironment, it is more efficient to locally compute the subproblem instead of communicating
the result to the second usage context.

A similar solution could be given for the problem of finding all the subsets with n
elements of a given set.

3.1.4. Prefix-Sum

The problem of the prefix sum, or scan, is used very often in different computation
contexts; if we have a list of numbers [i : 0 ≤ i < n : ai] the the prefix-sum is defined by
the following list [a0, a0 + a1, . . . , a0 + a1, . . . an−1)]. Operator + could be replaced with any
associative operator.

A simple and direct definition using a recursive strategy is the following:

scan.2. + .[a] = [a]
scan.2. + .(p|q) = sp | (last.sp +∗ sq)
where

sp = scan.2. + .p
sq = scan.2. + .q

and last.l returns the last element of the list l
and +∗ operator adds the first argument to each element

of the second argument list

(19)

Another more efficient algorithm for computing the prefix-sum was proposed by
Ladner and Fisher [37]. This variant was expressed in a functional recursive way by J.
Misra in [38].

lf .[x] = [x]
lf .(p\q) = (sh.0.lfs⊕ p) \ lfs

where
lfs = lf .(p⊕ q)
⊕ is the extension of the operator + on lists defined by:

[a]⊕ [b] = [a + b]
(p1\p2)⊕ (q1\q2) = (p1 ⊕ q1)\(p2 ⊕ q2)

and the shifting function sh
sh.a.[x] = a
sh.a.(p \ q) = sh.a.q \ p

(20)

The effect of shifting applied to a list is to append the first parameter to the left and
discard the rightmost element of the list; thus, sh.0.[a b c d] = [0 a b c].

In this case, we have again only one subproblem used at the decomposition phase, but
this subproblem is applied to an argument (p⊕ q) that is computed in a divide-and-conquer
manner, and the result is used in other computations.

Mathematics 2022, 10, 3925 10 of 22

4. Data versus Task Orientation

In a divide and conquer computation, solving each problem (and each subproblem)
can be seen as a task, but how these tasks are identified and created depends on the nature
of the problem [7]. The decomposition in the divide-and-conquer pattern could be led
either by data partition or by data transformation. The decomposition function δ returns
the appropriate values of the subproblem parameters; it is applied on the input data, but it
depends if it is something like a data distribution function (generate a data partition) or a
function that transforms the input.

Based on this, it is possible to give a classification that identifies these two variants:

• Data oriented divide-and-conquer,
• Task oriented divide-and-conquer.

The most common application of divide-and-conquer is for the problems where the
subproblems are identified by decomposing the data input that are of an aggregate type
(lists, arrays, sets, trees, etc.). The decomposition starts by decomposing the aggregated
data, and then associates the computation with each of the resulted parts of the partition.
The examples for sum, mergesort, and scan belong to this category.

Having as an input a set of functions, which have to be applied on a set of data, it
could be treated also as a data-oriented divide-and-conquer since an aggregated list of
functions is provided and this could be split as they were any other type of data. Still, in
this case, the decomposition is usually done on one single level.

For task oriented divide-and-conquer, the subproblems may be instances of smaller
problems (problems with smaller complexity) and the identification of these smaller prob-
lems could follow different strategies. Very often they rely on the technique called decrease-
and-conquer, as it is the example of the Gray code generation.

Another example is the problem for finding all numbers, which respect a certain
property—prop (e.g., perfect square, prime number, etc.), from a given range—i.e., the
range is given and not a list of numbers. The smaller problems are identified by splitting
the given range:

count_prop2.a.b = veri f .a; if a = b (the range is reduce to 1 on element)
count_prop2.a.b = count_prop2.a. a+b

2 + count_prop2. a+b
2 .b, if a < b

where

veri f .a =

{
0, if prop.a = true
1, if prop.a = f alse

which lead to
count_prop2.a.b = dac.2.δ. + .veri f .a.b,

where δ could be defined based on
splitting the interval using a+b

2 ;

(21)

for all a, b ∈ N, a ≤ b.
An important category of problems where task oriented divide-and-conquer could be

applied is recurrent streams solving:

xn = f .x(n−1).x(n−2).x(n−k) (22)

In this case, the subproblems (the values of the previous elements) could be solved
independently, and so based on the definition, we may apply a divide-and conquer pattern.
But when solving them, there is an important computation overlapping; the classical way of
execution (create a separate task for the computation of each term: x(n−1), x(n−2), . . . x(n−k))
is not efficient. For optimization, at the execution stage, a memoization technique could be
used, which means to store the already computed values into a fast accessible table (map,
or hash-table) in order to avoid the re-computation.

When the computation follows a bottom-up strategy, this algorithmic method is en-
countered with the name dynamic programming. Typically, for this case, the subproblems

Mathematics 2022, 10, 3925 11 of 22

arise from a recurrence relating a given problem’s solution to solutions of its smaller
subproblems. Rather than solving overlapping subproblems again and again, dynamic
programming suggests solving each of the smaller subproblems only once and record-
ing the results in a table from which a solution to the original problem can then be ob-
tained. Dynamic programming extends divide and conquer approach with memoization
or tabulation technique.

For data driven divide-and-conquer we may identify some special characteristics that
may lead to some optimization of the computation. These optimizations are based on the
stages of divide-and-conquer computation.

