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Abstract: This paper studies the dynamically optimal consumption, investment and life-insurance
strategies for a wage earners under inside information and inflation. Assume that the wage earner
can invest in a risk-free asset, a risky asset and an inflation-indexed bond and that the wage earner
can obtain some additional information on the risky asset from the financial market. By maximizing
the expected utility of the wage earner’s consumption, inheritance and terminal wealth, we obtain
the dynamically optimal consumption, investment and life-insurance strategies for the wage earner.
The method of this paper is mainly based on (dynamical) stochastic control theory and the technique
of enlargement of filtrations. Moreover, sensitivity analysis is carried out, which reveals that a
wage earner with inside information tends to increase his/her consumption and investment, while
reducing his/her purchase of life insurance.
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1. Introduction

Since Merton’s seminal work [1], investment and consumption problems have been
extensively studied. Karatzas et al. [2] used the dynamic programming method to ex-
plicitly propose a solution to the consumption-portfolio problem under a general util-
ity function and general rates of return. Fleming and Pang [3] obtained the optimal
investment and consumption strategy for investors under the fluctuation of interest rates.
Chang and Chang [4] solved the investment-consumption problem under the Vasicek
model and Hyperbolic Absolute Risk Aversion (HARA) utility. As financial markets
have become more sophisticated, investors are no longer limited to purchasing stocks,
bonds and other products in the securities markets to earn investment returns. Instead,
they can choose products from a broader range of investment products. With the booming
insurance industry, more and more people are investing their money in insurance, and life
insurance is one of the most interesting insurance products. Besides being widely accepted
as a new type of investment product, life insurance is also used by individuals or families
to protect themselves against risk. According to Campbell [5], uncertainty about a wage
earner’s future age of death leads to uncertainty about the family’s financial situation.
Many wage earners purchase life insurance to protect their families against the death
risk. Based on Merton’s elegant theoretical framework, many investment-consumption
problems with life insurance have been studied in the literature. Richard [6] was the first
to study the individual’s portfolio–consumption–life insurance problem under the maxi-
mization of the expected utility, considering that the investor’s lifetime follows a random
but known distribution. Subsequently, Pliska and Ye [7] studied the optimization problem
by maximizing the expected utility and analyzed the demand for life insurance using
numerical experiments. Under the HARA utility, Huang and Milevsky [8] investigated
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the portfolio-selection problem, where life insurance is involved. Considering that stocks
have a mean-reverting drift term, the optimal strategies under Constant Relative Risk
Aversion (CRRA) utility were studied by Pirvu and Zhang [9]. Zeng et al. [10] solved the
optimization problem under the no-borrowing restriction. They used the duality method
to determine optimal strategies and indicated that the optimal strategies are influenced
by no-borrowing restrictions. So for individuals, they are buying life insurance both as
a more popular way to manage their finances and to provide financial security for their
families. In addition, Wei et al. [11] provided the optimal strategies for lifetime correlation
couples. They used copula and common-shock to model the mortality dependence and
thus measured correlated longevity. Considering a household in the context of a continuous
two-generation period, the robust optimal strategies were studied by Wang et al. [12], which
assumed that the income growth rate is unknown. They indicated that wealth does not
influence investment strategy, but higher wealth levels contribute to lower life insurance
and higher consumption. Therefore, life insurance provides the necessary protection for
the economic stability of individuals and families in real life. Based on the investment
and consumption problem, the study of the optimal strategy of life insurance is a current
hotspot and has high theoretical value for enriching the application of stochastic optimal
control theory.

Most of the references mentioned above use individual life insurance. In reality,
however, the insurance market exists and insurance companies offer different insurance
contracts, and wage earners face a variety of choices in the insurance market. Therefore, it
is more relevant and promising to consider insurance consisting of multiple life-insurance
policies. The optimal strategies were obtained by Mousa et al. [13] in the case of multidi-
mensional life insurance, which assumed that a life-insurance market consists of different
life-insurance contracts from a finite number of insurers. Hoshiea et al. [14] took both a
social welfare system and multiple life-insurance policies into account to study the optimal
strategies. Considering multidimensional life insurance, Mousa et al. [15] introduced an
economic indicator represented by a stochastic process that affects the financial assets and
studied an optimal asset-allocation problem of a wage earner.

In addition to the risk of death, the increased level of inflation should not be ig-
nored. The purchasing power of wage earners can be significantly affected by inflation.
Kwak and Lim [16] studied a family’s optimal asset allocation under inflation risk and
discovered inflation’s impact on life insurance premiums. Han and Hung [17] considered
risks of interest rate and inflation to investigate the optimal economic decisions of a wage
earner. They discovered that fluctuation in inflation would discourage people from buying
life insurance. Liang and Zhao [18] took into account the inflation risk and studied the
optimal strategies including life insurance under a mean-variance utility. Quite recently,
inflation risk and consumption habits were considered by Shi et al. [19] and their effects on
optimal consumption–investment–life-insurance strategies were analyzed.

In reality, most common people could access public information published by com-
panies and/or regulators. Professional investors would most like to investigate private
markets to obtain additional information about the financial market. This leads to the
so-called inside-information issue. For example, Kyle [20] first pointed out that insiders
in the market make positive profits by exploiting their monopoly power and that the
existence of noise trading makes insider trading undetectable to market makers. Pikovsky
and Karatzas [21], based on Kyle’s research, pointed out that inside-information situa-
tions are real and involve an investor in possession of some information about the future
and possessing relevant mathematical models. This could affect the investment strategy
and wealth levels of wage earners and hence life-insurance and consumption strategies.
Therefore, inside information should be considered with respect to optimal asset-allocation
problems for wage earners. The existence of inside information gives the wage earner
access to a much larger filtration than that generated by the market, which requires solving
the optimality problem under a new filtration. A common approach to modeling the
behavior of wage earners in possession of inside information is the enlargement of filtration
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techniques. Early studies of inside information focused on investors in financial markets.
The impact of inside information on investment strategies and welfare was studied by
Pikovsky and Karatzas [21]. Imkeller et al. [22] considered the problem of possible arbi-
trage opportunities. The problems of non-life insurance with inside information have been
studied, where the insurers may have some inside information about their claim process;
see Baltas et al. [23], Cao et al. [24], Peng et al. [25]. Assuming that the claims process and
the risky assets of insurers are related to jump–diffusion processes, Peng and Wang [26]
took into account inside information in both financial and insurance markets and provided
the optimal risk-management and investment strategies for insurance companies. Peng
and Chen [27] studied the problem of asset-liability management under inside information.
Nevertheless, the study on individual asset allocation with inside information leaves much
to be explored.

