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Abstract: This paper is devoted to proposing an approximate numerical algorithm based on the use
of the state parameterization technique in order to find the solution to the optimal control problem
(OCP). An explicit formula for new shifted wavelet (NSW) functions is constructed. A new formula
that expresses the first-order derivative of the NSW in terms of their original NSW is established. The
development of our suggested numerical algorithms begins with the extraction of a new operational
matrix of derivative from this derivative formula. The expansion’s convergence study is performed
in detail, and some illustrative examples of OCP are displayed. The proposed algorithm is compared
with the exact one and some other methods in the literature. This confirms the accuracy and the high
efficiency of the presented algorithm.
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1. Introduction

The dynamics in some mathematical models are represented by a system of ordinary
differential equations for a set of dependent functions x(t) when an independent procedure
set controls such systems u(t). In this case, the aim is to determine u(t) that optimizes the
dynamical system, and this problem is called optimal control. Numerous studies have
focused on the approximate solutions of optimal control problems, which can be found in
many fields [1–5]. The two general techniques, which are indirect and direct, are used for
the approximate solution of optimal control problems. An indirect method transforms the
original optimal control problem to a boundary value problem, which can be solved either
analytically or numerically.

Direct methods are more suitable techniques and can be quickly and simply utilized
to a new optimal control problem. Optimal control in natural methods is seen as a stan-
dard optimization problem by searching for the control function u(t) that optimizes the
performance index. Different algorithms were used for solving optimal control problems,
including the indirect modified pseudospectral method [6], a direct Chebyshev cardinal
functions method [7], Cauchy discretization technique [8], the synthesized optimal control
technique [9], Legendre functions method [10], Evolutionary Algorithm-Control Input
Range Estimation [11], a hybrid of block-pulse function, and orthonormal Taylor polynomi-
als [12]. (See [13–17] for some other articles exploring various optimal control problems.)
Wavelet functions have important roles in numerical analysis for solving optimal control
problems [18–21]. In particular, the Chebyshev wavelets families are widely applied in con-
tributions to the field of approximation theory. For example, the authors in [22] employed
the Boubaker wavelets together with the operation matrix of derivative in order to solve
the singular initial value problem. The collocation method is presented in [23] based on
the second kind of Chebyshev wavelets for solving calculus of variation problems. The
use of the operational matrices of derivatives and integrals has been highlighted in the

Mathematics 2023, 11, 3040. https://doi.org/10.3390/math11143040 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11143040
https://doi.org/10.3390/math11143040
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0002-0492-0958
https://orcid.org/0000-0003-3730-0149
https://doi.org/10.3390/math11143040
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11143040?type=check_update&version=2


Mathematics 2023, 11, 3040 2 of 14

field of numerical analysis [24]. This utilization gives special algorithms to obtain accurate
approximate solutions of many types of differential and integral equations with flexible
computations. An operational matrix of derivatives is extracted based on choosing suitable
basis functions in terms of celebrated special functions and expressing the first derivative
of these basis functions in terms of their original types.

Motivated by the above discussion, we are mainly interested in presenting new shifted
wavelet functions with some important properties. A novel state parameterization method
is suggested to solve the optimal control problem. Such a method is used together with
NSW as a basis function to parameterize the states variables. The proposed technique is
constructed to simultaneously reach the accuracy and efficiency. The rest of the work is
organized as follows: Section 2 provides the definition of NSW. In Section 3, the convergence
of the NSW is studied. The general exact formula of the NSW differentiation operational
matrix is generated in Section 4, and then the suggested algorithm to solve the optimal
control problem is illustrated in Section 5. Section six discusses the application of the NSW
by considering various examples in the optimal control. Simulation results are also given
in Section 7, followed by concluding remarks that are summarized in Section 8.

2. The New Shifted Wavelet Functions

The expression for the special polynomials Mm(t) in the interval [−1, 1] can be defined
as below:

M0(t) = 2, M1(t) = t, M2(t) = t2 − 2, . . .

The general recurrence relation for obtaining Mm(t), m = 2, 3, 4, . . . is given by:

Mm+1(t) = tMm−1(t)−Mm(t), m = 1, 2, 3, 4, . . . ,

with the given initial conditions M0(t) and M1(t).
Sometimes, it is convenient to use the half-interval [0, 1] instead of the interval [−1, 1].