5. Divide-and-Conquer Stages

The application of the divide-and-conquer pattern could be decomposed into three
important stages:

• Decomposition (divide)
The application of the decomposition function

δ : N×N× Input→ Input (23)

• Base Computation (base)
The application of the basic function

α : BasicInput→ Output (24)

• Composition (combine)
The application of the composition function

θ : (Output×Output . . . Output× Aux_Type)→ Output (25)

If the recursion is applied only once, we have:

dac.k.input = (θ ◦ αk ◦ δ).input, if input /∈ BasicInput (26)

In most of the cases, the δ function only has the role of splitting the data input into
several subsets; this was the case for the sum function, but also for mergesort.

Still, there are also cases—such as the Ladner and Fisher variant of computation for
the prefix sum (Equation (19))—when the decomposition imposes additional operations of
the input.

Quicksort is another example where the decomposition function has a much more
complex responsibility:

quicksort = dac.3.δ.θ.α
α.[a] = [a]

δ.3.i.l =

p, if i = 0
a, if i = 1
q, if i = 2

where p, a, and q are identified by applying the function piv:
piv.l = p ++ [a] ++ q; a ∈ l; p, q ⊂ l; a (the pivot) has the property:
∀ep ∈ p⇒ ep ≤ a, ∀eq ∈ q⇒ eq ≥ a

θ.p .a. q = p ++(aB q)

(27)

For the cases when the decomposition function just provides a partition of the input,
additional optimizations could be provided.

Mathematics 2022, 10, 3925 12 of 22

Definition 2 (Simple distribution). If the input data type (Input) is an aggregated data structure,
and δ is a decomposing function, then δ is called a simple distribution function ⇐⇒

δ.k.i.input = subseti, where
∀i : subseti ⊂ Input and {∪i : 0 ≤ i < k : subseti} = input

(28)

Theorem 1 (Bottom-up computation). If we have a divide-and-conquer function

dac.k.δ.θ.α

applied on an Input domain formed of lists with the length equal to (k ∗m), m > 1, and the corre-
sponding decomposing function δ is a simple distribution function, which is formally expressed as:

δ : N×N× Input
δ.k.i.p = pi, 0 ≤ i < k;
where
(‡ i : 0 ≤ i < k : pi) = p and ‡ is any constructor operator on lists

(29)

then we have

(dac.k.δ.θ.α).l = (dac_botomup.k.θ.α).(i : 0 ≤ i < l.length : α.ei) (30)

where dac_botomup is a function that recursively applies the function θ on subsets of k input elements
(dac_botomup.k.θ.α).[| i : 0 ≤ i < k : ei] = θ.(i : 0 ≤ i < k : α.ei)
(dac_botomup.k.θ.α).[‡ j : 0 ≤ j < n/k : lj] =

(dac_botomup.k.θ.α).[‡ j : 0 ≤ j < n/k : θ.αk.lj]
where length.lj = k and n = m ∗ k

(31)

Proof of Theorem 1. Proof by induction
Base case: length.l = k

(dac.k.δ.θ.α).[| i : 0 ≤ i < k : ei]
= {cf. definition Equation (3)}

θ.(i : 0 ≤ i < k : (dac.k.δ.θ.α).ei)
= {ei ∈ BasicInput}

θ.(i : 0 ≤ i < n : α.ei)
= {dac_bottomup definition}

(dac_botomup.k.θ.α).[| i : 0 ≤ i < n : α.ei]

Inductive case:
Induction hypothesis is

(dac.k.δ.θ.α).[| i : 0 ≤ i < m ∗ k : ei] =
(dac_bottom_up.k.θ.α)[| i : 0 ≤ i < m ∗ k : α.ei], ∀m ≤ n

for any simple distribution δ, combine function θ and base function α; and we prove that

(dac.k.δ.θ.α).[| i : 0 ≤ i < (n+1) ∗ k : ei] =
(dac_bottomup.k.θ.α).[| i : 0 ≤ i < (n+1) ∗ k : α.ei]

We consider

l = [| j : 0 ≤ j < (n+1) ∗ k : ej] the input list
l = [‡ 0 ≤ j < n ∗ k : lj); length.lj = k

Mathematics 2022, 10, 3925 13 of 22

(dac_bottomup.k.θ.α).[| j : 0 ≤ j < (n + 1) ∗ k : α.ej]]
= {list operator; lj definition }

(dac_bottomup.k.θ.α).[‡ j : 0 ≤ j < n ∗ k : αk.lj]
= {definition of dac_bottomup; }

(dac_bottomup.k.θ.α).[‡ j : 0 ≤ j < n ∗ k : (θ ◦ αk).lj]

= {induction hypothesis for dac.k.δ.θ.(θ ◦ αk)}
dac.k.δ.θ.(θ ◦ αk).[‡ j : 0 ≤ j < n ∗ k : lj]

= {dac definition; (θ ◦ αk).lj = dac.k.δ.θ.α.lj}
dac.δ.θ.α.l

• The theorem can be easily extended to divide-and-conquer functions defined with
arity lists containing different values and applied on lists of any length.

• Transforming a dac function into a dac_botomup function is important because facili-
tates the elimination of the decomposition phase that could be extremely costly for
the computation.

• In addition, for the dac_botomup function, reading the data could be combined with
their distribution that could increase efficiency, too.

6. Parallel Programming Patterns Equivalence

The functional definition of the skeletons facilitates the reasoning about them, and for
the divide-and-conquer generalized pattern we followed the functional definition as well,
and so the equivalence between them is done in the same manner.

6.1. Data Oriented Patterns

The equivalences for the patterns Reduce and Scan have been proven in the Section 3.1.