In this paper, we investigate the dynamically optimal consumption, investment and
life-insurance strategies for a wage earner under inside information and inflation. The
wage earner is allowed to invest in a portfolio consisting of risk-free assets, risky assets and
inflation-linked bonds. Assume that the wage earner has access to inside information in the
stock market. Correspondingly, we develop a dynamic control system in which the state
equation consists of a wealth process and an income process. The control variables are the
proportion of investment in risky assets, the proportion of investment in inflation-indexed
bonds, consumption and life insurance premium rate. The objective is to maximize the
expected utility of consumption, inheritance and final wealth. For this stochastic control
problem, the optimal solution is obtained by applying the dynamic programming method
and solving the corresponding HJB equation. The main contributions of this paper are as
follows:

(i) Solving the asset-allocation strategies for a wage earner under inside information, and
analyzing the impact of inside information on asset-allocation strategies.

(ii) Taking multidimensional life insurance in the insurance market into consideration.
(iii) Solving the optimal inflation-indexed bond strategy. By addressing these key aspects,

we aim to shed light on the intricate dynamics of consumption, investment and
life-insurance decisions when individuals have access to inside information and are
navigating the complexities associated with inflation.

The remainder of the paper has the following structure. A model that includes the
wealth process and the performance function is presented in Section 2. Section 3 identifies
the optimal decisions and value function. Section 4 provides numerical analyses and
explanations of the economic significance of the optimal strategies. The conclusions of the
paper are presented in Section 5.

2. Model

Let (Ω,F,P) be a complete probability space and filtration Ft∈[0,T] generated by two
standard one-dimension Brownian motions BS(t) and BI(t). T > 0 is the terminal time,
considered to be the wage earner’s retirement time.

2.1. The Financial Market

As is common in the literature, assume that the price process of the risk-free asset is

dS1(t) = r1S1(t)dt,

where the risk-free interest rate r1 > 0. The price process of the risky asset (stock) S2(t) can
be given as

dS2(t) = λS2(t)dt + σSS2(t)dBS(t),

and λ > 0 is the instantaneous expected return rate. σS represents the volatility rate. To
measure inflation, the commodity-price-index process is expressed as

dI(t) = λI I(t)dt + σI I(t)dBI(t),
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where the constant λI ∈ (0, ΛI ] stands for the expected inflation rate and the constant ΛI
means the possible maximum value for the inflation rate. σI > 0 expresses the price index’s
volatility rate. The price dynamic of an inflation-indexed bond p(t) is as follows

dp(t) = r2 p(t)dt + p(t)
dI(t)
I(t)

= (r2 + λI)p(t)dt + σI p(t)dBI(t),

where r2 is the real interest rate. r2 + λI is the expected return rate of the bond.

2.2. The Income and the Insurance Market

The nominal income process LN(t) is described as

dLN(t) = λLLN(t)dt + σLLN(t)dBI(t),

where λL denotes the expected return rate of nominal income. σL is the volatility of
nominal income.

Suppose the investor is alive at time t. Let τ stand for the the investor’s lifetime.
Assume the insurance market includes K life insurances from K insurance companies. The
life-insurance premium rate of the kth company is θk(t), k ∈ {1, 2, · · · , K}. ηk : [0, T]→ R+

can be called the premium–insurance ratio.

Assumption 1. For each k ∈ 1, · · · , K, ηk(t) is a deterministic continuous function. Furthermore,
the kth insurer considered here is assumed to offer a different set of contracts, i.e., ηk1 6= ηk2 for each
k1 6= k2 and t ∈ [0, T]. Once the wage earner dies at time t, the kth insurance company will pay
θk(t)/ηk(t). Therefore, the legacy W at death time τ is expressed as

W(τ) = X(τ) +
K

∑
k=1

θk(τ)

ηk(τ)
.

Let π1(t) and π2(t) denote the proportion of assets in stocks and inflation-indexed
bonds, respectively. θN,k(t) represents the nominal premium rate of the kth life insurance
company and CN(t) is the nominal consumption for the wage earner. Denote the control
variables as φ = (π1(t), π2(t), θN,k(t), CN(t)). The nominal wealth process under φ is as
follows

dXN(t) =

[
XN(t)r1 + XN(t)π1(t)(λ− r1) + XN(t)π2(t)(r2 + λI − r1) + LN(t)− CN(t)

−
K

∑
k=1

θN,k(t)

]
dt + XN(t)π1(t)σSdBS(t) + XN(t)π2(t)σIdBI(t).

(1)

2.3. Inside Information

We assume that a wage earner can obtain inside information in the risky asset. Specif-
ically, let L = BS(T0) denote the wage earner’s inside information, with T0 > T. The
filtration of the wage earner would be as follows

Gt = Ft ∨ σ(BS(T0)),

and the relationship between Gt and Ft is

Gt ⊃ Ft, ∀t ∈ [0, T].

The following lemma is from Theorem 3.1 of Baltas et al. [23].
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Lemma 1. The process {BS(t), t ≥ 0} is a semimartingale with respect to G = {Gt, t ≥ 0}. Its
semimartingale decomposition is as follows

BS(t) = B̃S(t) +
∫ t

0
κ(s)ds,

where

κ(t) =
BS(T0)− BS(t)

T0 − t
, 0 ≤ t < T0,

and B̃S(t) is a (G,P) Brownian motion.