In this case, the term shifted is defined and indicated by Msm(t). In this work, Msm(t) are
defined as Msm(t) = Mm(2t− 1).

Wavelet functions have been used successfully in scientific and engineering fields. The
special new shifted wavelet functions can be defined as below:

Qnm(t) =

 2
k−1

2√
π

Msm

(
2kt− 2n + 1

)
, n−1

2k−1 ≤ t ≤ n
2k−1 ,

0, otherwise.
(1)

where n = 1, 2, . . . , 2k, k can be assumed to be any positive integer, m is the degree of the
shifted polynomials, and t denotes the time for m = 0, 1, . . . , M.

Here, Msm(t) are called the shifted special polynomials of order m, which are orthogonal
with respect to the weight function w(t), and which satisfy the following recursive formula:

Msm(t) = (2t− 1)Msm−1(t)−Msm−2(t), m = 2, 3, 4, . . . , (2)

with initial conditions:
Ms0(t) = 2, Ms1(t) = 2t− 1. (3)

3. Convergence Analysis of New Wavelet Functions

A function approximation f ∈ C2[0, 1), with
∣∣∣ ..
f (t)

∣∣∣ ≤ L, L > 0 may by expanded in
terms of new shifted wavelets as below:

f (t) =
∞

∑
n=1

∞

∑
m=0

cnmQnm(t). (4)

where:
cnm = 〈 f (t), Q(t) 〉. (5)
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In Equation (5), the symbol 〈., .〉 is denoted the inner product operator on Hilbert space
over the interval [0, 1].

If the infinite series in Equation (4) is truncated, then the solution f (t) can be rewritten
in matrix form as below:

f (t) =
2k−1

∑
n=1

M

∑
m=0

cnmQnm(t) = CTΦ(t), (6)

where Φ(t) and C are matrices of 2k−lM × 1 dimensions, given by:

C =
[
c1,0 c1,1 . . . c1,M c2,0. . . c2,M c(2k−1),0 . . . c(2k−1),M

]
and:

Φ(t)=
[

Q1,0 Q1,1. . . Q1,M Q2,0. . . Q2,M Q(2k−1),0 . . . Q(2k−1),M

]T

Note that both k and n are integer numbers, and m is the degree of shifted polynomials.
Now, we state and prove a theorem in order to ensure the convergence of the new shifted
wavelet expansion of a function.

Theorem 1. Assume that a function f (t) ∈ L2
w([0, 1]) where w(t) = 1√

1−t
, t 6= ±1, with

bounded second derivative
∣∣∣ ..
f (t)

∣∣∣ ≤ L, L > 0, f can be expanded as an infinite series of the new
shifted wavelets (1), then cnm in (4) converges uniformly to f , i.e., cnm satisfy the inequality:

|cnm| ≤ L
1

n
3
2

2
3
2

( √
π

(m2 − 1)

)
. (7)

Proof. Let:

f (t) =
∞

∑
n=1

∞

∑
m=0

cnmQnm(t).

It follows that for k = 1, 2, 3, . . . ; n = 1, 2, . . . , 2k, m = 0, 1, . . . , M.

cnm = 〈 f (t), Q(t)〉=
∫ 1

0 f (t)Qnm(t)wk(t)dt.

=
∫ n−1

2k−1
0 f (t)Qnm(t)wk(t)dt

+
∫ n

2k−1
n−1

2k−1
f (t)Qnm(t)wk(t)dt+∫ 1

n
2k−1

f (t)Qnm(t)wk(t)dt.

Using Equation (1), one can obtain:

cnm =
∫ n

2k−1

n−1
2k−1

f (t)
2

k−1
2
√

π
Msm

(
2kt− 2n + 1

)
w
(

2kt− 2n + 1
)

dt.

If m > 1, by substituting:

2kt− 2n + 1 = cosθ, t =
cosθ + 2n− 1

2k , dt =
−sinθ

2k dθ.

cnm =
2

k−1
2
√

π

∫ π

0
f
(

cosθ + 2n− 1
2k

)
2cos mθ

√
1

1− cos2θ

−sinθ

2k dθ.
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cnm =
−2

(k+1)
2

√
π

∫ π

0
f
(

cosθ + 2n− 1
2k

)
cos mθ dθ.