6.1.1. Map

The map pattern defines a computation where a simple operation is applied to all
elements of a collection, potentially in parallel.

map. f .[| i : 0 ≤ i < n : ei]
=

[| i : 0 ≤ i < n : f .ei]
⇒

map. f .p = dac.(length.p). | . | . f .p

(32)

This definition emphasizes the case of embarrassingly parallel computation [7], in
which independent computation is done in parallel. In this case, the recursion depth is
equal to 1.

A more general variant could be defined using an arity list (alp) that is constructed
based on the length of the input list p.

mapg. f .p = dac.(alp). | . | . f .p (33)

The list alp is an arity list that satisfies (∏ e : e ∈ alp : e) = length.p; the product of its
elements is equal to the length of the list p. The length of the arity list implicitly determines
the depth of the recursion.

By introducing the recursion level (l), a generalized variant that offers better control
over the parallelization degree, the following can be obtained:

mapl .l. f .p = dac.(alp). | . | . f .l.(maps. f).p (34)

Mathematics 2022, 10, 3925 14 of 22

In this case, the simple maps plays the role of the alternative β function. The function
maps is executed sequentially based on the definition:

maps. f .[a] = f .a
maps. f .(aB p) = f .aBmaps. f .p

(35)

6.1.2. DMap

The function dmap is a generalization of map that applies different functions (given
as a list of functions) onto a list of elements. In this case, the input type is Input =
List.F× List.X, where ∀ f ∈ F is a function defined on X (f : X → Y).

dmap.lf .p
=

dmap.[| i : 0 ≤ i < n : fi].[| i : 0 ≤ i < n : ei]
=

[| i : 0 ≤ i < n : fi.ei]
⇒

dmap.lf .p = dac.(length.p). | . | .lf .p

(36)

Similar generalizations to those done for map could be applied to dmap, too.

6.1.3. Stencil

The stencil pattern is a kind of map where each output depends on a “neighborhood”
of inputs, and these inputs are a set of fixed offsets relative to the output position. A stencil
output is a function of the “neighborhood” elements in an input collection—usually this
function is called kernel. Stencil defines the “shape” of the “neighborhood” and since this
remains the same, so the data access patterns of stencils are regular.

Being a kind of a map, the stencil pattern could be expressed as a dac function, where
the kernel is the base case function. The significant difference is given by the decomposition
function (δ) that doesn’t lead to a disjunctive partition—the parts are not disjunctive.

stencil. fkernel = dac.k.δ.id. fkernel (37)

For example, in the case of one-dimensional data structure input, with k = 2 and the
stencil defined by the “neighborhood” at distance 1, the decomposition function and the
kernel are defined as follows:

δ.2.i.(pC a | bB q) =
{

pC aC b, if i = 0
aB bB q, if i = 1

fkernel .[a b c] = f .a.b.c
(38)

6.1.4. Map-Reduce (Functional Homomorphisms)

Any function that can be defined as a composition of a map and a reduce is a homomor-
phism [39–41]. First, a function is applied to all data (map), and then, the results are aggre-
gated through the reduce operation. This can be defined as divide-and-conquer function

dac.k. ++.⊕ . f

, where f is the function applied by map on each element of the input, and ⊕ is the
associative operator of the reduce function. It could be also consider that the “Apply” stage
corresponds to a map and the “Combine” stage corresponds to a reduce operation.

6.1.5. MapReduce (Google Pattern)

This pattern is a variation of the map-reduce functional programming pattern. It
considers that at the Map phase the results are formed of (key, value) pairs, where key
belongs to a domain with comparable values (an order relation is available). The Reduce

Mathematics 2022, 10, 3925 15 of 22

phase aggregates the values of the pairs that have the same key [42]. This leads to the
conclusion that we may consider that there are several reduction operations, one for
each key. Additionally, this variant could be expressed with the general divide-and-
conquer pattern; considering the decomposition degree equal to 2, the computation could
be described as:

mr. f .[a] = (f .key.a, f .value.a)
mr. f .(p ++q) = key_merge⊗.(mr. f .p).(mr. f .q)

(39)

where

key_merge⊗.(key1, value1).(key2, value2) = ⊗.(key1, value1).(key2, value2)
key_merge⊗.(p ++q) = (key_merge⊗.p) ./⊗ (key_merge⊗.q)

(40)

where
./⊗ is a merge operator of two sorted lists, that uses
operator ⊗ instead of the simple comparison operator.

The operator ⊗ is defined by:

⊗.(key1, value1).(key2, value2) =
(key1, value1⊗ value2), if key1 = key2
((key_min, value_min), (key_max, value_max)), if key1 6= key2;

key_min = min(key1, key2),
key_max = max(key1, key2)

(41)

Based on these, we conclude that

mr. f = dac.2. ++.key_merge⊗. f (42)

that can be extended to a much higher degree of decomposition, or to a variant based on an
arity list.

6.2. Task Oriented Patterns
6.2.1. Task-Farm

Task-farm is a pattern similar to dmap, but oriented on tasks. If in the case of dmap all
the functions have the same number of parameters, for the task-farm each task may have
different input parameters, in number and types. We have n different tasks that could be
independently computed in parallel:

task_ f arm.{i : 0 ≤ i < n : task.i}
=
{|| i : 0 ≤ i < n : task.i}

(43)

As dmap, the task-farm may be considered a dac function with all the tasks being
functions to be applied for base cases; the base case function α is a tuple function that
applies all the tasks.