Considering the inside information BS(T0), the nominal wealth can be described as

dXN(t) =

[
XN(t)r1 + XN(t)π1(t)(λ− r1 + σSκ0 − σS M(t)) + XN(t)π2(t)(r2 + λI − r1)

+LN(t)− CN(t)−
K

∑
k=1

θN,k(t)

]
dt + XN(t)π1(t)σSdB̃S(t) + XN(t)π2(t)σIdBI(t),

where

κ0 = lim
t→0

κ(t) =
BS(T0)

T0
, (2)

and

M(t) =
∫ t

0

1
T0 − s

dB̃S(t).

2.4. The Stochastic Optimal Control Problem

Let X(t) = XN(t)/I(t) be the actual wealth, removing the effects of inflation. Ac-
tual income, actual consumption and the actual insurance premium rate are denoted by
L(t) = LN(t)/I(t), C(t) = CN(t)/I(t) and θk(t) = θN,k(t)/I(t), respectively. Then the
actual wealth and actual income processes can be presented as

dX(t) =

[
X(t)(r1 − λI + σ2

I ) + X(t)π1(t)(λ− r1 + σSκ0 − σS M(t)) + X(t)π2(t)(r2 + λI − r1

−σ2
I ) + L(t)− C(t)−

K

∑
k=1

θk(t)

]
dt + X(t)π1(t)σSdB̃S(t) + X(t)(π2(t)− 1)σIdBI(t),

and
dL(t) = L(t)(λL − λI + σ2

I − σIσL)dt + L(t)(σL − σI)dBI(t).

The performance function can be expressed as

J(t, x, m, l; φ) = Et,x

[∫ T∧τ

t
U(s, C(s))ds + Υ(τ, W(τ))1{τ≤T} + Γ(X(T))1{τ>T}

]
, (3)

where U(x, y), Υ(x, y) and Γ(x) are utility functions.
From the results of Pliska and Ye [7], we have

J(t, x, m, l; φ) = Et,x

[∫ T

t
f (s, t)U(s, C(s)) + F̄(s, t)Υ(s, W(s))ds + F̄(T, t)Γ(X(T))

]
.

where f (s, t) and F̄(s, t) are the conditional probability density and conditional survival
probability, respectively. Let µ(t) denote the hazard function, then

f (s, t) = µ(t) exp
{
−
∫ s

t
µ(u)du

}
, F̄(s, t) = exp

{
−
∫ s

t
µ(u)du

}
.
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Then define the value function as

V(t, x, m, l) := sup
φ∈A

J(t, x, m, l; φ). (4)

Definition 1. The strategies φ = (π1(t), π2(t), θk(t), C(t)) are called admissible strategies if
they satisfy the following conditions. The admissible-strategies set is denoted as A.

(i) The life-insurance purchase θk(t) is Ft∈[0,T]-measurable and satisfies

∫ T

0
θk(s)ds < ∞, k = 1, . . . , K.

(ii) The consumption C(t) is Ft∈[0,T]-measurable and satisfies∫ T

0
C(s)ds < ∞ a.s..

(iii) The investment strategies π1(t) and π2(t) are Ft∈[0,T]-measurable processes and comply with∫ T
0 ‖ π2(t) ‖2 dt < ∞ a.s.,∫ T
0 ‖ π1(t) ‖2 dt < ∞ a.s.,

E
{

exp
[
−
∫ T

0 π1(s)dB̃S(s)− 1
2

∫ T
0 ‖ π1(s) ‖2 ds

]}
= 1.

3. Solution to the Stochastic Optimal Control Problem

This section derives the optimal strategies and corresponding value function.

Theorem 1 (Verification Theorem). If there exists a function Z(t, x, m, l) that satisfies the
following HJB equation

max
φ∈A
{U(s, C(s)) + µ(t)Υ(s, W(s))− µ(t)Z(t, x, m, l) + Φ(t, x, m, l; φ)} = 0,

with the boundary condition
Z(T, x, m, l) = Γ(X(T)),

where the infinitesimal generator

Φ(t, x, m, l; φ) =Zt(t, x, m, l) +

[
x
(

r1 − λI + σ2
I

)
+ xπ1(t)(λ− r1 + σSκ0 − σSm) + xπ2(t)

×
(

r2 + λI − r1 − σ2
I

)
+ l − C−

K

∑
k=1

θk

]
Zx(t, x, m, l) + (λL − λI + σ2

I − σIσL)

× lZl(t, x, m, l) +
1
2

(
π2

1σ2
S + (π2 − 1)2σ2

I

)
x2Zxx(t, x, m, l) +

1
2

( 1
T0 − t

)2

× Zmm(t, x, m, l) +
1
2
(σL − σI)

2l2Zll(t, x, m, l) +
xπ1σS
T0 − t

Zxm(t, x, m, l)

+ xlσLσI(π2 − 1)Zxl(t, x, m, l).

and

φ∗ = arg max
φ∈A
{U(s, C(s)) + µ(t)Υ(s, W(s))− µ(t)Z(t, x, m, l) + Φ(t, x, m, l; φ)},

then the value function V(t, x, m, l) = Z(t, x, m, l).

The proof of the verification theorem can be found in Fleming and Soner [28] and Ye [29].
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Let Uy(x, y) and Υy(x, y) represent the derivative of U(x, y) and Υ(x, y) about its
second variable. U(x, y) and Υ(x, y) are strictly concave to their second variable; thus,
Uy(x, y) and Υy(x, y) are invertible. Therefore, Θ : [0, T] × R+

0 → R+
0 is defined as the

function complying with

Θ1
(

x, Uy(x, y)
)
= y, Uy(x, Θ1(x, y)) = y,

Θ2
(
x, Υy(x, y)

)
= y, Υy(x, Θ2(x, y)) = y.