By using method of integration by parts, let:

∫ π

0
udv =uv−

∫ π

0
vdu, u = f

(
cosθ + 2n− 1

2k

)
, du =

.
f
(

cosθ + 2n− 1
2k

)(
−sinθ

2k

)
, dv = cos mθ dθ, v =

sin mθ

m
, m 6= 1.

cnm =
−2

(k+1)
2

√
π

f
(

cosθ + 2n− 1
2k

)(
sin mθ

m

)]π

0
− 2

(k+1)
2

m2k
√

π

∫ π

0

.
f
(

cosθ + 2n− 1
2k

)
sin mθ sinθ dθ.

Using again the method of integration by parts, let:

u =
.
f
(

cosθ + 2n− 1
2k

)
, du =

..
f
(

cosθ + 2n− 1
2k

)(
−sinθ

2k

)
dθ, dv = sin mθ sinθ dθ,

v =

(
sin(m− 1)θ

m− 1
− sin(m + 1)θ

m + 1

)
.

cnm = − 2
(k+1)

2

m2k
√

π

.
f
(

cosθ + 2n− 1
2k

)(
− sin(m + 1)θ

m + 1
+

sin(m− 1)θ
m− 1

)]π

0
−

2
(k+1)

2

m22k
√

π

∫ π
0

..
f
(

cosθ + 2n− 1
2k

)
sinθ

(
sin(m− 1)θ

m− 1
− sin(m + 1)θ

m + 1

)
dθ.

We have:

cnm = − 2
(k+1)

2

m22k
√

π

∫ π

0

..
f
(

cosθ + 2n− 1
2k

)
sinθ

(
sin(m− 1)θ

m− 1
− sin(m + 1)θ

m + 1

)
dθ

Thus, we obtain:

|cnm| =
∣∣∣∣∣− 2

(k+1)
2

m22k
√

π

∫ π
0

..
f
(

cosθ + 2n− 1
2k

)
sinθ

(
− sin(m + 1)θ

m + 1
+

sin(m− 1)θ
m− 1

)
dθ

∣∣∣∣∣
≤ 2

(k+1)
2

m22k
√

π

∫ π
0

∣∣∣∣ ..
f
(

cosθ+2n−1
2k

)
− sin(m + 1)θ

m + 1
+

sin(m− 1)θ
m− 1

dθ

∣∣∣∣
≤ L 2

(k + 1)
2

m22k√π

∫ π
0

∣∣∣∣sinθ

(
sin(m− 1)θ

m− 1
− sin(m + 1)θ

m + 1

)∣∣∣∣dθ.

However,∫ π
0

∣∣∣sinθ
(
− sin(m+1)θ

m+1 + sin(m−1)θ
m−1

)∣∣∣dθ=
∫ π

0

∣∣∣sinθ
(
− sin(m+1)θ

m+1 + sin(m−1)θ
m−1

)
dθ
∣∣∣.

≤
∫ π

0

∣∣∣ sinθsin(m+1)θ
m+1

∣∣∣+ ∣∣∣sinθ
(

sin(m−1)θ
m−1

)∣∣∣dθ ≤ 2mπ
(m2−1) .

Hence:

|cnm| ≤ L
2

(k+1)
2

m22k
√

π

(
2mπ

(m2 − 1)

)
.

|cnm| ≤ L
2

(k+1)
2

22k

(
2
√

π

(m2 − 1)

)
.
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Since n ≤ 2k−1, we have inequality becoming:

|cnm| ≤ L
1

n
3
2

2
3
2

( √
π

(m2 − 1)

)
.

Therefore, the wavelets expansion ∑∞
n=1 ∑∞

m=0 cnmQnm(t) converges to f (t) uniformly.
�

Accuracy Analysis

If the function f (t) is expanded in terms of New Shifted Wavelet Functions as in
Equations (4) and (5), that is:

f (t) =
∞

∑
n=1

∞

∑
m=0

cnmQnm(t).

then it is not possible to perform the computation of an infinite number of terms, and we
must thus truncate the series as below:

f M(t) =
2k−1

∑
n=1

M−1

∑
m=0

cnmQnm(t).

so that:
f (t)− fM(t) = r(t).

where r(t) is the residual function defined by:

r(t) =
∞

∑
n=2k−1+1

∞

∑
m=M

cnmQnm(t).