6.2.2. Pipeline

The Pipeline pattern uses ordered stages to process a stream of input values. Pipelines
are similar to assembly lines, where each item in the assembly line is constructed in stages.
The stages don’t have to have the same type and they are not subproblems of one problem.
The parallelism is obtained for this pattern by overlapping the execution of the stages for
different data.

Since the parallelism is obtained this way, we may define the computation executed
at one step inside the pipeline as a dmap function, with the first argument being the list
of functions that correspond to stages, and the second being the data on which these are
applied. The function dmap has been proved before to be expressed as a dac function.

Mathematics 2022, 10, 3925 16 of 22

The transfer from one step to another inside the pipeline is a sequential function that
could be expressed functionally as:

pipe.F.(pC a).(lC 0 f).q = pipe.F.p.(dmap.F.(sh.a.l)).q
pipe.F.(pC a).(lC b).q = pipe.F.p.(dmap.F.(aB l)).(bB q), if b 6= 0 f
pipe.F.[].(lC b).q = pipe.F.[].(dmap.F.(0 f B l)).(bB q)
pipe.F.[].[].q = q

(44)

where:

- sh is a shift function that inserts an element in the front of list and eliminates the last
element—it was defined in Section 3.1;

- p is the input stream of values;
- q is the list of results;
- F is a list of k functions that define the pipeline stages;
- 0 f is a mark value that is finally ignored; any function could be applied on it with the

results equal to 0 f , too;
- l is the list of values that are inside the pipeline; initially, when the pipe function is

called first time, this list has to contain length.F values equal to 0 f .

7. Models of Execution

Different execution models could be considered for a divide-and-conquer function.
They depend on the level of recursion and on the parallelism degree [43]. The following
analysis is done for a dac function of order k with n base cases.

In order to facilitate the description of the models of execution, we will use unit of
execution or UE as a generic term for one of a collection of possibly concurrently executing
entities, usually either processes or threads. This is acceptable in the early stages of program
design, when the distinctions between processes and threads are less important.

Based on the three stages identified for a divide-and conquer computation, we have
identified the following classes of divide-and-conquer classes:

1. DAC—divide-apply-combine: this is the case of complete divide-and-conquer com-
putation that contains all the stages: decomposition executed on a different number of
levels, base case applications, followed by the combination stage. Relevant examples
are: quicksort and Ladner and Fisher prefix sum.

2. AC—apply-combine: this is the case described by the Bottom–Up Theorem, when the
decomposition could be omitted because it leads only to a data distribution; the base
case is applied on all the values resulted through data distribution, and then they are
combined using the number of levels specified. Relevant examples: mergesort, reduce.

3. A—apply: this is a simplification of a previous case when the combination stage
could be omitted, because the combination is reduced to a simple concatenation of
the outputs. Relevant examples: map, dmap.

Since we identified three major classes of divide-and-conquer patterns, the execution
models are discussed for each of these three.

In general, two approaches are possible:

i Explicit Execution—for each subproblem, a new task is created and a new UE is
created for executing each such task;

ii Implicit Execution—for each subproblem, a new task is created and all these tasks are
submitted to a task-pool that is served by a predefined number of UEs.

The specific characteristics with their advantages and disadvantages are identified
and analyzed.

Mathematics 2022, 10, 3925 17 of 22

7.1. DAC: Divide-Apply-Combine
7.1.1. DAC—Explicit UE Execution

The computation of each subproblem is assigned to a new processing unit (thread,
process). These lead to a number of k(logk n) UEs (k is the decomposition degree, and n the
number of base cases), which grows very fast with n (the number of base case applications).
The needed data are sent to each UEs at the moment of creation. Additionally, any UE
excepting the first (the root) should wait for the termination of the UEs spawned by it, and
be able to take their results, too.

By specifying the recursion level (l) it is possible to control that UEs creation to a limit
equal to kl .

If k is equal to 2 an efficient approach is to create only one UE at each decomposition:
left subproblem is taken by the current UE, and a new UE is created for the right subproblem;
this way only n UE are created.

7.1.2. DAC—Implicit UE Execution (Task Pool)

For the computation of each subproblem, a new computational task is created, and
these tasks are submitted to an execution task-pool that manages a specified number of UEs.

For this case, the task-pool should be able to manage the synchronization induced
by the fact that the computation of each problem depends on the computation of the
subproblems into which was decomposed (parent–children dependency). These means
that the management of the pool should assure working in fork-join manner, and to put
the waiting tasks into a “stand-by” state in order to have an efficient execution. Such an
example is Java ForkJoinPool.

7.2. AC: Apply-Combine

When the division stage is equivalent with data partition (disjunctive or not) the execu-
tion could exclude the decomposition stage, which is replaced just by data decomposition
(as has been proved in Theorem 1).

7.2.1. AC—Explicit UE Execution (Tree-Like Execution)

In this case, n UEs are created and each of these will execute in a first stage the
corresponding base cases. The second stage of combing is executed in a tree-like fashion.
Figure 2 emphasizes the execution for the case when n = 4 and k = 2.

Figure 2. Tree-like execution for a divide-and-conquer of type AC with k equal to 2 and n equal to 4.

On the distributed memory platforms, the execution has to start with data distribution,
through which the processes will receive the needed data.

For the cases when the data partition leads to non-disjunctive data sets, data replication
is needed. This is the case of the stencil operations, when the “neighborhood” elements are
needed in the computation.

Mathematics 2022, 10, 3925 18 of 22

Data distribution could be combined with data reading that in many cases could be
executed in parallel: each of the n UE reads the needed data. This approach increases the
efficiency very much since reading the input is, in general, a very costly operation.