Theorem 2. The value function reaches its maximum under φ∗ = (π∗1 (t), π∗2 (t), θ∗k (t), C∗(t)) ∈ A.
The optimal strategies are

π∗1 (t, x) = −
σs

T0−t Vxm(t, x, m, l) + (λ− r1 + σsκ0 − σsm)Vx(t, x, m, l)

xσ2
s Vxx(t, x, m, l)

,

π∗2 (t, x) = 1−
LσLσIVxl(t, x, m, l) +

(
r2 + λI − r1 − σ2

I )Vx(t, x, m, l
)

xσ2
I Vxx(t, x, m, l)

,

θ∗k (t, x) =


[

Θ2

(
t,

ηk(t)Vx(t, x, m, l)
µ(t)

)
− x
]

ηk(t), k = k∗(t),

0, others,

C∗(t, x) = Θ1(t, Vx(t, x, m, l)),

where k∗(t) = arg min
k∈{1,2,··· ,K}

{ηk(t)}.

Proof. Please see Mousa et al. [13] for the proof.

We consider that wage earners use the same discounted CARA utility function for
household consumption, inheritance and terminal wealth. These utility functions are

U(x, y) = − 1
γ

e−ρx exp{−γy}, Υ(x, y) = − 1
γ

e−ρx exp{−γy}, Γ(x) = − 1
γ

e−ρT exp{−γx},

where ρ > 0 is the discount rate, γ ( γ < 1 ,γ 6= 0) is the risk-aversion parameter. If
φ = (π1(t), π2(t), θk∗(t), C(t)), we obtain the following HJB equation

max
φ∈A

{
− 1

γ
e−ρt exp{−γC} − µ(t)

γ
e−ρt exp

{
−γ

(
x +

θk∗

ηk∗

)}
− µ(t)V(t, x, m, l)

+ Φ(t, x, m, l; φ)

}
= 0,

(5)

where

Φ(t, x, m, l; φ) =Vt(t, x, m, l) +
[

x
(

r1 − λI + σ2
I

)
+ xπ1(t)(λ− r1 + σSκ0 − σSm) + xπ2(t)

×
(

r2 + λI − r1 − σ2
I

)
+ l − C− θk∗

]
Vx(t, x, m, l) +

(
λL − λI + σ2

I − σIσL

)
× lVl(t, x, m, l) +

1
2

(
π2

2σ2
S + (π2 − 1)2σ2

I

)
x2Vxx(t, x, m, l) +

1
2

(
1

T0 − t

)2

×Vmm(t, x, m, l) +
1
2
(σL − σI)

2l2Vll(t, x, m, l) +
xπ1σS
T0 − t

Vxm(t, x, m, l)

+ xlσLσI(π2 − 1)Vxl(t, x, m, l).

Theorem 3. The value function can be obtained as

V(t, x, m, l) = − 1
γ

exp
{
−γ
[

A(t)x + D1(t)m2 + D2(t)m + Q(t)l + H(t)
]}

.
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The optimal strategies are

π∗1 (t) = −
σs

T0−t [2D1(t)m + D2(t)]− (λ− r1 + σsκ0 − σsm)

xσ2
s γA(t)

,

π∗2 (t) = 1−
lσLσI Q(t)−

(
r2 + λI − r1 − σ2

I
)

xσ2
I γA(t)

,

θ∗k∗(t) = −
ηk∗

γ

[
ln

ηk∗A(t)
µ(t)

+ ρt + γx
]
+ ηk∗

[
A(t)x + D1(t)m2 + D2(t)m + Q(t)l + H(t)

]
,

C∗(t) = − 1
γ
[ln A(t) + ρt] +

[
A(t)x + D1(t)m2 + D2(t)m + Q(t)l + H(t)

]
.

where

A(t) =
r2 + ηk∗

e−(r2+ηk∗ )(T−t)
[
(ηk∗ + 1)e(r2+ηk∗ )(T−t) + r2 − 1

] ,

D1(t) = −
1

2γ
(T0 − T)2e(ηk∗+1)

∫ T
t A(s)ds

∫ T

t

e−(ηk∗+1)
∫ s

t A(u)du

(T0 − s)2 ds,

D2(t) = (T0 − t)e(ηk∗+1)
∫ T

t A(s)ds
∫ T

t

(
2(λ− r1 + σSκ0)D1(s)

(T0 − s)σS
+

λ− r1 + σSκ0

γσS

)
× e−(ηk∗+1)

∫ s
t A(u)du

T0 − s
ds,

Q(t) = −e
[
−λL+λI−σ2

I +σI σL+
σL
σI

(r2+λI−r1−σ2
I )
]
(T−t)+(ηk∗+1)

∫ T
t A(s)ds

×
∫ T

t
A(s)e

[
−λL+λI−σ2

I +σI σL+
σL
σI
(r2+λI−r1−σ2

I )
]
(s−t)−(ηk∗+1)

∫ s
t A(u)duds,

H(t) = −e(ηk∗+1)
∫ T

t A(s)ds
[∫ T

t
G(s)e−(ηk∗+1)

∫ s
t A(u)duds +

ρT
γ

]
,

G(t) = −ηk∗ + 1
γ

A(t) +
ηk∗ + 1

γ
ρtA(t) +

A(t)
γ

ln A(t) +
ηk∗A(t)

γ
ln

ηk∗A(t)
µ(t)

+
µ(t)

γ

+
D1(t)

(T0 − t)2 −
(λ− r1 + σSκ0)D2(t)

(T0 − t)σS
+

(
λI + r2 − r1 − σ2

I
)2

2γσ2
I

+
(λ− r1 + σSκ0)

2

2γσ2
S

.

Proof. Please see Appendix A.