We must select the coefficients such that ‖r(t)‖ is less than some convergence value ε,
that is: (∫ 1

0
| f (t)− fM(t)|2wn(t)dt

) 1
2

< ε,

for all M greater than some positive integer value M0.
The calculation of the accuracy of a numerical method is crucial to describe the

applicability and performance in order to solve problems. Theorem 2 discusses the accuracy
of the wavelets representation of a function.

Theorem 2. Let f be a continuous function defined on the interval [0, 1) and
∣∣∣ ..
f (t)

∣∣∣ < L, then the
accuracy estimation is given by:

cn,m =

(√
πL

2−
3
2

∑∞
n=2k−1+1 ∑∞

m=M
1

n
3
2

(
1

(m2 − 1)

)) 1
2

,

where:

cn,m =

(∫ 1

0
|r(t)|2wn(t)dt

) 1
2

.

Proof. Since:

cn,m =

(∫ 1

0
|r(t)|2wn(t)dt

) 1
2
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Then:
c2

nm =
∫ 1

0 |r(t)|
2wn(t)dt.

=
∫ 1

0

∞
∑

n=2k−1+1

∞
∑

m=M
|cnmQnm(t)|2wn(t)dt.

=
∞
∑

n=2k−1+1

∞
∑

m=M
|cnm|2

∫ 1
0 |Qnm(t)|2wn(t)dt.

From the orthonormality criterion form Qnm, one can obtain:

c2
nm =

∞

∑
n=2k−1+1

∞

∑
m=M
|cnm|2.

Using the findings from Equation (7):

c2
nm =

√
πL

2−
3
2

∞

∑
n=2k−1+1

∞

∑
m=M

1

n
3
2

(
1

(m2 − 1)

)
,

or

cn,m =

(√
πL

2−
3
2

∑∞
n=2k−1+1 ∑∞

m=M
1

n
3
2

(
1

(m2 − 1)

)) 1
2

. �

4. Operational Matrix of the NSW

The present section is built to derive an operational matrix of derivatives for the NSW.
Based on the NSW vector Φ(t) mentioned in Equation (1), it can be determined that the
operational matrix of integer derivative is as below.

The following theorem is needed hereafter:

Theorem 3. Let Φ(t) be the NSW vector defined in Equation (1). Then, the first derivative of the
vector Φ(t) can be expressed as:

dΦ(t))
dt

= DΦΦ(t), (8)

whereDΦis2k−1(M + 1)square operation matrix of differentiation and is defined by:

DΦ =


D O · · · O
O D · · · O
...

...
. . .

...
O O · · · D

 (9)

In whichD is a square matrix and their elements can be explicitly obtained as below:

Di,j = 2k


i, i odd and j = 0,

2i, i > j and i− j = odd,
0, otherwise.

(10)

Proof. By using NSW, the rth element of vector Qn,m(t) can be rewritten in the following
way:

Qr(t) = Qn,m(t) =
2

k−1
2
√

π
Msm

(
2kt− 2n + 1

)
, (11)

For n−1
2k−1 ≤ t ≤ n

2k−1 and Qr(t) = 0 outside the interval t ∈
[

n−1
2k−1 , n

2k−1

]
, where

r = n(m + 1) + (m + 1), m = 0, 1, . . . , M, n = 0, 1, 2, . . . , (2 k − 1).
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Or

Qn,m(t) =
2

k−1
2
√

π

(
Msm

(
2kt− 2n + 1

))
χ[ n−1

2k−1 , n
2k−1 ]

, (12)

where

χ[ n−1
2k−1 , n

2k−1 ]
=

1, t ∈
[

n− 1
2k−1 ,

n
2k−1

]
,

0, otherwise.

Differentiating Equation (11) with respect to t yields:

dΦ(t)
dt

=
2

k−1
2
√

π

[ .
Msm

(
2kt− 2n + 1

)]
, for t ∈

[
n− 1
2k−1 ,

n
2k−1

]
. (13)

Hence, the NSW expansion only has those elements in Qn,m(t) that are non-zero in
the interval

[
n−1
2k−1 , n

2k−1

]
, that is:

Qr(t), r = n(M + 1), n(M + 1) + 2, . . . , n(M + 1) + (M + 1).

