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Abstract: To limit the adverse effects of diabetes, a personalized and long-term management strategy
that includes appropriate medication, exercise and diet has become of paramount importance and
necessity. Compartment-based mathematical control models for diabetes usually result in objective
functions whose terms are conflicting, preventing the use of single-objective-based models for
obtaining appropriate personalized strategies. Taking into account the conflicting aspects when
controlling the diabetic population dynamics, this paper introduces a multi-objective approach
consisting of four steps: (a) modeling the problem of controlling the diabetic population dynamics
using a multi-objective mathematical model, (b) discretizing the model using the trapezoidal rule
and the Euler–Cauchy method, (c) using swarm-intelligence-based optimizers to solve the model
and (d) structuring the set of controls using soft clustering methods, known for their flexibility. In
contrast to single-objective approaches, experimental results show that the multi-objective approach
obtains appropriate personalized controls, where the control associated with the compartment of
diabetics without complications is totally different from that associated with the compartment of
diabetics with complications. Moreover, these controls enable a significant reduction in the number
of diabetics with and without complications, and the multi-objective strategy saves up to 4% of the
resources needed for the control of diabetes without complications and up to 18% of resources for the
control of diabetes with complications.

Keywords: diabetes mellitus (DM); dynamic control of diabetic population (DCDP); non-dominated
sorting genetic algorithm II (NSGA-II); multi-objective firefly algorithm (MOFA); Fuzzy-CMeans
(FCM); Gaussian mixture model (GMM); kernel convolution; fast Fourier transform (FFT)

MSC: 90C20; 90C29; 90C90; 93E20

1. Introduction

Diabetes is a permanent disease resulting from the pancreas’ incapacity to generate in-
sulin, or the body being incapable of utilizing the insulin properly. According to forecasts by
the International Diabetes Federation (IDF), by 2045, one person in eight, or approximately
783 million individuals, will be suffering from diabetes, representing an average increase
of 46% [1]. More than 90% of people living with diabetes are type 2 diabetics. Urbanization,
an aging population, reduced physical activity and the increased prevalence of overweight
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and obesity are the major contributors to the increase in type 2 diabetes. According to
the IDF’s 2021 report, diabetes accounted for at least USD 966 billion in healthcare costs
(9% of the total adult budget). Diabetes can lead to serious complications, among them
vision loss, cardiovascular problems, kidney insufficiency, cerebrovascular accidents, nerve
damage and lower-limb amputations. The key measures capable of mitigating this damage
include appropriate medication, adapted physical exercise [2] and personalized diet [3–5].
To determine an optimal control and implement these measures, several mathematical
control models have been proposed in the literature. Unfortunately, these models do not
distinguish between the different components of the diabetic population we wish to control,
while certain conflicting characteristics are implicitly embedded in this problem. This
results in standard strategies that are adequate for some patients but not appropriate for
others [6,7].

This work proposes a new approach to control the dynamics of the diabetic popula-
tion based on a multi-objective dynamic model, using multi-objective swarm intelligence
optimizers and soft clustering algorithms.

Most of the strategies aimed at controlling the dynamics of the diabetic population are
based on single-objective mathematical models, which formulate the optimal control using
the Pontryagin’s maximum principle and decompose the model using various numerical
techniques to estimate the control [8–11]. Numerical methods employing Pontryagin’s
maximum principle result in controls that are prohibitively resource-hungry in terms of
both personnel and material. To overcome this problem, the authors of [2] used several
heuristic methods to estimate a control by introducing an adequate objective function that
makes a compromise between the components of the model proposed in [8]. However,
focusing on a single objective leads to controls that heavily minimize certain compartments
at the detriment of others. In addition, this kind of solution provides a unique policy that
may not be suitable in some contexts or may not be appropriate.

In this work, we introduce a multi-objective strategy to control the dynamics of a
diabetic population, implementing three compartments, i.e., pre-diabetics, diabetics, and
diabetics with complications, and consisting of the following steps: (a) the introduction of
two controls to protect diabetics from developing complications, (b) the introduction of
two objectives functions to reduce the size of the two last compartments and the necessary
resources to realize such a reduction, (c) the discretization of the obtained model using the
Euler–Cauchy method and the trapezoidal rule, (d) the construction of two appropriate
objective functions that make a compromise between the components of the model, and
(e) employing NSGA-II [12] and MOFA [13] multi-objective optimization algorithms to
build the Pareto front that presents the set of control actions to the customers. In step (c), we
evaluated the error due to the discretization process. NSGA-II and MOFA produce a set of
controls from which the user has to select the appropriate one considering its requirements.
To assist the user, we structured the Pareto solutions front using two soft clustering methods:
the Gaussian mixture model (GMM) [2] and Fuzzy-CMeans (FCM) [14]. The employed
soft computing methods based on fuzzy or probabilistic approaches provide decision
system makers with the necessary capabilities to deal with imprecise and incomplete
information. A soft clustering method permits us to have an observation that belongs to two
or more clusters. The optimal number of groups was selected on the basis of the silhouette
criteria [14]. The experimental results show that the proposed multi-objective approach
offers several effective and personalized controls that will enable experts to implement
diversified group therapies to alleviate the human and material damage of diabetes.

The main contributions of this paper are summarized as follows:

(1) A multi-objective mathematical model for controlling the dynamics of the diabetic
population is introduced;

(2) A discretization of the proposed model is realized based on the trapezoidal rule and
the Euler–Cauchy method (we demonstrate that this error is bounded);

(3) Two multi-objective optimizers are used to solve the proposed multi-objective model;
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(4) As a first postprocessing phase, FFT convolution is used to clean the noise from
the control;

(5) As a second post-processing phase, two soft clustering methods are used to structure
the Pareto front.

The rest of the paper is organized as follows: Section 2 presents some related works.
Section 3 provides a methodology overview. Section 4 presents the proposed multi-objective
mathematical model. Section 5 presents the employed computational intelligence algorithms
(NSGA-II, MOFA, FCM and GMM). Section 6 discusses the experimental results obtained
using our approach. Finally, Section 7 gives some conclusions and future directions.

2. Related Works

Faced with a large population of diabetics, a long-term strategy (group therapy) is
needed that involves dividing this population into a reasonable number of compartments,
then estimating the magic combinations comprising diet, exercise and medication for
each compartment.