7.2.2. AC—Implicit UE Execution (Task Pool)

A master UE is needed to manage the creation of the tasks and their submission to
the task pool. Initially, it creates n tasks corresponding to each base case and then submits
them to the execution pool. After that, the master will create, successively, all the combing
tasks depending on the order k and the results of the previous tasks.

The manager is also responsible to attach the needed data to each task and to collect
the result.

7.3. A: Apply

When the computation is reduced only to the computation of the base cases, the
execution follows a master-workers [18] type of execution.

7.3.1. A—Explicit UE Execution

This execution model leads to the creation of n UEs, one for each of the base cases,
and this corresponds to embarrassingly parallel computation [7]. Each UEs could also be
responsible for reading the corresponding input data and writing the result.

7.3.2. A—Implicit UE Execution (Master-Workers)

A master UE manages the execution of a number of workers (UEs), which will receive
tasks for computing the base cases. The data inputs and outputs are managed by the master.

7.4. Advantages/Disadvantages:

In general, the explicit models have the following advantages and disadvantages:
Advantages:

- Explicit control of the association between computation task and execution unit;
- Communication network (tree) could be mapped explicitly to the interconnection

network.

Disadvantages:

- UEs (thread/process) explosion;
- Difficult to manage.

On the other hand the implicit models have their specific advantages and disadvantages:
Advantages:

- The number of UEs is controlled by the execution pool;
- Easy to manage/use.

Disadvantages:

- Implicit control of the association between computation tasks and execution units;
- Communication network (‘task-graph’) could not be mapped explicitly to the physical

interconnection network; the execution pool is responsible to associate the tasks with
the UEs, which on their turn are executed on physical processing elements.

- Specific requirements for the task pool management are imposed.

7.5. Synchronization and Data Management

Divide-and-conquer pattern imposes through the definition synchronization points
before each combine operation; in order to apply the combine operations, all the corre-
sponding subproblems should be finalized.

In addition to these implicit synchronization points, the execution model could specify
additional ones. These could be related to the necessity of assuring consistency when share
data are used.

Mathematics 2022, 10, 3925 19 of 22

When data partitioning does not lead to disjunctive data sets and shared memory
is used, synchronization is essential in order to assure correctness. A simple solution to
avoid this synchronization is possible through data replication, which still may increase
space-complexity.

The overall efficiency of a divide-and-conquer algorithm is very dependent upon the
efficiency with which the problem can be divided into parts, and the efficiency with which
the solutions to the parts can be combined to give the overall solution. Often, large data
structures are required to represent the problem data and/or the problem solution. These
can lead to the need of a careful analysis of the ways these data structures can be divided
and combined. In concrete executions, these imply data communications that have a very
important impact over the overall efficiency.

When distributed memory is used, data communication adds an important overhead,
that should be optimized through data packaging, data serialization, or by combing reading
with data distribution, or/and data aggregation with data writing. Examples of frameworks
that treat these problems are those reported in [44,45].

For implicit execution, several optimizations have been proposed [46,47]. Optimiza-
tions based on techniques such as "work-stealing" were proposed, and they fit very well
for of divide-and-conquer problems with a high degree of imbalance among the generated
subproblems and/or a deep level of recurrence. Using the proposed generalized formula-
tion the level of recurrence is better controlled, and this could provide better adaptation to
a much larger class of thread pool executors.

8. Discussion

We provided a more general definition of the divide-and-conquer pattern that includes
an arity list for different decomposition degrees, a level of recursion, and also an alternative
solution for the cases that are not trivial, but could be solved sequentially in an efficient way.

Very often, the number of the subproblems is equal to 2; the proposed generalized
variant not only accepts a decomposition in more than 2 problems, but also includes the
variant when at each level of decomposition the arity could be different. This brings
the advantage of eliminating some constraints regarding the size of the problem; if, for
example, in a simple search problem the size of the collection (n) is not a power of two
(n 6= 2l) we cannot split the collection always into two equal parts, but still we may use
the decomposition of n in factors, and so, we allow the possibility to always split into
subcollections of equal sizes.

By introducing the parameter for the level of recursion, we allow applying a hybrid
solution of the problem in hand: a composition of a solution based on divide-and-conquer
(until a certain level) and another solution for the problems of a certain size (complexity).
This could be useful from the complexity point of view, since for a sequential execution
the recursion involved by the divide-and-conquer could bring additional costs. A detailed
explanation was given for the mergesort algorithm.

In addition, the level of recursion provides the possibility to control the degree of
parallelization: a parallel model of execution is used only until the level of recursion is
greater than zero. This doesn’t exclude the possibility of using the same decomposition
for the rest of the computation, but using classical sequential execution of the divide-and-
conquer computation (in this case, the function β is defined similarly with the initial dac,
but without a level of recursion parameter). On the other hand, the alternative computation
provided through the function β may provide a non-recursive solution that has a more
efficient implementation. For example, for the addition example, the function β can be the
simple iterative addition function, for which the execution time is much smaller than for
one implemented based on recursion.

Starting from this generalized specification of the pattern, we proved that it can be
instantiated such that to obtained other classical parallel programming patterns as: map,
dmap, reduce, stencil, map− reduce, and f arm. For pipeline pattern a specification is pro-
vided based on a recursive function and a dmap (which is an instance of dac) composition.