Proposition 1 (No inflation case). When there is no inflation in the model, the optimal value
function and optimal strategies are expressed as

V(t, x, m, l) = − 1
γ

exp
{
−γ
[

A(t)x + D1(t)m2 + D2(t)m + Q(t)l + H(t)
]}

,

π∗1 (t) = −
σs

T0−t [2D1(t)m + D2(t)]− (λ− r1 + σsκ0 − σsm)

xσ2
s γA(t)

,

θ∗k∗(t) = −
ηk∗

γ

[
ln

ηk∗A(t)
µ(t)

+ ρt + γx
]
+ ηk∗

[
A(t)x + D1(t)m2 + D2(t)m + Q(t)l + H(t)

]
,

C∗(t) = − 1
γ
[ln A(t) + ρt] + [A(t)x + D1(t)m2 + D2(t)m + Q(t)l + H(t)],
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where

A(t) =
r1 + ηk∗

e−(r2+ηk∗ )(T−t)
[
(ηk∗ + 1)e(r2+ηk∗ )(T−t) + r2 − 1

] ,

D1(t) = −
1

2γ
(T0 − T)2e(ηk∗+1)

∫ T
t A(s)ds

∫ T

t

e−(ηk∗+1)
∫ s

t A(u)du

(T0 − s)2 ds,

D2(t) = (T0 − t)e(ηk∗+1)
∫ T

t A(s)ds
∫ T

t

(
2(λ− r + σSκ0)D1(s)

(T0 − s)σS
+

λ− r + σSκ0

γσS

)
e−(ηk∗+1)

∫ s
t A(u)du

T0 − s
ds,

Q(t) = −e−λL(T−t)+(ηk∗+1)
∫ T

t A(s)ds
∫ T

t
A(s)eλL(s−t)−(ηk∗+1)

∫ s
t A(u)duds,

H(t) = −e(ηk∗+1)
∫ T

t A(s)ds
[∫ T

t
G(s)e−(ηk∗+1)

∫ s
t A(u)duds +

ρT
γ

]
,

G(t) = −ηk∗ + 1
γ

A(t) +
ηk∗ + 1

γ
ρtA(t) +

A(t)
γ

ln A(t) +
ηk∗A(t)

γ
ln

ηk∗A(t)
µ(t)

+
µ(t)

γ

+
D1(t)

(T0 − t)2 −
(λ− r1 + σSκ0)D2(t)

(T0 − t)σS
+

(λ− r1 + σSκ0)
2

2γσ2
S

.

Proposition 2 (No inside information case). When there is no inside information in the model,
we solve the optimization problem under filtration F. The optimal value function and optimal
strategies are expressed as

V(t, x, l) = − 1
γ

exp{−γ[A(t)x + Q(t)l + H(t)]},

π∗1 (t) =
λ− r1

xσ2
s γA(t)

,

π∗2 (t) = 1−
lσLσI Q(t)−

(
r2 + λI − r1 − σ2

I
)

xσ2
I γA(t)

,

θ∗k∗(t) = −
ηk∗

γ

[
ln

ηk∗A(t)
λ(t)

+ ρt + γx
]
+ ηk∗ [A(t)x + Q(t)l + H(t)],

C∗(t) = − 1
γ
[ln A(t) + ρt] + [A(t)x + Q(t)l + H(t)],

where

A(t) =
r2 + ηk∗

e−(r2+ηk∗ )(T−t)
[
(ηk∗ + 1)e(r2+ηk∗ )(T−t) + r2 − 1

] ,

Q(t) = −e−λL(T−t)+(ηk∗+1)
∫ T

t A(s)ds
∫ T

t
A(s)eλL(s−t)−(ηk∗+1)

∫ s
t A(u)duds,

H(t) = −e(ηk∗+1)
∫ T

t A(s)ds
[∫ T

t
G(s)e−(ηk∗+1)

∫ s
t A(u)duds +

ρT
γ

]
,

G(t) = −ηk∗ + 1
γ

A(t) +
ηk∗ + 1

γ
ρtA(t) +

A(t)
γ

ln A(t) +
ηk∗A(t)

γ
ln

ηk∗A(t)
µ(t)

+
µ(t)

γ

+

(
λI + r2 − r1 − σ2

I
)2

2γσ2
I

+
(λ− r1 + σS)

2

2γσ2
S

.

Remark 1. The proofs of Propositions 1 and 2 are similar to that of Theorem 3.
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(i) Note that when there is no inflation in consideration, the wealth process under inside informa-
tion can be expressed as

dX(t) =

[
X(t)r1 + X(t)π1(t)(λ− r1 + σSκ0 − σS M(t)) + L(t)− C(t)−

K

∑
k=1

θk(t)

]
dt

+ X(t)π1(t)σSdB̃S(t).

The optimal value function V under strategy φ = (π1(t), θk(t), C(t)) satisfies the following
HJB equation

max
φ∈A
{U(s, C(s)) + µ(t)Υ(s, W(s))− µ(t)V(t, x, m, l) + Φ(t, x, m, l; φ)} = 0,

where infinitesimal generator

Φ(t, x, m, l; φ) =Vt(t, x, m, l) +

[
xr1 + xπ1(t)(λ− r1 + σSκ0 − σSm) + l − C−

K

∑
k=1

θk

]

×Vx(t, x, m, l) + λLlVl(t, x, m, l) +
1
2

π2
1σ2

Sx2Vxx(t, x, m, l)

+
1
2

(
1

T0 − t

)2
Vmm(t, x, m, l) +

1
2

σ2
Ll2Vll(t, x, m, l) +

xπ1σS
T0 − t

Vxm(t, x, m, l).

(ii) On the other hand, when there is no inside information, the real wealth process under F can be
obtained as

dX(t) =

[
X(t)(r1 − λI + σ2

I ) + X(t)π1(t)(λ− r1) + X(t)π2(t)(r2 + λI − r1 − σ2
I ) + L(t)

−C(t)−
K

∑
k=1

θk(t)

]
dt + X(t)π1(t)σSdBS(t) + X(t)(π2(t)− 1)σIdBI(t).

The HJB equation corresponding to problem (4) under filtration F is

max
φ∈A
{U(s, C(s)) + λ(t)Υ(s, W(s))− µ(t)V(t, x, l) + Φ(t, x, l; φ)} = 0,

where φ = (π1(t), π2(t), θk(t), C(t)) and infinitesimal generator

Φ(t, x, l; φ) =Vt(t, x, l) +

[
x
(

r1 − λI + σ2
I

)
+ xπ1(t)(λ− r1) + xπ2(t)

(
r2 + λI − r1

−σ2
I

)
+ l − C−

K

∑
k=1

θk

]
Vx(t, x, l) +

(
λL − λI + σ2

I − σIσL

)
lVl(t, x, l)

+
1
2

(
π2

1σ2
S + (π2 − 1)2σ2

I

)
x2Vxx(t, x, l) +

1
2
(σL − σI)

2l2Vll(t, x, l)

+ xlσLσI(π2 − 1)Vxl(t, x, l).