To meet these needs, a number of mathematical models have been developed, in
particular dynamic models of the diabetic population. Various compartments have been
considered, i.e., pre-diabetic people, diabetic people without complications, people with
complications, healthy people and other types [15–19]. All the dynamic models of diabetes
proposed in the literature focus on a single objective function and follow the same steps,
with slight differences depending on the types of diabetic groups studied. At first, research
was performed only on two types of compartments, the compartment of people with
diabetes and prediabetic people. In 2014, the first controlled population dynamics model
of diabetes was put forward [20]. It considered three types of populations: pre-diabetic
individuals, diabetic individuals without complications and diabetic individuals with
complications [20]. The authors proposed this controlled diabetic population model to
reduce the negative effects of this disease and used the Gumel numerical method [21]
to solve the system. They also proposed a control strategy over a period of 120 months.
Subsequently, another controlled dynamic model of the diabetic population, based on a new
control strategy, was proposed in [22]; this time, they thought of dividing the population
into two types of compartments, which were the uncomplicated diabetic individuals and
the diabetic individuals with complication. Unfortunately, this approach excludes many
diabetes-related groups and fails to specify how to control a very large population size with
the same control strategy. In 2018, the authors of [23] introduced a population control model
for diabetics, implementing five compartments, but the proposed model takes into account
people with disabilities, which is not the most prevalent general case. Consequently, this
control cannot be generalized.

An alternative study, which has some overlap with our study, examines the fact of
being pregnant [24]. Unfortunately, this study focuses only on women, and more specifically
on pregnant women. Moreover, the control phase has not yet been carried out. In [25],
authors suggested a reduced monitoring framework using the time-discrete method, which
models the progression of prediabetes to diabetes with and without complications and
the impact of the lifestyle context. Anther work [26], by the same authors, provided a
mathematical model of the diabetic population split into six compartments considering
other aspects such as the effects of genetics and behavioral factors. The authors of the
study suggest that in order to decrease the proportion of diabetics, three controls could
be implemented: an awareness program through education and media, therapy and
psychological assistance with follow-up. In the end, several strategies were proposed
in [25,26], but they lead to confusion for doctors, and the proposed controls are difficult
for non-mathematicians to understand. In [8], the authors investigated a model that
outlines the evolution of the population, as well as the pain of diabetic subjects with
the socio-environmental effect depending on the age category; the authors suggested an
optimized monitoring plan to protect patients from the negative influence of a lifestyle
that causes them to develop complications. Numerical methods, employing Pontryagin’s
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principle, result in controls that are prohibitively expensive in terms of human and material
resources. Recently, in [2], we used heuristic methods to estimate a control based on a fitness
function that achieves a compromise between constraints and the model’s objective function.
However, implementing conflicting criteria in a single function results in non-personalized
standard controls. This paper introduces a new approach based on a multi-objective model,
which we solve with two multi-objective swarm optimizers. In order to help the user select
a suitable control from the Pareto front, we also employ two soft clustering methods as
mentioned in the previous section.

3. Methodology Overview

Notations
Time variables: we denote by T the control period and by h the time step.
Compartments: E, I, D and C are the number of pre-diabetics, the incidence of being

prediabetic, the number of diabetics and the number of diabetics with complications.
Parameters: In the system described in Equation (1), µ is the biological death ratio,

β1 is the risk of acquiring diabetes mellitus (DM), β2 is the estimate of the likelihood
that an individual with DM will develop a complication, β3 is the risk of developing
complicated DM, γ is the success ratio for complications, ν is the degree to which severely
disabled individuals become seriously handicapped and δ is the death ratio caused by
medical complications.

Controls: u1 and u2 are the functions introduced to control the compartments of
diabetics with and without complications.

Model
Variables: we introduced two functions (u1 and u2), in model (1), to control the

compartments D and C during the period T; see system (2).
First objective function: this function was introduced to minimize the number of

diabetic D and the resources required to realize this objective (i.e., u1).
Second objective function: this function was introduced to minimize the number of

diabetics with complications C and the resources required to realize this objective (i.e., u2)
Constraints: ordinary differential equation that governs the exchange between differ-

ent compartments in the presence of the controls.
Discretization
Objective functions: The first and the second objective functions implement integral

operators to consider the number of diabetics with and without complications and the
resources required to control these compartments during the period T. To transform these
integral to a discrete sum, we used the trapezoidal rule based on time step h.

Constraints: to transform the differential equations of the proposed model into a
combinatorial system, we used the Euler–Cauchy method because of its simplicity.

Error estimation: in lemma 1 and proposition 1, we demonstrate that the error due to
the discretization is still bounded with a cubic function that implements all the outputs of
the multi-objective model.

Smart local search
To estimate the controls u1 and u2, we used two multi-objective local search methods,

namely the NSGA [12,27] and MOFA [13] algorithms; the configurations of these methods
were experimentally chosen. Here [T/h] + 1 represents the integer par of T/h.

Post-processing
Features extraction: to avoid high-dimensional vectors ([T/h]), when structuring the

control space, we extracted the relevant information by adopting certain criteria (control
fluctuation, control cost, quality of compartments and spatial characteristics).

Structuring of the Pareto front: NSGA-II and MOFA produce a set of controls that are
difficult to exploit, so we used two soft clustering methods, GMM [14] and FCM [28], to
summarize the Pareto front.

Fluctuation corrections: To correct fluctuations caused by successive approxima-
tions, we used the FFT convolution operator and test several masks of different sizes
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(4× 4, ..., 10× 10). In this sense, given a function, represented by the matrix U, whose
fluctuations we want to eliminate, we chose a suitable kernel function K, represented by a
matrix of ones modified by a suitable weight w, and the convolution formula is given by
∀j, k C(i, j) = ∑p,q U(p, q) ∗ K(j− p + 1, k− q + 1).

The size of the kernel K and w were experimentally chosen.
Performance evaluation
The control quality was measured using three criteria: (a) the rate of growth of E: the

faster it is, the better the control; (b) the rate of decay of D and C: the faster the decay, the
better the control; and (c) the values taken by u1 and u2: the smaller they are, the better
the control.

4. Multi-Objective Diabetic Control Model
4.1. Single-Goal Control Model

Let E(t), D(t) and C(t) be the compartment of pre-diabetic individuals, the com-
partment of diabetic individuals without complication and the compartment of diabetic
individuals with complication, respectively. Derouich et al. [20] introduced the following
mathematical model:

dE(t)
dt = I − (µ + (β3 + β1)(1− u(t)))E(t)

dD(t)
dt = β1(1− u(t))E(t)− (µ + β2(1− u(t)))D(t) + γC(t)

dC(t)
dt = β3(1− u(t))E(t) + β2(1− u(t))D(t)− (µ + γ + ν + δ)C(t)

(1)

u represents the intervention of the endocrinologist [medication potency level (1 mg,
. . . , 10 mg), diet level (the glycemic load not to be exceeded), type of exercise (the number
of minutes of walking, type of running...)], I is the effect of the presence of pre-DM, µ is the
biological death ratio, β1 is the risk of acquiring DM, β2 is the estimate of the likelihood
that an individual with DM will develop a complication, β3 is the risk of developing
complicated DM, γ is the success ratio for complications, ν is the degree to which severely
disabled individuals become seriously handicapped and δ is the death ratio caused by
medical complications.