This enables us to expand
(

dQnm(t)
dt

)
in terms of the NSW in the form:

dΦ(t)
dt

=
(n+1)(M+1)

∑
r=n(M+1)+1

crQr(t). (14)

This implies that the operational matrix DΦ(t) is a block matrix, as defined in Equation (9),
since dΦ(t)

dt = 0.

Then, we have dΦ(t)
dt = 0 for r = 1(M + 1)+ 1, 2(M + 1)+ 1, . . . ,

(
2k − 1

)
(M + 1)+ 1,

As a result, the elements of the first row of matrix D given in Equation (10) are zeros.

Now, substitute d
.

Msm(t)
dt back into Equation (13), gives:

dQn,m(t)
dt

=
1√
π

2. 2k−1n


n−1
∑

i=1
Msn−2i+1(t) + 1

2 Ms0, i f n odd,

n−1
∑

i=1
Msn−2i+1(t), i f n even.

(15)

Expanding Equation (15) in terms of NSW basis allows us to obtain:

dQn,m(t)
dt

= 2.2kn


n−1
∑

i=1
Qn(M+1)+i(t) +

1
2 Q0, i f n odd,

n−1
∑

i=1
Qn(M+1)+i(t), i f n even.

Choosing D(i, j) such that:

Di,j = 2k


i i odd, j = 0,

2i i > j, i− j = odd,

0 otherwise.

The equation dQn,m(t)
dt = DQn,m(t) is hold. �
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5. The NSW Algorithm for Solving Optimal Control Problem

In this section, the task of optimizing systems governed by ordinary differential
equations, which leads to the optimal control problems, is investigated as they are arising
in many applications in astronautics and aeronautics.

Consider the following process on fixed interval [0, 1]:

J =
1∫

0

F (t, u(t), x(t))dt, (16)

subject to:
u(t) = f

(
t, x(t),

.
x(t)

)
, (17)

together with the conditions:
x(0) = x0, x(1) = x1. (18)

where: x(•) : [0, 1]→ R is the state variable, u(•) : [0, 1]→ R, is the control variable, and
the function f is assumed to be real valued continuously differentiable.

First, we assume the solution of the state variables x(t) and
.
x(t) in terms of NSW,

respectively, is as below:

x(t) =
m

∑
i=0

ciQi(t), (19)

.
x(t) =

m

∑
i=0

ciDQi(t). (20)

where C = [c0 c1 . . . cm]
T is the unknown parameters vector.

The second step is to obtain the approximation for the control variable by substituting
Equations (19) and (20) into Equation (17):

u(t) = f

(
t,

m

∑
i=0

ciQi(t),
m

∑
i=0

ciDQi(t)

)
. (21)

Finally, the performance index value J is obtained as a function of the unknown
c0, c1, c2, . . . , cm as below

J =
∫ 1

0
F

( m

∑
i=0

ciQi(t)

)2

,

(
m

∑
i=0

ciDQi(t)

)2
dt.

The resulting quadratic mathematical programming problem can be simplified as below:

J =
1
2

CTHC,

where:

H = 2
∫ 1

0
F
(
(Φ(t))2, (DΦ(t))2

)
dt,

subject to:
FC− b = 0.

where:

F =

[
ΦT(0)
ΦT(1)

]
, b =

[
x0
x1

]
.

Using Lagrange multiplier technique to obtain the optimal values of the unknown
parameters C∗

C∗ = H−1FT
(

FH−1FT
)−1

b.
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6. Test Examples

In this section, the results for the numerical simulation of optimal control problems
formulated based on the proposed new shifted wavelet method are presented. Different
test cases for m defined in the interval [0, 1] are considered with a single state function and
a single control function. Note that the proposed method can be solved problems with
multiple controls. The test problems are considered continuous optimal controls, and the
analytic solution is known in order to allow the validation of the proposed algorithm by
comparing its result with the exact solution.

Example 1. In the following example, we have one state functionx(t)and one control functionu(t).
This problem is concerned with minimization of [25,26]:

minJ =
∫ 1

0

(
u2(t) + x2(t)

)
dt,

subject to:
u(t) =

.
x(t),

with initial conditions x(0) = 0, x(1) = 0.5.