4. Numerical Illustrations

This section discusses the impact of important parameters on the optimal strategies of
the wage earner. The results in this section are obtained by applying MATLAB software
(version R2016a, MathWorks Inc., Natick, MA, USA) for numerical analysis. Suppose the
hazard function is described using the Gompertz parameter form

λ(t) =
1
10

e
t−40

10 .
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According to Baltas et al. [23], we discuss the optimal strategies under x = 100,
l = 10, T = 65, r1 = 0.1, r2 = 0.08, m = 0.5, T0 = 70, ρ = 0.1, σS = 0.4, σI = 0.2,
σL = 0.1, λ = 0.8, λI = 0.7, λL = 0.5, γ = 0.3.

4.1. Optimal Investment Strategy

Figure 1 plots the impact of the risk-aversion coefficient γ on optimal investment
strategies π∗1 and π∗2 . It is observed that as γ increases, the optimal investment strategies
π∗1 and π∗2 both decrease. The risk-aversion coefficient γ increases, implying that the
wage earner is more risk averse, and therefore accepts a lower investment risk. Thus, it
is reasonable for investors with higher levels of risk aversion to adopt a more cautious
investment strategy.

In Figure 2, the effect of the expected return rate λ and volatility rate σS on the optimal
stock strategy π∗1 is explored. Figure 2a shows that the optimal stock strategy π∗1 increases as
the expected rate of return λ increases. However, as shown in Figure 2b, when the value of
the volatility rate σS increases, the optimal stock strategy π∗1 decreases. It is common sense
that as the expected rate of return λ increases, investors will gain more from the stock market.
However, an increase in instantaneous volatility σS will lead to an increase in investment
risk. Thus, as returns increase and volatility decreases, wage earners will invest more in risky
assets, which is consistent with the general conclusion of the investment problem.

The impact of the expected inflation rate λI and price-index volatility rate σI on the
optimal inflation-indexed bond strategy π∗2 is shown in Figure 3. What can be seen is
that the optimal bond strategy π∗2 is larger when expected inflation λI is larger and price
index volatility σI is lower. This observation implies that the wage earner stands to invest
in the inflation-index bond if the expected inflation rate is higher and volatility is lower.
This is because larger expected inflation implies larger inflation-indexed expected returns,
while increased volatility in price indices implies increased uncertainty in investing in
inflation-indexed bonds.

The effect of inside information on the optimal stock strategy π∗1 is shown in Figure 4.
According to Equation (2), the average rate at which the wage earner obtains inside infor-
mation is captured by the parameter κ0. We can observe that the optimal stock strategy
π∗1 is an increasing function of κ0. This is a reasonable result from the assumption that
the wage earner has a priori knowledge of the random variable L = BS(T0), T0 > T and
κ(t) is the drift induced by this random variable. This implies that the wage earner is
taking advantage of additional information as an insider, and having access to inside
stock information will encourage the wage earner to be bolder when investing in stocks.
Moreover, since the inside information in our model only affects the stock process and
not the inflation-index bond process, it is also quite natural that the optimal percentage
invested in the inflation-index bond is not affected by the information drift.

0 2 4 6 8 10 12 14 16 18 20

t

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

π
* 1

γ=0.25

γ=0.3

γ=0.35

(a)

0 2 4 6 8 10 12 14 16 18 20

t

4

4.5

5

5.5

6

6.5

π
* 2

γ=0.25

γ=0.3

γ=0.35

(b)

Figure 1. The effect of the risk-aversion parameter on the optimal investment strategies. (a) The effect
of the risk-aversion parameter γ on the optimal stock strategy π∗1 . (b) The effect of the risk-aversion
parameter γ on the optimal bond strategy π∗2 .
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Figure 2. The effect of the expected return rate and volatility rate on the optimal stock strategy π∗1 .
(a) The effect of the expected return rate λ on the optimal stock strategy π∗1 . (b) The effect of the
volatility rate σS on the optimal stock strategy π∗1 .
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Figure 3. The effect of the expected inflation rate and volatility rate of price index on the optimal
bond strategy π∗2 . (a) The effect of the expected inflation rate λI of price index on the optimal bond
strategy. (b) The effect of the volatility rate σI of price index on the optimal bond strategy π∗2 .
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Figure 4. The effect of the inside information on the optimal stock strategy π∗1 .
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4.2. Optimal Life Insurance Strategy

In Figure 5, the influence of the risk-aversion coefficient γ on the optimal life-insurance
strategy θ∗ is illustrated. As depicted in the graph, the spending on buying life insurance
increases as γ increases, indicating that the wage earner is inclined to purchase life insurance
at an optimal level when he/she is more risk averse. Moreover, it shows that the optimal
life-insurance strategy θ∗ increases over time t before decreasing. This is because the risk of
death increases as the wage earner gets older; thus, naturally, life-insurance purchases will
increase. However, after a certain age, the wage earner has a higher mortality rate and it
would cost more to purchase life insurance at this time. Combined with the fact that they
may have accumulated some wealth, it is more cost-effective to take other economic actions
than to purchase life insurance.

30 32 34 36 38 40 42 44 46 48 50

t

0

5

10

15

20

25

θ
*

γ = 0.25

γ = 0.3

γ = 0.35

Figure 5. The effect of the risk-aversion parameter γ on the optimal life-insurance strategy θ∗.

Figure 6 shows the impact of inside information on the optimal life-insurance strategy θ∗.
As the image illustrates, a higher value of κ0 is associated with a larger optimal life-
insurance strategy θ∗. This may be because when more inside information about the stock
is available, the wage earner is more certain about investing in stock and thus is more
inclined to invest in risky markets to gain wealth. Therefore, the increase in investment and
expected increase in wealth makes the wage earner less inclined to purchase life insurance
to protect against financial risk.