The function they sought to minimize in [20] is of the following form:

Γ(u) =
T∫

0

(
D(t) + C(t) + Ku2(t)

)
dt

K ∈ R+ and all the feasible controls of one goal model form a set denoted U. u is said
to be feasible if it is measurable and the system (1) has at least one solution. A feasible
control is expressed in percent, i.e., 0 ≤ u(t) ≤ 1, ∀t ∈ [0, T].

Problems:
For a given decision u, the

∫ T
0

(
D(t) + C(t) + Ku2(t)

)
dt and

∫ T
0 D(t)dt can be minimal

and
∫ T

0 C(t)dt is very large, as the terms in Γ are in conflict with each other.
In practice, it is difficult to set up a tradeoff between D, C and u via a penalty constant.

In fact, to evacuate compartment D, there are three possibilities: move patients from D
to E or move patients from D to C, or both. To evacuate compartment C, there is only
one possibility: move patients from C to D. So, the two compartments D and C are in
conflict. A possible scenario: if the number of diabetic patients with complications is
very small, compared to D, a wrong choice of aggregation parameters can give wrong
information to the optimization methods and the number of patients with complications can
receive elements from D while the objective function is minimal (for a given local solution).
When dealing with conflicting cost functions, a single solution is not reasonable because a
solution that may be appropriate in one context may not be appropriate in another. The
characteristics of patients in D are not similar to the ones of C. Therefore, the regulation of
the system requires individualized policies that take this difference into account.
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The Pontryagin principle implies very complex mathematical formulas; moreover, it
leads to an expansive strategy that consumes all existing resources.

4.2. Multi-Objective Control Model

Decision variables: To act on E and D with two separate strategies, we introduced two
controls, u1 to control E and u2 to control D. u1 and u2 are two measurable functions
defined on [0, T] and take their values in [0, 1]. Practically speaking, it is impossible
to estimate the decision functions at each instant t, and that is why we estimated these
functions at d instants t1, . . . , td from [0, T] such that ti+1 − ti = constant = h and T

h = d,
and let us denote by u11, . . . , u1d and u21, . . . , u2d the obtained values.

Constraints: By introducing u1 and u2 in the system (1), we prevented (1− u1(t))%
of prediabetic people and (1− u2(t))% of people with diabetes from joining the upper
compartments; thus, we obtained the following system:

dE(t)
dt = I − (µ + (β3 + β1)(1− u1(t)))E(t)

dD(t)
dt = β1(1− u1(t))E(t)− (µ + β2(1− u2(t)))D(t) + γC(t)

dC(t)
dt = β3(1− u1(t))E(t) + β2(1− u2(t))D(t)− (µ + γ + ν + δ)C(t)

(2)

We discretized the system (2) using the time step h defined before, and we obtained
the following system:

Ei+1 = Ih− (µ + (β3 + β1)(1− u1,i))hEi + Ei
Di+1 = β1(1− u1,i)hEi − (µ + β2(1− u2,i))hDi + γhCi + Di
Ci+1 = β3(1− u1,i)hEi + β2(1− u2,i)hDi − (µ + γ + ν + δ)hCi + Ci

i = 0, . . . , d− 1 (3)

where
∼
up =

(
up,0, . . . , up,d

)
, p = 1, 2.

Objective functions: We introduced the following two objective functions:

Γ1(u1, u2) =
∫ T

0

(
C(t) + Ku2

1(t)
)

dt and Γ2(u1, u2) =
∫ T

0

(
D(t) + Ku2

2(t)
)

dt

We used the trapezoidal rule to estimate Γ1 and Γ2 and then obtained the following
objective functions:

Γ1(u1, u2) ≈
∼
Γ1(
[∼

u1,
∼
u2

]
) =

h
2

d−1

∑
i=0

(Ci+1 + Ci) +
Kh
2

d−1

∑
i=0

(
u2

1,i+1 + u2
1,i

)

Γ2(u1, u2) ≈
∼
Γ2

([∼
u1,
∼
u2

])
=

h
2

d−1

∑
i=0

(Di+1 + Di) +
Kh
2

d−1

∑
i=0

(
u2

2,i+1 + u2
2,i

)
We denote by U1,2 the set of the pair feasible control.
The multi-objective problem we propose in this work is given by:

Min
∼
Γ1

([∼
u1,
∼
u2

])
Min

∼
Γ2

([∼
u1,
∼
u2

])
Subject to[∼

u1,
∼
u2

]
∈ [0, 1]2d(∼

E,
∼
D,
∼
C
)

solution o f (3)

(4)

Convexity of the problem (4): We have ∀i = 0, . . . , d− 1 and ∀j = 1, 2; the function[∼
u1,
∼
u2

]
→ u2

j,i+1 + u2
j,i is convex.

Then ∀j = 1, 2, and the function
[∼

u1,
∼
u2

]
→ ∑d−1

i=0

(
u2

j,i+1 + u2
j,i

)
is convex;

As Kh
2 > 0, then ∀j = 1, 2; the function [

∼
u1,
∼
u2]→

∼
Γj

([∼
u1,
∼
u2

])
is convex.
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We have ∀i = 0, . . . , d− 1, the function

F(
[∼

u1,
∼
u2

]
) =

 Ih− (µ + (β3 + β1)(1− u1,i))hEi + Ei − Ei+1
β1(1− u1,i)hEi − (µ + β2(1− u2,i))hDi + γhCi + Di − Di+1
β3(1− u1,i)hEi + β2(1− u2,i)hDi − (µ + γ + ν + δ)hCi + Ci − Ci+1


is linear; thus, F is convex.

Finally, the problem (4) is convex.
As we have shown that the problem (4) is convex, we used gradient methods to

solve it:

(a) The primary methods used were gradient descent algorithms [29];
(b) Dual methods, which exploit convexity to calculate the gradient of the dual max–min,

were also used [30];
(c) The substitution and the decomposition Lagrange methods that introduce a copy

variable to decompose the initial problem to two sub-problems [31]: the first one does
not have any constraints (for which we can use gradient descent, among others) and
the second one does not have objective functions (for which we can use back tracking
methods, among others).

In this sense, we have to transform the multi-objective functions to a single-objective
function using aggregation weights; as a result, we find ourselves in front of a system of
3d constraints plus 2d positivity constraints. In this work, we preferred to use heuristic
methods that only meet the 0 ≤ ∼

u j,i ≤ 1 ∀i = 0, . . . , d − 1 and ∀j = 1, 2 positivity
constraints, i.e., 2d, which are easily introduced in Matlab’s “gamultiobj” as bounds. To
avoid the 3d constraints, given an estimation of the control, at the iteration k, we used an
interpolation method (for example the spline method) to transform the discrete control

∼
u

to the continuous control u; then, we called for the Euler–Cauchy method to approximate

the compartments C and D; after that, we estimated the value of the function
∼
Γj(
[∼

u1,
∼
u2

]
(∀j = 1, 2).