The exact value of the performance index is J = 0.328258821379.
Table 1 shows the values of the coefficients, and Tables 2 and 3 give the values of the

state and the control, respectively.

Table 1. The unknown coefficients ci in Example 1.

ci m = 3 m = 4 m = 5

c0 0.230545711338576 0.236727303476872 0.256199322878168
c1 0.123366816327231 0.130013877070087 0.160508907830196
c2 0.006294225322818 0.017822378525363 0.047112195129104
c3 0.003860998979349 0.026814740481690
c4 0.005789066578131

Table 2. Approximate and exact values of x(t) for Example 1.

t m = 3 m = 4 m = 5 xexact

0.2 0.081818181818 0.085725158561 0.0856632657718 0.0856602272147
0.4 0.172727272727 0.174680761099 0.1747677613426 0.1747583001210
0.6 0.272727272727 0.270773784355 0.2708607845984 0.2708700372292
0.8 0.381818181818 0.377911205073 0.3778493122834 0.3778527400206
1 0.500000000000 0.500000000000 0.5000000000000 0.5000000000000

Table 3. Approximate and exact values of u(t) for Example 1.

t m = 3 m = 4 m = 5 uexact

0.2 0.431818181818182 0.433446088794942 0.434113187975870 0.433996647185271
0.4 0.477272727272728 0.459365750528545 0.459887849303989 0.459952039568011
0.6 0.522727272727274 0.504820295983084 0.504298197207639 0.504366922299765
0.8 0.568181818181821 0.569809725158559 0.569142625977633 0.569023820575788
1 0.613636363636367 0.654334038054970 0.656219529904781 0.656517642749666

Table 4 gives the absolute errors Em = |Jexact − Jm| that the NSW method might
produce with compression to the following methods:

• The method existing in [25].
• Chebyshev method proposed in [26].
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Table 4. A comparison of the results of Example 1.

Em

m Presented Method Method in [26] Method in [25]

3 0.00033 0.00033 0.0050
4 0.00000051 0.00000052 0.0034
5 0.0000000093 0.000000016 0.00021

Example 2: Consider the second test problem [26]:

minJ =
1∫

0

(
u2(t) + 3x2(t)

)
dt, (22)

u(t) =
.
x(t)− x(t),x(0) = 1, x(1) = 0.51314538.

The exact solution of (22) is:

u(t) =
3e−4

3e−4 + 1
e2t − 3

3e−4 + 1
e−2t, x(t) =

3e−4

3e−4 + 1
e2t +

1
3e−4 + 1

e−2t and J = 2.791659975.

Table 5 shows the values of the coefficients, and Tables 6 and 7 give the values of
the state and the control, respectively, whereas Table 8 lists the absolute errors that our
method NSW might produce and compares our technique to the method presented in [26].
From these tables, it can be seen that the state and the control variables are accurately
approximated by the proposed method.

Table 5. The unknown coefficients ci in Example 2.

ci m = 3 m = 4 m = 5

c0 0.355507506871318 0.346802467917968 0.353341978261637
c1 0.011865347625915 0.003658158193373 0.011466719011776
c2 0.059865632941091 0.047554848792278 0.053850500952116
c3 −0.004103594716271 0.0006.7914878500
c4 0.001195685875318

Table 6. Approximate and exact values of x(t) for Example 2.

t m = 3 m = 4 m = 5 xexact

0.2 0.72969817542857 0.71547355348770 0.71303748341008 0.7131081208852
0.4 0.54586180114285 0.53874949017242 0.54172690915617 0.5418429752453
0.6 0.44849087714285 0.45560318811329 0.45858060709704 0.4584348199397
0.8 0.43758540342857 0.45181002536944 0.44937395529182 0.4493594610058
1 0.51314538000000 0.51314538000000 0.51314537999999 0.5131453766955

Table 7. Approximate and exact values of u(t) for Example 2.

t m = 3 m = 4 m = 5 uexact

0.2 −2.56767274857141 −2.71584589378880 −2.78633403260869 −2.79165997531006
0.4 −1.86504367257142 −1.85674597643924 −1.83028754865182 −1.82851756831608
0.6 −1.24888004685713 −1.17657155199105 −1.16048897823791 −1.16185967374545
0.8 −0.71918187142857 −0.66109799850335 −0.68313541022400 −0.68359121816281
1 −0.275949146285715 −0.296100694035280 −0.31768698166747 −0.31616348542896

