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Abstract: A steady plane hydrodynamic problem of lubrication of a lightly loaded contact of two
parallel cylinders lubricated by a non-Newtonian fluid with Giesekus rheology is considered. The
advantage of this non-Newtonian rheology is its ability to properly describe the real behavior of
formulated lubricants at high and low shear stresses. The problem is solved by using a modification
of the regular perturbation method with respect to the small parameter α, characterizing the degree to
which the polymeric molecules of the additive to the lubricant follow the streamlines of the lubricant
flow. It is assumed that the lubricant relaxation time and the value of α are of the order of the
magnitude of the ratio of the characteristic gap between the contact surfaces and the contact length.
The obtained analytical solution of the problem is analyzed numerically for the dependencies of the
problem characteristics such as contact pressure, fluid flux, lubrication film thickness, friction force,
energy loss in the lubricated contact, etc., on the problem input parameters.

Keywords: Giesekus lubricant rheology; hydrodynamic lubrication problem; method of regular
perturbations; lubricant mobility factor; lubricant relaxation time

MSC: 76D08

1. Introduction

Most machine elements work in lubricated environments. Generally, the usage of
lubrication allows a decrease in frictional losses in contacts and, thus, an increase in their
durability. When such lubricated contacts are mathematically modeled, the rheology of the
lubricant is considered to be Newtonian or non-Newtonian. The former case is significantly
simpler and a lot of studies for the cases of homogeneous material and coated solids [1–10]
were dedicated to it. The latter case is more complex, but it better corresponds to the real
behavior of lubricants because polymeric additives make their behavior significantly non-
Newtonian, which allows for a distinctly different lubricant behavior at low and high shear
stresses. Different rheological models for lubricant behavior were used to catch various
aspects of real lubricant behavior such as lubricant relaxation time, etc. An overview
and analysis of different fluid rheological models is given in [11,12]. One of the simplest
rheological models of non-Newtonian lubricant behavior among generalized Newtonian
fluids [13] is the Ree–Eyring model [14–16]. Some studies of fluids with complex non-
Newtonian rheology were presented in [17–22].

Experimental data show that lubricant viscosity depends not only on pressure but
also on lubricant shear stress and velocity [23]. The actual behavior of polymer-formulated
lubricant flowing through narrow gaps is most accurately described by the Giesekus
rheological model [12,24,25]. The Giesekus model differs from the Maxwell, Jeffris, Oldroyd
A and B, etc., rheological models by the presence of a nonlinear term determined by the
mobility factor α and stress state of the fluid. It provides the opportunity to take into
account the degree to which the fluid viscosity is dependent on the shear stress in the
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fluid. In particular, this model allows for proper accounting of relatively high viscosity
for low and relatively low viscosity for high shear stresses in the fluid. The model takes
into account four parameters of the fluid: the relaxation time, the viscosities of base oil
and polymeric additive and the mobility factor. If the mobility factor is set to zero, then
the Giesekus model turns into the convected Maxwell model [11,12]. The Giesekus model
is nonlinear and, therefore, more complex for analysis. A relatively simple case of a fluid
with Giesekus rheology flowing between two parallel surfaces is considered in [26,27].
In [28], the analysis of a lightly loaded trust bearing lubricated by a fluid with the Giesekus
rheology was performed by the perturbation methods. However, the presence of convective
terms and the base oil were not taken into account.

The present paper is the continuation of the series of the author’s studies of hydro- and
elastohydrodynamic problems for Newtonian [29,30] and non-Newtonian [13] lubricating
fluids including the study of a lightly loaded trust bearing lubricated with a fluid with the
Giesekus rheology [31]. Also, the authors previously considered a similar but more simple
problem under the condition when the mobility factor α is significantly greater than the
ratio of the characteristic gap between the surfaces and length of the contact [32]. In this
case, in a two-term asymptotic solution, the inertia terms can be neglected. The first two
terms of asymptotic representation for contact pressure with respect to the small parameter
α are obtained in the analytical form. Numerical analysis of the obtained relationships for
contact pressure, lubrication film thickness, lubricant flux, friction, contact energy loss, etc.,
as functions of the input parameters of the Giesekus model is performed. Some applications
of perturbation methods to steady problems similar to the one used are described in [33,34].