Mathematics 2022, 10, 3925 20 of 22

Having a generalized specification of a pattern, from which we may derive through
specialization other patterns, is useful either from formal semantic point of view, since it
allows reasoning for a wide class of computations, but also from an implementation point
of view, since it allows generic implementations.

Going closer to the implementation level, we have analyzed several models of ex-
ecutions depending on the class of the divide-and-conquer computation and the type
of parallelization: with explicit or implicit association between the tasks and the unit of
executions (thread or processes).

The idea of providing a generalized formulation of the divide-and-conquer pattern
came from our experience of implementing a parallel programming framework (JPLF) [48]
based on a variant of this pattern that uses PowerList and Plist data structures introduced
by J. Misra [38], and so oriented on data decomposition. The JPLF framework offers the
possibility to develop efficient implementations based on some templates that facilitate a
simple and robust implementation. Using it, we proved that this can lead to efficient im-
plementations on shared and distributed memory platforms of many divide-and-conquer
algorithms [45,48–50]. The templates based on PowerList allow decompositions of de-
gree two (decomposition into two subproblems), while the variants based on PList allow
decomposition with different arities [51].

Starting from the experience of developing this framework, we intend to create a more
general one that relies on this new general functional specification of the pattern as a base
model and that follows the framework architecture proposed in [52], which emphasizes
the necessity of having all the following components: Model, Executors, DataManager,
UserInteracter, GranularityBalancer, and MetricsAnalyser.

The future work plans also include the implementation and evaluation in terms of
various execution models of different divide-and-conquer algorithms in order to show the
effectiveness of the proposed generalized approach.

Funding: This research was funded partially funded by the Robert Bosch GmbH through a contract
that sustains the research in the domain of Big Data Analytics and High performance Computing at
the Faculty of Mathematics and Computer Science, “Babes-Bolyai” University.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DAC divide-apply-combine
AC apply-combine
A apply

References
1. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L. Introduction to Algorithms, 3rd ed.; MIT Press: Cambridge, MA, USA, 2009.
2. Levitin, A.V. Introduction to the Design and Analysis of Algorithms, 3rd ed.; Addison Wesley: Boston, MA, USA, 2002.
3. Hoare, C.A.R. Algorithm 64: Quicksort. Commun. ACM 1961, 4, 321. [CrossRef]
4. Aung, M.N.; Phyo, Y.; Do, C.M.; Ogata, K. A Divide and Conquer Approach to Eventual Model Checking. Mathematics 2021, 9,

368. [CrossRef]
5. Wu, J.; Li, Y.; Shi, L.; Yang, L.; Niu, X.; Zhang, W. ReRec: A Divide-and-Conquer Approach to Recommendation Based on Repeat

Purchase Behaviors of Users in Community E-Commerce. Mathematics 2022, 10, 208. [CrossRef]
6. Delgado-Gómez, D.; González-Landero, F.; Montes-Botella, C.; Sujar, A.; Bayona, S.; Martino, L. Improving the Teaching of

Hypothesis Testing Using a Divide-and-Conquer Strategy and Content Exposure Control in a Gamified Environment. Mathematics
2020, 8, 2244. [CrossRef]

7. Grama, A.; Gupta, A.; Vipin, G.; Kumar, K. Introduction to Parallel Computing, 2nd ed.; Addison-Wesley: Boston, MA, USA, 2003.
8. Al-Adwan, A.; Zaghloul, R.; Mahafzah, B.A.; Sharieh, A. Parallel quicksort algorithm on OTIS hyper hexa-cell optoelectronic

architecture. J. Parallel Distrib. Comput. 2020, 141, 61–73. [CrossRef]

http://doi.org/10.1145/366622.366644
http://dx.doi.org/10.3390/math9040368
http://dx.doi.org/10.3390/math10020208
http://dx.doi.org/10.3390/math8122244
http://dx.doi.org/10.1016/j.jpdc.2020.03.015

Mathematics 2022, 10, 3925 21 of 22

9. Tsigas, P.; Zhang, Y. A simple, fast parallel implementation of Quicksort and its performance evaluation on SUN Enterprise 10000.
In Proceedings of the Eleventh Euromicro Conference on Parallel, Distributed and Network-Based Processing, Genova, Italy, 5–7
February 2003; pp. 372–381. [CrossRef]

10. Ganapathi, P.; Chowdhury, R. Parallel Divide-and-Conquer Algorithms for Bubble Sort, Selection Sort and Insertion Sort. Comput.
J. 2021, 65, 2709–2719. [CrossRef]

11. Langr, D.; Schovánková, K. CPP11sort: A parallel quicksort based on C++ threading. Concurr. Comput. Pract. Exp. 2022, 34, e6606.
[CrossRef]

12. Alexander, C. A Pattern Language: Towns, Buildings, Construction; Oxford University Press: Oxford, UK, 1977.
13. Kamiya, T. Japanese Sentence Patterns for Effective Communication; Kodansha International: Tokyo, Japan, 2012.
14. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software; Addison-Wesley

Longman Publishing Co., Inc.: Boston, MA, USA, 1995.
15. Schmidt, D.C.; Fayad, M.; Johnson, R.E. Software Patterns. Commun. ACM 1996, 39, 37–39. [CrossRef]
16. Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.; Stal, M. Pattern-Oriented Software Architecture; Wiley: Hoboken, NJ, USA, 1996.
17. Massingill, B.L.; Mattson, T.G.; Sanders, B.A. A Pattern Language for Parallel Application Programs. In Proceedings of the

Euro-Par 2000 Parallel Processing, Munich, Germany, 29 August–1 September 2000; Bode, A., Ludwig, T., Karl, W., Wismüller, R.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 678–681.