Error of approximation: In this section, we estimate the error related to the approximation
of the integral using the trapezoidal rule. We introduced the following functions:

f1(t) = C + Ku2
1 and f2(t) = D + Ku2

2
∀i ∈ {1, 2}, we set M′i = max

t∈[0, T]

∣∣u′i(t)∣∣ and M′′
i = max

t∈[0, T]

∣∣u′′i (t)∣∣
Lemma 1. Considering the system (2), we have:∥∥ f ′′1

∥∥ ≤ (αM′1 + αM′2 + 31α2 + α
)

P + 2KM′′
1 + 2K

(
M′1
)2

∥∥ f ′′2
∥∥ ≤ (αM′1 + αM′2 + 17α2 + α

)
P + 2KM′′

2 + 2K
(
M′2
)2

where P is the size of the population and α = max{µ, γ, ν, δ, β1, β2, β3}.

Proof of Lemma 1.
We have f1

′ = C′ + 2Ku′1u1
Thus f ′1 = β3(1− u1)E + β2(1− u2)D− (µ + γ + ν + δ)C + 2Ku′1u1
Then f ′′ 1(t) = −β3u′1E+ β3(1− u1)E′− β2u′2D + β2(1− u2)D′− (µ + γ + ν + δ)C′

+ 2Ku′′1u1 + 2K
(
u′1
)2

Thus f ′′1 = −β3u′1E+ β3(1− u1)[I − (µ + (β3 + β1)(1− u1))E]− β2u′2D+ β2(1− u2)
[β1(1− u1)E− (µ + β2(1− u2))D + γC] − (µ + γ + ν + δ)[β3(1− u1)E + β2(1− u2)D(t)
−(µ + γ + ν + δ)C] + 2Ku′′1u1 + 2K

(
u′1
)2

Then f ′′ 1 = [−β3u′1 − β3(1− u1)(µ + (β3 + β1)(1− u1)) + β2β1(1− u1)(1− u2)
−(µ + γ + ν + δ)β3(1− u1)]E + [−β2u′2 − β2(1− u2)(µ + β2(1− u2))− (µ + γ + ν + δ)

β2(1− u2)]D + [β2(1− u2)γ + (µ + γ + ν + δ)2]C + 2Ku′′ 1u1 + 2K(u′1)
2 + β3(1− u1)I
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Thus
∥∥ f ′′1

∥∥ ≤ (αM′1 + αM′2 + 31α2 + α
)

P + 2KM′′
1 + 2K

(
M′1
)2

Following the same steps, we find
∥∥ f ′′2

∥∥ ≤ (
αM′1 + αM′2 + 17α2 + α

)
P + 2KM′′

2 +

2K
(
M′2
)2. �

Proposition 1. Let (u1, u2) be the optimal control of the problem (P). The error associated with the
trapezoidal rule discretization is bounded by the number

E =

(
Th2

12

)
[(αM′1 + αM′2 + 31α2 + α)P + 2K

(
M + M2

)
]

where M = max{M′1, M′2, M′′1, M′′2}.

Proof of the Proposition 1. Consider the integral Integ =
∫ b

a f (t)dt; Rahman Qzi et al.
showed that the error of the trapezoidal rule is estimated by [32]:

Error = − (b− a)3

12N2 f ′′(ξ)

where N is the number of the used points in [a, b].

In our case, a = 0 and b = T, and N = d = T/h (h is the step of the discretization).
However, we demonstrated before, in Lemma 1, that∥∥ f ′′1

∥∥ ≤ (αM′1 + αM′2 + 31α2 + α
)

P + 2KM′′
1 + 2K

(
M′1
)2 and

∥∥ f ′′2
∥∥ ≤ (αM′1 + αM′2 + 17α2 + α

)
P + 2KM′′2 +

2K
(
M′2
)2

Thus
∥∥ f ′′i

∥∥ ≤ (αM′1 + αM′2 + 31α2 + α
)

P + 2KM′′1 + 2K
(
M′1
)2

Thus, the discretization error is given by

E =

∣∣∣∣ T3

12N2 f ′′i (ξ)
∣∣∣∣ ≤ Th2

12
[(αM′1 + αM′2 + 31α2 + α)P + 2K

(
M + M2

)
]

The reason why our approach is of practical rather than conceptual importance is that
it offers more freedom to fragment the control: the first is focused on E and the second
is about D. We will not elaborate too much in the proofs of the results relating to the
invariance and the existence of the solution of the proposed multi-objective model for every
pair of controls (u1, u2).

Invariance: based on the Gronwall inequality (applied to the model (2)) [15], we
demonstrate that E(t) > 0, D(t) > 0, C(t) > 0, and N(t) = E(t) + D(t) + C(t) ≤ I/µ.

Existence: By adopting the same procedures as in [15], we proved that the right-hand
members of the Equation (2) are Lipschitzian. The difference between the proofs given
in [15] were the considered bounds. In our situation, these bounds implemented the
controls u1 and u2, and since (u1, u2) ∈ U1 ×U2, these results are always true. �

Theorem 1. Let us consider the next problem:
Min Γ1(u1, u2) Min Γ2(u1, u2)

Subject to
(u1, u2) ∈ U1 ×U2

(E, D, C) solution o f (2)

A Pareto front of non-dominant optimal decisions exists (called the Pareto optimal control).

Proof of the Theorem 1: Without going into details, the existence of an optimal front can
be proved by applying the finding of Fleming and Rishel [33] and by following the steps
mentioned below:
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Γ1(u1, u2) =
∫ T

0

(
C(t) + Ku2

1(t)
)
dt and Γ2(u1, u2) =

∫ T
0

(
D(t) + Ku2

2(t)
)
dt are convex

in (u1, u2);
U1 ×U2 is convex.
The right-hand sides of the system Equation (2) are continous, bounded and can be

written as a linear function of u1 and u2 with coefficients depending on time and state;
The integral of the objective functionals, C(t) + Ku2

1(t) and D(t) + Ku2
2(t), are clearly

convex on U1 ×U2;
We have C(t) + Ku2

1(t) ≥ α1,1+α1,2‖u1‖2 and D(t) + Ku2
2(t) ≥ α2,1+α2,2‖u2‖2 where

α1,1 = inf
t∈[0, T]

D(t) and α2,1 = inf
t∈[0, T]

C(t) and α1,2 = α2,2 = K. �

4.3. Pareto Controls Characterization

The Pareto curve is formed by non-dominated controls (we denote by m the size
of the pareto set). We estimated these controls on several points, say d, of the control
interval [0, 10] years; generally, d is very large compared to m, which affects the quality
of the grouping. In this part, we extracted the most important features that describe the
controls basing on four criterions: the controls fluctuation, the cost of the controls, the
spatial characteristics of the decisions and the quality of the controls.