Table 8 illustrates the fast convergence rate of the proposed method, since the errors
decay rapidly by increasing the number of the NSW.
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Table 8. Estimated values of Jm for m = 3, 4, 5 for Example 2.

m Jm Em Jm in [26] Em

3 2.79718233539 0.0055 2.7977436304 0.0060
4 2.79237308337 0.00071 2.7960838642 0.0044
5 2.79166202469 0.0000020 2.7960838642 0.0044

Example 3. Consider the third test problem

J =
1
2

∫ 1

0

(
u2(t) + x2(1)

)
dt,

u(t) =
.
x(t)− x(t), x(0) = 1, x(1) = 0.3678794412 and Jexact = 1.

Table 9 shows the values of the coefficients while Tables 10 and 11 compare the exact
solutions and the approximate solutions of x(t) and u(t), respectively, for m = 3, 4, 5.
The absolute errors of J for various values of m are listed in Table 12. From these results,
it is worthwhile to note that the approximate solutions obtain by the proposed method
completely coincide with the exact solutions.

Table 9. The unknown coefficients ci in Example 3.

ci m = 3 m = 4 m = 5

c0 0.317388943264860 0.314366203750058 0.314854167521389
c1 −0.10561159916574 −0.10846146531065 −0.10789004268669
c2 0.017219482834726 0.012944683617373 0.013407812437593
c3 −0.00142493307245 −0.00107009805596
c4 0.00008.870875412

Table 10. Approximate and exact values of x(t) for Example 3.

t m = 3 m = 4 m = 5 xexact

0.2 0.8238348176509 0.8188954570054 0.8187261332539 0.81873075307798
0.4 0.6725401705963 0.6700704902736 0.6703085019619 0.67032004603563
0.6 0.5461160588363 0.5485857391591 0.5488237508474 0.54881163609402
0.8 0.4445624823709 0.4495018430164 0.4493325192649 0.44932896411722
1 0.3678794412000 0.3678794411999 0.3678794412000 0.36787944117144

Table 11. Approximate and exact values of u(t) for Example 3.

t m = 3 m = 4 m = 5 uexact

0.2 −1.642484391160 −1.6396030974501 −1.6376087511890 −1.6374615061559
0.4 −1.366837067632 −1.3417286510180 −1.3405383263440 −1.3406400920712
0.6 −1.116060279400 −1.0958912234308 −1.0975575714816 −1.0976232721880
0.8 −0.890154026461 −0.8971514540429 −0.89880715280116 −0.8986579282344
1 −0.689118308818 −0.7405699822088 −0.73541173113306 −0.7357588823428

Table 12. Estimated values of Jm for m = 3, 4, 5 of Example 3.

m Jm Em

3 1.000272934759060 0.00027
4 1.000001904254601 0.0000019
5 1.000000007516538 0.0000000075
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Example 4. Consider the fourth test problem [26]:

minJ =
1∫

0

(
0.5u2(t) + x2(t)

)
dt, (23)

u(t) =
.
x(t)− 0.5x(t), x(0) = 1, x(1) = 0.5018480732.

The exact solution of (23) is:

u(t) =
2e3t − e3

a
, x(t) =

2e3t + e3

a
, where a = 2e

3t
2 (1 + e3) and J = 0.8641644978.

Table 13 compares absolute errors of presented method wavelets to the existing method
presented in [26] with different values of m, and we see that the absolute errors of the
presented method provide good results compares to the existing other method, which
indicates a decrease in absolute errors with the increase in the value of m.

Table 13. Estimated values of Jm for m = 3, 4, 5 of Example 4.

m Jm Em m Jm in [26] Em

3 0.86472880938 0.00056 2 0.8645390446 00037
4 0.86421807235 0.000053 3 0.8644550472 0.00029
5 0.86416456896 0.000000071 4 0.8643546452 0.00019

It is clear that the approximate solution of the performance index when m = 8 is in
very good agreement with the corresponding exact solution. Table 13 reports the absolute
errors of Jm obtained by the proposed method at m = 3, 4, 5 in comparison to the method
in [26] at m = 2, 3, 4. The obtained results show that the approximate solutions are more
accurate for the proposed method than the method in [26]. In addition, the fast convergence
rate of the proposed method is also illustrated from the absolute errors results, since by
increasing the number of the NSW, the errors decay rapidly.