18. Mattson, T.; Sanders, B.; Massingill, B. Patterns for Parallel Programming, 1st ed.; Addison-Wesley Professional: Boston, MA, USA, 2004.
19. Cole, M. Algorithmic Skeletons: Structured Management of Parallel Computation; MIT Press: Cambridge, MA, USA, 1991.
20. Aldinucci, M.; Danelutto, M. Skeleton-based parallel programming: Functional and parallel semantics in a single shot. Comput.

Lang. Syst. Struct. 2007, 33, 179–192. [CrossRef]
21. Ciechanowicz, P.; Poldner, M.; Kuchen, H. The Münster Skeleton Library Muesli: A Comprehensive Overview; Working Papers No. 7;

ERCIS-European Research Center for Information Systems: Münster, Germany, 2009.
22. Ernstsson, A.; Li, L.; Kessler, C. SkePU 2: Flexible and Type-Safe Skeleton Programming for Heterogeneous Parallel Systems. Int.

J. Parallel Programing 2018, 46, 62–80. [CrossRef]
23. Aldinucci, M.; Danelutto, M.; Kilpatrick, P.; Torquati, M. Fastflow: High-Level and Efficient Streaming on Multicore. In

Programming Multi-Core and Many-Core Computing Systems; Wiley: Hoboken, NJ, USA, 2017; Chapter 13. [CrossRef]
24. Emoto, K.; Hu, Z.; Kakehi, K.; Takeichi, M. A Compositional Framework for Developing Parallel Programs on Two-Dimensional

Arrays. Int. J. Parallel Program. 2007, 35, 615–658. [CrossRef]
25. Karasawa, Y.; Iwasaki, H. A Parallel Skeleton Library for Multi-core Clusters. In Proceedings of the 2009 International Conference

on Parallel Processing, Vienna, Austria, 22–25 September 2009; pp. 84–91. [CrossRef]
26. Horowitz, E.; Zorat, A. Divide-and-Conquer for Parallel Processing. IEEE Trans. Comput. 1983, 32, 582–585. [CrossRef]
27. Mou, Z.G.; Hudak, P. An algebraic model for divide-and-conquer and its parallelism. J. Supercomput. 1988, 2, 257–278. [CrossRef]
28. Axford, T. The Divide-and-Conquer Paradigm as a Basis for Parallel Language Design. In Advances in Parallel Algorithms; John

Wiley & Sons, Inc.: Hoboken, NJ, USA, 1992; pp. 26–65.
29. Cole, M. On dividing and conquering independently. In Proceedings of the Euro-Par’97 Parallel Processing, Passau, Germany,

26–29 August 1997; Lengauer, C., Griebl, M., Gorlatch, S., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 634–637.
30. Amor, M.; Argüello, F.; López, J.; Plata, O.; Zapata, E.L. A Data-Parallel Formulation for Divide and Conquer Algorithms. Comput.

J. 2001, 44, 303–320. [CrossRef]
31. Mou, Z. Divacon: A parallel language for scientific computing based on divide-and-conquer. In Proceedings of the Third

Symposium on the Frontiers of Massively Parallel Computation, College Park, MD, USA, 8–10 October 1990; pp. 451–461.
[CrossRef]

32. Gorlatch, S.; Lengauer, C. Parallelization of Divide-and-Conquer in the Bird-Meertens Formalism. Form. Asp. Comput. 1995,
7, 663–682. [CrossRef]

33. Poldner, M.; Kuchen, H. Skeletons for Divide and Conquer Algorithms. In Proceedings of the IASTED International Conference
on Parallel and Distributed Computing and Networks, PDCN’08, Innsbruck, Austria, 12–14 February 2008; ACTA Press: Anaheim,
CA, USA, 2008; pp. 181–188.

34. Danelutto, M.; Matteis, T.D.; Mencagli, G.; Torquati, M. A divide-and-conquer parallel pattern implementation for multicores. In
Proceedings of the 3rd International Workshop on Software Engineering for Parallel Systems, Grenoble, France, 24–26 August 2016.

35. Hoare, C.A.R. An Axiomatic Basis for Computer Programming. Commun. ACM 1969, 12, 576–580. [CrossRef]
36. Goodrich, M.; Tamassia, R. Algorithm Design: Foundation, Analysis and Internet Examples; Wiley India Pvt. Limited: New Delhi,

India, 2006.
37. Ladner, R.E.; Fischer, M.J. Parallel Prefix Computation. J. ACM 1980, 27, 831–838. [CrossRef]
38. Misra, J. Powerlist: A Structure for Parallel Recursion. ACM Trans. Program. Lang. Syst. 1994, 16, 1737–1767. [CrossRef]
39. Gorlatch, S. Extracting and implementing list homomorphisms in parallel program development. Sci. Comput. Program. 1999,

33, 1–27. [CrossRef]
40. Hu, Z.; Iwasaki, H.; Takeichi, M. Construction of list homomorphisms by tupling and fusion. In Proceedings of the Mathe-

matical Foundations of Computer Science 1996, Craców, Poland, 2–6 September 1996; Penczek, W., Szałas, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 1996; pp. 407–418.