Fluctuation characteristics: First, we removed the linear trend from the controls u1
and u2 using FFT processing [34], and we obtained the corrected controls u′1 and u′2. Two
fluctuation features were extracted in this phase: norm

(
u1 − u′1

)
and norm(u2 − u′2).

Control cost: The total resources mobilized to control the compartments D and C; these
were estimated by the sum of the controls on the control duration. In this sense, we have:
sum(u1(t)/t ∈ [0, T]) and sum(u2(t)/t ∈ [0, T]).

Spatial characteristics: the spatial characteristics were measured based on the coefficients
of the polynomial interpolation of the controls.

Quality of Compartments: The adequacy of the different compartments was measured by
DIST = distance (compartment without control, compartment with control). We obtained
three compartment features: dist(Ew, E), dist(Dw, D) and dist(Cw, C). The greater the
DIST, the better the control.

5. Smart Algorithms
5.1. Swarm Intelligence Optimizers

The metaheuristic algorithms were designed based on simulating natural phenomena
and laws, which have better global search ability. The most important concept of multi-
objective optimization is the Pareto front; it is the curve of the non-dominated points
considering the different objective functions at the same time.

Figure 1 illustrates the notion of a Pareto front. Considering the blue line, if we prefer
one objective function, then we disadvantage the other objective function.
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In this section, we provide the main ideas of two well-known swarm intelligence
optimizers that produce local Pareto fronts when solving a multi-objective optimization:
NSGA-II and MOFA. As the appropriate crossover of local search methods allows us to
overcome the shortcomings of the parent methods, it was possible to use some recent hybrid
methods to solve the proposed model, such as the hybrid firefly genetic [3] approach, the
cuckoo search-based metaheuristic approach [35] and the hybrid marine predator sine–
cosine [36] algorithms.

5.1.1. Non-Dominated Sorting Genetic Algorithm II

NSGA-II tends to encourage higher-order chromosomes to appear in the future popu-
lation [12,27]. The controlled evolutionary selection also encourages the chromosomes to
participate in a reasonable diversity of the population in spite of their current weakness.
The Pareto fraction limits the number of chromosomes in the solution set. The distance
function ensures diversity on the front while promoting chromosomes with an acceptable
distance from the front.

The different phases of NSGA-II are shown in Figure 2. The initialization is based
on the constraints of the studied problem. Then, the procedure called the non-dominated
sorting process about the dominance notion is started. After that, the chromosomes
are selected based on two criteria: rank and crowding distance. Then, selection via the
tournaments method implementing the crowded-comparison operator is used to select
the individuals. The crossover operator and the mutation operator are used to produce
chromosomes. The new production is filled by each of the successive borders until the
current population size exceeds the tolerated size.
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NSGA-II has the advantages of simple coding and excellent performance, and has been
successfully applied for solving real-world problems, e.g, solving the flow-shop scheduling
problem [37], optimal diet problem [4], data classification [38], Louver configuration [39],
3D laser scanning scheme for engineering structures [40], UAV path planning [41], optimal
lane change path planning [42], green pepper detection [43], optimal configuration of
landscape storage in public buildings [44], etc.

5.1.2. Multi-Objective Firefly Algorithm

MOFA is inspired by the behavior of fireflies [13]. The basic one-objective version is
based on the following rules [27]:

(a) Fireflies have the ability to attract other fireflies, no matter which sex they are.
(b) The attraction is positively proportional to the brightness. If all the fireflies have

nearly the same degree of brightness, then one or more fireflies are moving.
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(c) The luminosity of a firefly is calculated from the cost function.

If dij is the distance between two fireflies i and j, then the variability of attractiveness
δij is estimated by:

δij = δ0exp
(
−σd2

ij

)
(5)

The parameters δ0 and σ are chosen by the user.
If xt

i and xt
j are the present position of the fireflies i and j, respectively, the FA algorithm

uses the following equation to calculate the next position of the ith firefly:

xt+1
i = xt

i + δij

(
xt

j − xt
i

)
+ αtε

t
i (6)

αt and εt
i are the global and local random series corresponding to the ith firefly.

An extension of the basic ideas of FA leads to MOFA, presented in Figure 3.

Mathematics 2023, 11, x FOR PEER REVIEW 11 of 29 
 

 

(a) Fireflies have the ability to attract other fireflies, no matter which sex they are. 
(b) The attraction is positively proportional to the brightness. If all the fireflies have 

nearly the same degree of brightness, then one or more fireflies are moving. 
(c) The luminosity of a firefly is calculated from the cost function. 

If 𝑑௜௝ is the distance between two fireflies i and j, then the variability of attractiveness 𝛿௜௝ is estimated by: 𝛿௜௝ = 𝛿଴ 𝑒𝑥𝑝൫−𝜎𝑑௜௝ଶ ൯ (5)

The parameters 𝛿଴ and 𝜎 are chosen by the user.  
If 𝑥௜௧ and 𝑥௝௧ are the present position of the fireflies 𝑖 and 𝑗, respectively, the FA al-

gorithm uses the following equation to calculate the next position of the ith firefly:  𝑥௜௧ାଵ = 𝑥௜௧ + 𝛿௜௝൫𝑥௝௧ − 𝑥௜௧൯ + 𝛼௧𝜀௜௧ (6)𝛼௧ and 𝜀௜௧ are the global and local random series corresponding to the ith firefly.  
An extension of the basic ideas of FA leads to MOFA, presented in Figure 3. 

 
Figure 3. The MOFA algorithm schematic diagram. 

Based on the cost functions and the constraints of the problem to be solved, we de-
fined appropriate objective functions. A swarm of fireflies was uniformly chosen from the 
research space to ensure the same chances to different regions to be explored. The basic 
cycle starts by measuring the brightness of all individuals in the swarm, and each pair of 
elements is measured against each other. Then, a smart pairing is carried out on the base 
of a convex weight matrix. The non-dominated solutions are then forwarded to the fol-
lowing step. Upon termination of a given number of repetitions, n non-dominated solu-
tions are achieved to approach the correct Pareto front.  

In this context, MOFA has the advantages of simple coding and a smaller number of 
parameters to use and has been successfully applied recently for solving interesting prob-
lems, such as an energy-efficiency problem [45], automatic EEG channel selection problem 
[46], reference point reconstruction problem [47], integrated process planning and 

Figure 3. The MOFA algorithm schematic diagram.

Based on the cost functions and the constraints of the problem to be solved, we defined
appropriate objective functions. A swarm of fireflies was uniformly chosen from the
research space to ensure the same chances to different regions to be explored. The basic
cycle starts by measuring the brightness of all individuals in the swarm, and each pair of
elements is measured against each other. Then, a smart pairing is carried out on the base of
a convex weight matrix. The non-dominated solutions are then forwarded to the following
step. Upon termination of a given number of repetitions, n non-dominated solutions are
achieved to approach the correct Pareto front.