30 32 34 36 38 40 42 44 46 48 50
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*
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κ
0
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κ
0
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Figure 6. The effect of the inside information on the optimal life-insurance strategy θ∗.
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4.3. Optimal Consumption Strategy

Figure 7 plots the influence of the risk-aversion parameter γ on the optimal consump-
tion strategy C∗. The graph shows that as the value of the risk-aversion coefficient γ
rises, the optimal consumption strategy C∗ declines. This indicates that the higher the risk
aversion of the wage earner, the more cautious the consumption, which is consistent with
common sense.
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C
*

γ=0.25

γ=0.3

γ=0.35

Figure 7. The effect of the risk-aversion parameter γ on the optimal consumption strategy C∗.

Figure 8 shows the effect of inside information on optimal consumption strategy C∗. As
can be seen, the larger the value of κ0, the larger the corresponding optimal consumption
strategy C∗. This implies that inside information about the stock will have a positive effect
on the optimal consumption. This can be interpreted as follows: when the wage earner
has more inside information about stock, he/she is more inclined to invest in risky assets;
thus, an increase in wealth is expected. As a result, wage earners tend to spend more on
consumption at the optimal level.
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Figure 8. The effect of inside information on the optimal consumption strategy C∗.
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5. Conclusions

Due to the wide range of applications of life insurance in reality and the fact that it
has become a current research hotspot, the factors influencing a wage earner’s investment,
consumption and demand for life insurance under certain conditions need to be studied
and justified. The economics of wage earners’ behavior under these conditions, including
investment, consumption and life-insurance purchases also need to be analyzed. In this
paper, we study the dynamically optimal consumption, investment and life-insurance
strategies for a wage earner in the presence of inside information and inflation. Specifically,
the dynamically optimal strategies for consumption, investment in risky assets, investment
in inflation-indexed bonds and life insurance are obtained by maximizing the expected
utility of consumption, inheritance and final wealth. To provide a comprehensive analysis,
we consider alternative scenarios as well, including an inflation-free model and a model
without the presence of inside information. Finally, in order to study the factors affecting the
investment, consumption and life-insurance demand of the wage earner under conditions of
inside information and inflation, sensitivity analysis is provided through numerical studies.
The dynamically optimal strategies and value function properties suggest that the dynamic
financial behavior of the wage earner are as follows: (i) Inside information leads to an
increase in investment and consumption but a decrease in life-insurance purchases. (ii) As
expected inflation increases and volatility decreases, the purchase of inflation-indexed
bonds should be increased to protect against inflation risk. (iii) If wage earners are more
risk-averse, they will invest more money in life insurance while reducing consumption and
spending on investments in risky markets.

However, due to the complexity of life insurance as a product, the reality of life insurance
is susceptible to a number of factors, such as the economic situation, the health status of the
wage earner, the status of family members and the wage earner’s own subjective awareness
of life insurance. The measurement of these real-world factors requires more sophisticated
modeling to represent them. Therefore, the model in this paper explores more from a mathe-
matical perspective, which has some limitations for the real situation. Consequently, more
realistic models about investment, consumption and life insurance are expected.
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Appendix A

Proof. Applying the first-order optimality condition for the HJB equation, the investment,
consumption and life-insurance strategies can be expressed as

π∗1 (t) = −
σs

T0−t Vxm(t, x, m, l) + (λ− r1 + σsκ0 − σsm)Vx(t, x, m, l)

xσ2
s Vxx(t, x, m, l)

,

π∗2 (t) = 1−
LσLσIVxl(t, x, m, l) + (r2 + λI − r1 − σ2

I )Vx(t, x, m, l)
xσ2

I Vxx(t, x, m, l)
,

θ∗k∗(t) = −
ηk∗

γ

[
ln

ηk∗Vx(t, x, m, l)
µ(t)

+ ρt + γx
]

,

C∗(t) = − 1
γ
[ln Vx(t, x, m, l) + ρt].

(A1)
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Substituting Equation (A1) into Equation (5) yields

− 1
γ

Vx −
ηk∗

γ
Vx − µ(t)V + Vt + x

(
r1 − λI + σ2

I

)
Vx + lVx −

σs
T0−t Vxm + (λ− r1 + σsκ0 − σsm)Vx

σ2
s Vxx

× (λ− r1 + σSκ0 − σSm)Vx + x
(

r2 + λI − r1 − σ2
I

)
Vx −

lσLσIVxl + (λI + r2 − r1 − σ2
I )Vx

σ2
I Vxx

×
(

r2 + λI − r1 − σ2
I

)
Vx +

1
γ
(ln Vx + ρt)Vx −

ηk∗Vx

γ

[
ln

ηk∗Vx

µ(t)
+ ρt + γx

]
+
(

λL − λI + σ2
I

− σIσL

)
lVl +

σ2
s

(T0−t)2 V2
xm + (λ− r1 + σsκ0 − σsm)2V2

x + 2σs
(T0−t) (λ− r1 + σsκ0 − σsm)VxVxm

2σ2
s Vxx

+
l2σ2

Lσ2
I V2

xl + (λI + r2 − r1 − σ2
I )

2V2
x + 2

(
λI + r2 − r1 − σ2

I
)
lσLσIVxlVx

2σ2
I Vxx

+
1
2

( 1
T0 − t

)2
Vmm

−
σs

T0−t V2
xm + (λ− r1 + σsκ0 − σsm)VxVxm

(T0 − t)σsVxx
−

l2σ2
LσIV2

xl + lσL
(
λI + r2 − r1 − σ2

I
)
VxVxl

σIVxx

+
1
2
(σL − σI)

2l2Vll = 0.

(A2)

The value function can be conjectured to be of the following form

V(t, x, m, l) = − 1
γ

exp
{
−γ
[

A(t)x + D1(t)m2 + D2(t)m + Q(t)l + H(t)
]}

.