41. Cole, M. Parallel Programming with List homomosrphisms. Parallel Process. Lett. 1995, 5, 191–203. [CrossRef]

http://dx.doi.org/10.1109/EMPDP.2003.1183613
http://dx.doi.org/10.1093/comjnl/bxab107
http://dx.doi.org/10.1002/cpe.6606
http://dx.doi.org/10.1145/236156.236164
http://dx.doi.org/10.1016/j.cl.2006.07.004
http://dx.doi.org/10.1007/s10766-017-0490-5
http://dx.doi.org/10.1002/9781119332015.ch13
http://dx.doi.org/10.1007/s10766-007-0043-4
http://dx.doi.org/10.1109/ICPP.2009.18
http://dx.doi.org/10.1109/TC.1983.1676280
http://dx.doi.org/10.1007/BF00129780
http://dx.doi.org/10.1093/comjnl/44.4.303
http://dx.doi.org/10.1109/FMPC.1990.89496
http://dx.doi.org/10.1007/BF01211000
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/322217.322232
http://dx.doi.org/10.1145/197320.197356
http://dx.doi.org/10.1016/S0167-6423(97)00014-2
http://dx.doi.org/10.1142/S0129626495000175

Mathematics 2022, 10, 3925 22 of 22

42. Dean, J.; Ghemawat, S. MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM 2008, 51, 107–113. [CrossRef]
43. Mattson, T.G.; Sanders, B.A.; Massingill, B.L. A Pattern Language for Parallel Programming; Addison Wesley Software Patterns

Series; Addison Wesley: Boston, MA, USA, 2004.
44. Martínez, M.A.; Fraguela, B.B.; Cabaleiro, J.C. A highly optimized skeleton for unbalanced and deep divide-and-conquer

algorithms on multi-core clusters. J. Supercomput. 2022, 78, 10434–10454. [CrossRef]
45. Niculescu, V.; Bufnea, D.; Sterca, A. MPI Scaling Up for Powerlist Based Parallel Programs. In Proceedings of the 2019 27th

Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), Pavia, Italy, 13–15 February
2019; pp. 199–204. [CrossRef]

46. González, C.H.; Fraguela, B.B. A general and efficient divide-and-conquer algorithm framework for multi-core clusters. Clust.
Comput. 2017, 20, 2605–2626. [CrossRef]

47. Martínez, M.A.; Fraguela, B.B.; Cabaleiro, J.C. A Parallel Skeleton for Divide-and-conquer Unbalanced and Deep Problems. Int. J.
Parallel Program. 2021, 49, 820–845. [CrossRef]

48. Niculescu, V.; Loulergue, F.; Bufnea, D.; Sterca, A. A Java Framework for High Level Parallel Programming Using Powerlists. In
Proceedings of the 2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies
(PDCAT), Taipei, Taiwan, 18–20 December 2017; pp. 255–262. [CrossRef]

49. Niculescu, V.; Loulergue, F.; Bufnea, D.; Sterca, A. Pattern-driven Design of a Multiparadigm Parallel Programming Framework.
In Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering—ENASE,
INSTICC, Prague, Czech Republic, 5–6 May 2020; SciTePress: Setúbal, Portugal, 2020; pp. 50–61. [CrossRef]

50. Niculescu, V.; Loulergue, F. Transforming powerlist-based divide-and-conquer programs for an improved execution model. J.
Supercomput. 2020, 76, 5016–5037. [CrossRef]

51. Niculescu, V.; Bufnea, D.; Sterca, A. PList-based Divide and Conquer Parallel Programming. J. Commun. Softw. Syst. 2020,
16, 197–206. [CrossRef]

52. Niculescu, V.; Sterca, A.; Loulergue, F. Reflections on the Design of Parallel Programming Frameworks. In Proceedings of the
Evaluation of Novel Approaches to Software Engineering, Virtual, 26–27 April 2021; Ali, R., Kaindl, H., Maciaszek, L.A., Eds.;
Springer International Publishing: Cham, Switzerland, 2021; pp. 154–181. [CrossRef]

http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1007/s11227-021-04259-5
http://dx.doi.org/10.1109/EMPDP.2019.8671597
http://dx.doi.org/10.1007/s10586-017-0766-y
http://dx.doi.org/10.1007/s10766-021-00709-y
http://dx.doi.org/10.1109/PDCAT.2017.00049
http://dx.doi.org/10.5220/0009344100500061
http://dx.doi.org/10.1007/s11227-019-02820-x
http://dx.doi.org/10.24138/jcomss.v16i2.1029
http://dx.doi.org/10.1007/978-3-030-70006-5_7

	Introduction
	Paper Outline
	Notations

	Parallel Programming Patterns and Skeletons
	Divide and Conquer Generalized Pattern
	Examples
	Sum
	Merge-Sort
	Reflected Binary Gray Code
	Prefix-Sum

	Data versus Task Orientation
	Divide-and-Conquer Stages
	Parallel Programming Patterns Equivalence
	Data Oriented Patterns
	Map
	DMap
	 Stencil
	 Map-Reduce (Functional Homomorphisms)
	MapReduce (Google Pattern)

	 Task Oriented Patterns
	Task-Farm
	Pipeline

	Models of Execution
	DAC: Divide-Apply-Combine
	 DAC—Explicit UE Execution
	DAC—Implicit UE Execution (Task Pool)

	AC: Apply-Combine
	AC—Explicit UE Execution (Tree-Like Execution)
	 AC—Implicit UE Execution (Task Pool)

	A: Apply
	A—Explicit UE Execution
	A—Implicit UE Execution (Master-Workers)

	Advantages/Disadvantages:
	Synchronization and Data Management

	Discussion
	References