In this context, MOFA has the advantages of simple coding and a smaller number
of parameters to use and has been successfully applied recently for solving interesting
problems, such as an energy-efficiency problem [45], automatic EEG channel selection
problem [46], reference point reconstruction problem [47], integrated process planning
and scheduling problem [48], stochastic techno-economic–environmental optimization [49],
optimization of concentric circular antenna array [50], VLSI Floorplanning problem [51],
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configuration of power quality control device problem [52], identification of compound
gear-bearing faults [53], etc.

5.2. Soft Clustering Algorithms

Let us consider the set of not-labeled observations B = {z1, . . . , zN} ⊂ Rn. The clus-
tering issue consists of partitioning this set into K� N groups P1, . . . , PK and representing
each group k by a vector wk called the reference.

Soft computing methods based on fuzzy (based on the degree of membership) or
probabilistic (based on the frequency of events) approaches provide decision system makers
with the necessary capabilities to deal with imprecise and incomplete information. In fact,
a soft clustering method allows an observation to belong to two or more clusters. In this
work, we use the well-known and basic soft clustering algorithms Gaussian mixture model
(GMM) and Fuzzy-CMeans (FCM) to structure the Pareto front.

5.2.1. Gaussian Mixture Model (GMM)

When we randomly draw an element from the set B, the probability that it is an
element of group k is of αk (statistically estimated). Since the group k is assumed to be
sufficiently compact, it makes sense to simulate the distribution of information within this
subgroup to a normal distribution of mean wk and reduced covariance σ2 I, where I is the
identity matrix of dimension n× n et σ > 0. In this way, the probability that an observation
is an element of B is approximated by the following mixture density:

p(z) = ∑k
k=1 αk fk(z), where ∑K

k=1 αk = 1 and fk is defined by

fk(z) =
1

(2π)
n
2 σn

exp (−‖z− wk‖2

2σ2 )

Practically, the prior probabilities αk are all equal to 1/K. Moreover, the log-likelihood
measuring the fact that all observations are generated by p is given by [54]:

V(W, σ, P) =
1

2σ2 I(W, P) + Nnln(σ) + constant

I(W, P) is the squared error associated with w1, . . . , wK and P1, . . . , PK. The minimiza-
tion of this function is performed in an iterative way, each of which is divided into two
steps: fixing one variable and updating the other (the two variables involved are W and σ).

At the iteration iter, if we suppose the references witer
1 , . . . , witer

k are known, then σiter

is given by the equation σiter =
√

nN/I
(
Witer, Piter

)
;

At the end, the observation zi is allocated to the group j∗ given by the equation
j∗ = argmax( fk(zi), k = 1, . . . , K)

5.2.2. Fuzzy C-Means (FCM)

FCM is a method of clustering that allows to one observation to be in two or more
clusters at the same time [30]. The cost function that this method tends to minimize is
given by:

I(W, µ) =
K

∑
k=1

N

∑
i=1

µm
ik‖zi − wk‖2, 1 ≤ m < ∞

where µik is the degree of membership of zi in the cluster k. The function I(W, µ) is the
minimization of this function, performed in an iterative way based on the equations:

µ−1
ik = ∑K

j=1

(
‖zi−wk‖
‖zi−wj‖

) 2
m−1

and wk =
∑N

i=1 µm
ik zi

∑N
i=1 µm

ik
.

At the end, the observation zi is allocated to the group j∗ given by the equation
j∗ = argmax(µik, k = 1, . . . , K).



Mathematics 2023, 11, 2957 13 of 28

6. Experimental Results and Discussion

In this section, we used two multi-objective heuristic methods, NSGA-II [12,27] and
MOFA [13], to estimate the optimal Pareto front of the problem (4). The configurations
of these two algorithms were performed experimentally, i.e., several configurations were
performed and the ones producing better results were retained.

To structure the obtained fronts, we used two soft clustering methods, FCM and GMM.
The choice of the number of clusters was based on the silhouette criterion. The number of
clusters was chosen on the basis of the silhouette criterion. To this end, we tested GMM
and FCM for different values of K (number of classes) and evaluated the silhouette of the
resulting partitions; the best K is the one corresponding to the highest silhouette value.
Figure A5 gives different silhouette values for different numbers of clusters (1 to 6); in our
case, the silhouette was maximal when K = 4. In this sense, we did not consider all the
approximation points of the controls to structure the control space, but we instead based
our analysis on the characterization shown above (Section 4.3). In addition, in order not
to clutter the paper with many figures, we introduce and analyze the results obtained via
FCM and we put, in the Appendix A, those obtained via GMM.

In addition, convolution filters, such as 9 × 9 kernels, were used to eliminate the
fluctuations, intrinsic to each approximation, in order to obtain reasonable strategies that
are easy to implement.

6.1. NSGA-II Combined with Soft Clustering Methods

In this section, we use the NSGA-II method to estimate the elements of the Pareto front
at several points by adopting the configuration described in Table 1. This configuration
was chosen using the traditional approach of running a number of pilot tests; for example,
we noticed that after 60 iterations, the fitness function remained constant, so we set the
maximum number of iterations at 60. In addition, the adaptive mutation ratio was used
to explore other regions to avoid early convergence to poor local minima. It should be
noted that the best parameters of NSGA-II are the ones that optimize the criteria given in
Section 3 in the sub-section entitled “Performance measures”.

Table 1. NSGA-II configuration.

Option [12] Configuration

Crossover operator New_indiv = indiv1 + rand × atio × (indiv2 − indiv1)
Crossover ratio 0.8

Number of iterations 60
Mutation ratio adaptive feasible

Figure 4 shows the Pareto front obtained by the NSGA-II method. The shape and the
richness of this front show that this algorithm offers several customized control strategies.
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Figure 5a,b give the two sets of sub-controls offered by the Pareto front produced via
NSGA-II applied to the problem (4). We notice that at each instant of the control interval,
the two sub-controls do not have the same value, so the controller of the population
dynamics under study did not adopt the same strategy for the two compartments C and
D. This justifies, experimentally, the fact of associating different controls to the different
compartments in the mathematical model (2).
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Figure 5. (a) The set of controls u1 extracted from the Pareto front produced via NSGA-II applied to
model (4). (b) The set of controls u2 extracted from the Pareto front produced via NSGA-II applied to
model (4).

On the one hand, the richness of the solution space provides several possibilities,
but on the other hand, it is difficult to exploit these strategies directly because they are
numerous and an expert in the medical field needs assistance to choose what suits them.
For this reason, we used two soft clustering methods to structure the two subspaces of
controls: FCM and GMM. Based on the silhouette criterion, the best K is 4.