7. Discussion

The NSW coefficients for the state function x(t) and the control function u(t), the NSW
approximated values xm(t) of orders m = 3, 4 and 5, the NSW approximated values um(t)
of orders m = 3, 4 and 5 and the error estimates Em for different values of m are reported
respectively in Tables 1–4 for Example 1, In Tables 5–8 for Example 2, in Tables 8–12 for
Example 3 while in Table 13, the obtained error estimates Em for different values of m have
been calculated. A comparison between the NSW approximation and the exact solution
shows that as m increases, the errors decay rapidly. One of the important advantages of the
use of the NSW method is that the convergence of Jm is faster than some other methods
in the literature see [25,26]. Therefore, by proceeding an approximations for the suitable
value of m, the results obtained by the proposed method will rapidly tend to the results for
the exact solution. The NSW approximation of order five is a very accurate approximation
of the exact solution. Examples 2–4 have been solved by many researchers using different
approaches, but the results obtained by NSW using state parameterization are the best
results. From the results of Examples 2–4, it is clear that our algorithm gives better or
comparable results with that of algorithms in [25,26], although the amount of computations
in our method is very much less than in their algorithms.

A comparison between the results for the exact solution and for the values of m = 3
shows that the error in the performance index is of the order of 10−4, while for the values
m = 5, an agreement of about nine decimal places is obtained in the performance index.
The results gradually tend towards the exact results as we systematically proceed to higher
order approximations.

Tables 4, 7, 11 and 13 report the absolute errors for the performance index obtained by
our method in comparison to the method in [25,26] at m = 3, 4, 5. The obtained results
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show that the absolute errors are better for the proposed method than those obtained
in [25,26]. From such tables, it can be found that the state and the control variables are
accurately approximated by the presented method.

8. Conclusions

This paper presents a new technique for obtaining the numerical solutions for optimal
control problems. The derivation of the method is based on the construction of a new
shifted wavelet with its operational matrix of derivatives. One of the advantages of the
proposed technique is adopting a limited number of wavelets basis functions.

Approximate and exact solutions of examples are correspondingly compared. For
Example 1, a comparison reports in Table 4 that it is clear that at m = 5, the results obtained
by the proposed method are better than those in [25,26], with the absolute error of the
performance index 9.3 × 10−9, 1.6 × 10−8 and 2.1 × 10−4, respectively. Numerical results for
Example 2 were presented in [25] with the best absolute error 4.4× 10−3, while in our method,
the best absolute method is 2.0 × 10−6. Absolute errors of Example 4 were also given as
1.9 × 10−4 and 7.1 × 10−8 in [26] and the present work, respectively. The best absolute errors
of Example 4 presented in [26] are given in Table 13. As can be seen from Tables 4, 8, 12 and 13,
the present method is highly efficient and accurate, and it is quite high, even in the case of a
small number of the basis wavelet functions.
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Abbreviations

Mm(t) The special polynomials defined in the interval [−1, 1].
Msm(t) The shifted special polynomials defined in the interval [0, 1].
Qnm(t) The new shifted special wavelet functions.
Φ(t) The vector of the basis functions.
w(t) The weight function.
..
f (t) The second derivative.
〈., .〉 Inner product operator on Hilbert space.
f (t) ∈ L2

w([0, 1]) means
∫ 1

0 d f (t)e2w(t)dt finite.
f ∈ C2[0, 1) f and its first derivative

.
f are continues.

J Performance index value.
x(t) State variable.
u(t) Control variable.
r(x) Residual function
ε Convergence value greater than zero.
DQ Operation matrix of derivative.
R Real numbers.
χ Delta function.
uexact Exact values of the control variable.
xexact Exact values of the state variable.
um Approximate values of the control variable.
xm Approximate values of the state variable.
Jexact Exact value of the performance index.
Jm Approximate value of the performance index.
F Integrand function.
C Vector of unknown parameters.
C∗ Vector of optimal parameters.
Em = |Jexact − Jm.| The absolute errors.
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