Then
Vt =

[
A′(t)x + D′1(t)m

2 + D′2(t)m + Q′(t)l + H′(t)
]
Ψ,

Vx = A(t)Ψ,

Vl = Q(t)Ψ,

Vm = [2D1(t)m + D2(t)]Ψ,

Vxx = −γA2(t)Ψ,

Vll = −γQ2(t)Ψ,

Vmm = −γ[2D1(t)m + D2(t)]2Ψ + 2D1(t)Ψ,

Vxm = −γA(t)[2D1(t)m + D2(t)]Ψ,

Vxl = −γA(t)Q(t)Ψ,

(A3)

where Ψ = exp
{
−γ
[
A(t)x + D1(t)m2 + D2(t)m + Q(t)l + H(t)

]}
.

Thus

π∗1 (t) = −
σs

T0−t [2D1(t)m + D2(t)]− (λ− r1 + σsκ0 − σsm)

xσ2
s γA(t)

,

π∗2 (t) = 1−
lσLσI Q(t)−

(
r2 + λI − r1 − σ2

I
)

xσ2
I γA(t)

,

θ∗(t) = −ηk∗

γ

[
ln

ηk∗A(t)
µ(t)

+ ρt + γx
]
+ ηk∗

[
A(t)x + D1(t)m2 + D2(t)m + Q(t)l + H(t)

]
,

C∗(t) = − 1
γ
[ln A(t) + ρt] +

[
A(t)x + D1(t)m2 + D2(t)m + Q(t)l + H(t)

]
.

Substitute Equation (A3) into Equation (A2), we have
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− ηk∗ + 1
γ

A(t) +
µ(t)

γ
+
[

A′(t)x + D′1(t)m
2 + D′2(t)m + Q′(t)l + H′(t)

]
+ xr2 A(t) + lA(t)

− (λ− r1 + σSκ0 − σSm)[2D1(t)m + D2(t)]
(T0 − t)σS

+
(λ− r1 + σSκ0 − σSm)2

2γσ2
S

+

(
λI + r2 − r1 − σ2

I
)2

2γσ2
I

+
A(t)

γ
ln A(t) +

ηk∗A(t)
γ

ln
ηk∗A(t)

µ
+

ηk∗ + 1
γ

ρtA(t) + ηk∗xA(t) +
(

λL − λI + σ2
I − σIσL

)
lQ(t)

+
D1(t)

(T0 − t)2 + σLσI l2γQ2(t)− 1
2

γl2σ2
I Q2(t)− σL

σI

(
r2 + λI − r1 − σ2

I

)
lQ(t)

− (ηk∗ + 1)A(t)
[

A(t)x + D1(t)m2 + D2(t)m + Q(t)l + H(t)
]
= 0.

Let the coefficients of x, m and l equals zero respectively, we obtain the following differen-
tial equation

A′(t)− (ηk∗ + 1)A2(t) + (r + ηk∗)A(t) = 0,

D′1(t) +
[

2
T0 − t

− (ηk∗ + 1)A(t)
]

D1(t) +
1

2γ
= 0,

D′2(t) +
[

1
T0 − t

− (ηk∗ + 1)A(t)
]

D2(t)−
2(λ− r1 + σSκ0)D1(t)

(T0 − t)σS
− λ− r1 + σSκ0

γσS
= 0,

Q′(t) +
[

λL − λI + σ2
I − σIσL − (ηk∗ + 1)A(t)− σL

σI

(
r2 + λI − r1 − σ2

I

)]
Q(t) + A(t) = 0,

H′(t)− (ηk∗ + 1)A(t)H(t)− ηk∗ + 1
γ

A(t) +
ηk∗ + 1

γ
ρtA(t) +

A(t)
γ

ln A(t) +
ηk∗A(t)

γ
ln

ηk∗A(t)
µ(t)

+
µ(t)

γ
+

B(t)
(T0 − t)2 −

(λ− r1 + σSκ0)D2(t)
(T0 − t)σS

+

(
λI + r2 − r1 − σ2

I
)2

2γσ2
I

+
(λ− r1 + σSκ0)

2

2γσ2
S

= 0.

According to the boundary conditions A(T) = 1, D1(T) = D2(T) = Q(T) = 0, H(t) =
ρT
γ

,

we have

A(t) =
r2 + ηk∗

e−(r2+ηk∗ )(T−t)
[
(ηk∗ + 1)e(r2+ηk∗ )(T−t) + r2 − 1

] ,

D1(t) = −
1

2γ
(T0 − T)2e(ηk∗+1)

∫ T
t A(s)ds

∫ T

t

e−(ηk∗+1)
∫ s

t A(u)du

(T0 − s)2 ds,

D2(t) = (T0 − t)e(ηk∗+1)
∫ T

t A(s)ds
∫ T

t

(
2(λ− r1 + σSκ0)D1(s)

(T0 − s)σS
+

λ− r1 + σSκ0

γσS

)
e−(ηk∗+1)

∫ s
t A(u)du

T0 − s
ds,

Q(t) = −e
[
−λL+λI−σ2

I +σI σL+
σL
σI

(r2+λI−r1−σ2
I )
]
(T−t)+(ηk∗+1)

∫ T
t A(s)ds

×
∫ T

t
A(s)e

[
−λL+λI−σ2

I +σI σL+
σL
σI
(r2+λI−r1−σ2

I )
]
(s−t)−(ηk∗+1)

∫ s
t A(u)duds,

H(t) = −e(ηk∗+1)
∫ T

t A(s)ds
[∫ T

t
G(s)e−(ηk∗+1)

∫ s
t A(u)duds +

ρT
γ

]
,

where
G(t) =− ηk∗ + 1

γ
A(t) +

ηk∗ + 1
γ

ρtA(t) +
A(t)

γ
ln A(t) +

ηk∗A(t)
γ

ln
ηk∗A(t)

µ(t)
+

µ(t)
γ

+
D1(t)

(T0 − t)2 −
(λ− r1 + σSκ0)D2(t)

(T0 − t)σS
+

(
λI + r2 − r1 − σ2

I
)2

2γσ2
I

+
(λ− r1 + σSκ0)

2

2γσ2
S

.
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