Figure 6 gives the pair controls obtained via FCM applied to the sets of subcontrols
extracted from the Pareto front produced via NSGA-II applied to the problem (4). We
noticed that during the first 6 years, the core 1 controls consumed all the resources and
then this effort resulted in a saving of a good portion of the resources. Concerning the
second control, the strategies proposed by the two core 2 controls of the different clusters
are moderate, except for the third cluster, which always requires the exhaustion of more
than 90% of the resources.
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Figure 7 shows the behavior of the different compartments obtained by different
controls produced via FCM applied to the Pareto front produced via NSGA-II applied
to the problem (4). It can be seen that even if all the resources were not consumed, the
population studied can be controlled and the desired behavior was obtained, except that at
the end of the control period, we noticed a slight growth in the two compartments. This
phenomenon is almost absent when we apply the strategy offered by cluster 1.
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6.2. MOFA Combined with Soft Clustering Methods

In this section, we used the MOFA method to estimate the elements of the Pareto front
at several points by adopting the configuration described in Table 2. This configuration
was chosen using the traditional approach of running a number of pilot tests. It should be
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noted that the best parameters of MOFA are the ones that optimize the criteria given in
Section 3 in the sub-section entitled “performance measures”.

Table 2. MOFA configuration.

Option [13] Configuration

Maximum number of iterations 1000
Swarm size 25

Light absorption coefficient 1
Attraction coefficient base value 2

Mutation coefficient 0.2
Mutation coefficient damping ratio 0.98

Figure 8 gives the Pareto front obtained using the MOFA optimizer applied to the
problem (4). The shape of the front shows that this algorithm provides a few diversified
choices compared to NSGA-II.
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Figure 9a,b give the sets of subcontrols extracted from the Pareto front produced via
MOFA applied to the problem (4). We notice that at each time of the control interval, the
two subcontrols do not have the same value, so the controller of the studied population dy-
namics does not adopt the same strategy for the two compartments C and D. This justifies,
experimentally, the act of associating different controls to the different compartments in the
mathematical model (2).
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Figure 9. (a) The set of controls u1 extracted from the Pareto front produced via MOFA applied to the
model (4). (b) The set of controls u2 extracted from the Pareto front produced via MOFA applied to
the model (4).

Similar to the previous subsection, and in order to assist medical experts in the choice
of strategies compatible with their requirements, we used two soft clustering methods to
structure the two control subspaces: FCM and GMM.

Figure 10 gives the controls pair obtained via FCM applied to a Pareto front produced
via MOFA applied to the problem (4). We notice that the sub-controls associated with
compartment D have the form of a trapezoid using all the resources on the time scales
of [1 years, 7 years]. Concerning the second sub-control, MOFA manages to control the
compartment C with few resources (between 25% and 40%). We always notice that the
strategy followed to control compartment D is totally different from the one adopted for
compartment C, which justifies the use of two decision functions in the model (2).
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Figure 10. Controls pair obtained via FCM applied to the Pareto front produced via MOFA.

Figure 11 shows the behavior of the different compartments obtained using different
controls produced via FCM applied to the Pareto front produced via MOFA when applied
to the problem (4). It can be seen that even if all the resources were not consumed, the
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population studied could be controlled and the desired behavior was obtained, except for
at the end of the control period, when we notice a slight growth of the two compartments
with nearly the same size and in the same way in all the clusters.
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Figure 11. Compartments obtained when introducing different controls, produced via FCM applied
to the Pareto front produced via MOFA, in the model (4).

To measure the percentage of the resources saved by the proposed multi-objective
strategy compared to a mono-objective strategy, we use the following equation:

SavedResources = 1− sum(MultiObjControl)/sum(SingObjControl)

Table 3 gives the percentage of the resources saved by using the proposed method. In
this regard, we find that the multi-objective strategy saved up to 4% of resources for the
control of compartment D. In addition, it saved up to 18% of resources for the control of
compartment C.

Table 3. Multi-objective control strategy vs. single-objective control strategy.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Multi-objective vs.
single-objective

u1 3% 4% 4% 4%
u2 14% 6% 18% 11%

Notes:

(a) Considering the experimental results shown in the Figures 1–4, we notice that the
two soft clustering methods FCM and GMM give approximately the same groups
(considering a simple permutation), so we extended the same remarks, conclusions,
and recommendations to the other method.

(b) The shapes of the front given in Figure 5 and those given in Figure 9 show that
NSGA-II offers several highly non-dominated customized control strategies compared
to MOFA.
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(c) According to Tables 1 and 2, compared with NSGA-II, MOFA requires a large number
of generations to achieve feasible and acceptable controls (60 generations for NSGA-II
versus 1000 generations for MOFA).

We remark that MOFA-Soft-Cluster produces controls completely different to the ones
produced via NSGA-II-Soft-Cluster. The sub-controls associated with compartment D,
produced via MOFA-Soft-Cluster, are a symmetrical trapezoid of the support [2 years,
8 years], and the sub-controls associated with compartment C have very low cost along
the control duration (they do not even consume 40% of the resources). So, what is wasted
on one side is recovered on the other side. The sub-controls, associated with D, produced
via NSGA-II-Soft-Cluster are a non-symmetrical trapezoid and they start by being too
expensive and end up with a very low cost. Meanwhile, the sub-controls associated with C,
produced via NSGA-II-Soft-Cluster, are too expensive from the beginning to the end (they
consume between 80% and 100% of the resources). We cannot talk about the processing time
because the size of the population and the size of the swarm influence the time complexity
and we cannot establish a mathematical relation between the two sizes.

6.3. Single-Objective vs. Multi-Objective on the Control of the Dynamics of the Diabetic
Population Problem (C2D2P)

In [19], the authors modeled the problem C2D2P in terms of the single-objective
dynamic mathematical model. To solve these models, they used the Gumel method based
on Pantriagin’s principle; the obtained control is represented in red in Figure A6. Since
a control mobilizes human and material resources, it would be better if this control took
as small values as possible. In this sense, Gumel was rejected because it takes very high
values (these controls consume practically all resources). In our previous work [4], we used
the bees algorithm (BA), firefly algorithm (FA), particle swarm algorithm (PSO), genetic
algorithm (GA), moth swarm algorithm (MSA), stochastic fractal search (SFS), wind-driven
optimization (WDO) and probabilistic bees algorithm (PBA); see Figure A6. The stochastic
fractal search (SFS) method has shown an unprecedented ability to produce continuous,
economical controls capable of alleviating socio-economic damage on a reasonable budget.
Compared to a multi-objective strategy (introduced in this work), PSO, FA, GA, AWD,
SBA, PBA, MWA and SFS propose the same strategies to control compartments C and D.
When dealing with conflicting cost functions, a single solution is not reasonable because a
solution that may be appropriate in one context may not be appropriate in another. The
characteristics of patients in D are not similar to the ones of C. For example, 40 min of
running combined with 2 g of medication may regulate the blood sugar of a compartment
D patient, but this solution may not be suitable for a compartment C patient (whose
complications prevent them from running), and 40 min of walking plus 6 g of medication
may prove more appropriate.

6.4. Sensitivity of the Proposed System

To study the sensitivity of the controls obtained using the proposed model + NSGA-II
+ FCM, we applied Gaussian perturbations to the controls obtained using this system; this
noise was generated between 0.001 and 0.3.

Figures A7–A12 show the comparisons obtained for certain noise values; see
Appendix B as well. For Gaussian perturbations between 0.001 and 0.1, there was al-
most no change in the compartments. For Gaussian perturbations between 0.12 and 0.3,
changes were noted in compartment D and small changes were noted in compartment C
(the number of diabetics increases very rapidly compared with the case of optimal control
developed in this work). This is normal, since the values taken by the control are between
0 and 1, and when almost 30% change is applied, the control changes; subsequently, the
behavior of the compartments also changes.

In the end, we can say that the proposed approach is consistent when it comes to small
Gaussian noise.
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At the end of this section, we prefer not to make technical comparisons between the
two types of strategies offered by the four systems because a choice may be appropriate
in one context while it may be bad in another context. When there is a multi-objective
problem, the role of the data scientist is the modeling of the studied phenomenon, the
numerical simulation and the structuring of the control space. Then, it is left to the medical
experts to choose what suits them according to their requirements and availability.

7. Conclusions

Single-objective mathematical modeling was previously used for controlling the dy-
namics of populations having one or more chronic diseases, in particular controlling the dy-
namics of the diabetic population. Unfortunately, the controls obtained make no distinction
between the different compartments. In this work, we introduce a multi-objective approach
that implements a multi-objective optimization model, population-based metaheuristics
(NSGA-II and MOFA), flexible unsupervised learning (FCM and GMM), polynomial inter-
polation and FFT convolution for the problem of controlling the diabetic population. The
optimization model implements two objective functions: one for diabetics without com-
plications and another for diabetics with complications. To avoid solving large constraint
systems, our approach calls the Euler–Cauchy method once we have a premature approxi-
mation of the control. The parameters of the heuristic methods are chosen experimentally.
To clean up the resulting controls from noise due to successive approximations, we used a
fast Fourier transform with a kernel size of 9× 9, chosen experimentally. Since it is difficult
for a diabetes specialist to choose the right control for their use, from the Pareto front, we
used two soft clustering methods to structure the solution space, where the optimal number
of clusters was selected on the basis of the silhouette criterion. The controls produced
enabled the evacuation of the compartments of diabetics with and without complications,
except that towards the end of the control period, we noticed a small increase in these
compartments, a problem we can solve by adding more control approximation points. In
addition, the controls produced are customized because the required resources to control
the diabetics without complications are totally different from the required resources to
control the diabetics with complications. In addition, the multi-objective strategy per-
mits us to save a good number of resources. In the future, we will use variational Bayes
techniques to estimate the parameters of the multi-objective model in order to remedy
sampling-related problems. To improve the control quality, we will use hybrid metaheuris-
tics (MFOA + NSGA) while introducing the notion of attractiveness during crossover or
mutation. In addition, we will introduce the fractional version of the multi-objective model
to handle more information about the dynamics of the diabetic population.

Author Contributions: Conceptualization, K.E.M.; Methodology, K.E.M. and V.P.; Validation, A.C.;
Investigation, K.E.M. and A.C.; Data curation, K.E.M., H.B., S.C. and M.C.; Writing – original draft,
K.E.M. and A.E.O.; Writing – review & editing, V.P., A.C. and A.O. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are available under request.

Acknowledgments: This work was supported by the Ministry of National Education, Professional
Training, Higher Education and Scientific Research (MENFPESRS), the Digital Development Agency
(DDA) and the CNRST of Morocco (Nos. Alkhawarizmi/2020/23).

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2023, 11, 2957 21 of 28

Appendix A

Mathematics 2023, 11, x FOR PEER REVIEW 22 of 29 
 

 

 
Figure A1. Controls pair obtained via GMM applied to the Pareto front produced via NSGA-II. 

 
Figure A2. Compartments obtained using different controls produced via GMM applied to the Pa-
reto front produced via NSGA-II. 

0 5 10
control 1 of cluster 1

0.4

0.6

0.8

1

0 5 10
control 1 of cluster 2

0.4

0.6

0.8

1

0 5 10
control 1 of cluster 3

0.4

0.6

0.8

1

0 5 10
control 1 of cluster 4

0.4

0.6

0.8

1

0 5 10
control 2 of cluster 1

0.4

0.6

0.8

1

0 5 10
control 2 of cluster 2

0.5

0.6

0.7

0.8

0.9

1

0 5 10
control 2 of cluster 3

0.4

0.6

0.8

1

0 5 10
control 2 of cluster 4

0.4

0.6

0.8

1

0 5 10
0

1

2 107

E cluster 1
E free

0 5 10
1

1.5 107

D cluster 1
D free

0 5 10
0

5

10
106

C cluster 1
C free

0 5 10
0

1

2
107

E cluster 2
E free

0 5 10
1

1.5 107

D cluster 2
D free

0 5 10
0

5

10
106

C cluster 2
C free

0 5 10
0

1

2 107

E cluster 3
E free

0 5 10
1

1.5 107

D cluster 3
D free

0 5 10
0

5

10
106

C cluster 3
C free

0 5 10
0

1

2 107

E cluster 4
E free

0 5 10
1

1.5 107

D cluster 4
D free

0 5 10

5

10
106

C cluster 4
C free

Figure A1. Controls pair obtained via GMM applied to the Pareto front produced via NSGA-II.
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Figure A2. Compartments obtained using different controls produced via GMM applied to the Pareto
front produced via NSGA-II.
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Figure A3. Controls pair obtained via GMM applied to the Pareto front produced via MOFA.
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Figure A4. Compartments obtained when introducing different controls, produced via GMM applied
to the Pareto front produced via MOFA applied to the model (4).
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Figure A7. Compartments obtained when introducing different controls, produced via FCM, applied
to the Pareto front produced via NSGA-II, for which we added Gaussian noise from [0, 0.05].
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Figure A8. Compartments obtained when introducing different controls, produced via FCM, applied
to the Pareto front produced via NSGA-II, for which we added Gaussian noise from [0, 0.1].
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Figure A9. Compartments obtained when introducing different controls, produced via FCM, applied
to Pareto front produced via NSGA-II, for which we added Gaussian noise from [0, 0.15].
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Figure A10. Compartments obtained when introducing different controls, produced via FCM applied
to the Pareto front produced via NSGA-II, for which we added Gaussian noise from [0, 0.2].
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Figure A11. Compartments obtained when introducing different controls, produced via FCM applied
to the Pareto front produced via NSGA-II, for which we added Gaussian noise from [0, 0.25].
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Figure A12. Compartments obtained when introducing different controls, produced via FCM, applied
to the Pareto front produced via NSGA-II, for which we added Gaussian noise from [0, 0.3].
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