2. Formulation of the Lubrication Problem and General Description of the
Analysis Applied

Let us consider a steady plane problem for a lubricated contact of two parallel infinite
cylinders of the radius R (see Figure 1), both of which are made of rigid materials (the case
of cylinders of different radii is considered at the end of the paper). It is assumed that the
lubricant is described by the Giesekus model [12] with a constant viscosity µ and relaxation
time λ1. The x-axis of the coordinate system is directed along the contact and perpendic-
ular to the cylinder axes, the y-axis is directed along the cylinder axes, and the z-axis is
perpendicular to both x- and y-axes. A continuous lubricant layer separates the cylinders
which steadily roll and slide with the surface linear speeds u1 and u2 in the direction of the
x-axis. The upper cylinder is subjected to the normal load P along the z-axis. The lubricant
velocity components are represented by functions u(x, y, z), v(x, y, z), and w(x, y, z). Due
to the problem geometry, v(x, y, z) = ∂v(x,y,z)

∂y = 0. Therefore, the problem parameters are
independent of y and the motion equations of such a fluid are as follows [13,29].

u ∂u
∂x + w ∂u

∂z = 1
ρ (

∂pxx
∂x + ∂pzx

∂z ), ∂pxy
∂x +

∂pzy
∂z = 0,

u ∂w
∂x + w ∂w

∂z = 1
ρ (

∂pzx
∂x + ∂pzz

∂z ).
(1)

In addition to that, one needs to consider the continuity equation. It is assumed that
the fluid is incompressible, i.e., ρ(x, z) = constant. That leads to the continuity equation

∂u
∂x + ∂w

∂z = 0. (2)

In this case, the stress tensor components are as follows

pxx = −p + τxx, pxy = τxy = 0, pzx = τzx, pzz = −p + τzz, pzy = τzy = 0, (3)

where p is the pressure and τxx, τxy, τzx, τzz, and τzy are the additional stress components
acting in the corresponding directions. These tensor components satisfy the Giesekus fluid
model which is a certain generalization of the Maxwell model and takes into account the
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degree to which the additive polymeric molecules follow the lubricant flow. The rheological
equations are as follows [12]

τ = τs + τp, µ = µs + µp, τs = µsγ̇,

τp + λ1τp(1) − α λ1
µp
{τp · τp} = µpγ̇,

(4)

where τ is the full stress tensor while τs and τp are the solvent and polymer stress tensors,
respectively, µs and µp are the constant solvent and polymer dynamic viscosities, γ̇ is the
deformation tensor, λ1 is the constant relaxation time, and α is the dimensionless constant
mobility factor describing the degree of the alignment of polymeric molecules with the
lubricant flow, 0 ≤ α ≤ 1.

0 x

Figure 1. The general view of a lubricated contact.

In (4), the following definitions of the tensor operators τp(1) and {τp · τp} [12] are used

τp(1)xx = u ∂τpxx
∂x + w ∂τpxx

∂z − 2 ∂u
∂z τpxz − 2 ∂u

∂x τpxx,

τp(1)xz = u ∂τpxz
∂x + w ∂τpxz

∂z −
∂u
∂x τpzx − ∂u

∂z τpzz − ∂w
∂x τpxx − ∂w

∂z τpzx,

τp(1)zz = u ∂τpzz
∂x + w ∂τpzz

∂z − 2 ∂w
∂z τpzz − 2 ∂w

∂x τpzx,

{τp · τp}xx = τ2
pxx + τ2

pxz,

{τp · τp}xz = τpxxτpxz + τpxzτpzz,

{τp · τp}zz = τ2
pxz + τ2

pzz.

(5)

and [12]
γ̇xx = 2 ∂u

∂x , γ̇xz =
∂u
∂z + ∂w

∂x , γ̇zz = 2 ∂w
∂z . (6)

It is necessary to impose some boundary conditions on the components u and w of
the lubricant velocity on the surfaces of the contacting solids. It is assumed that the no-slip
and no-penetration conditions are valid on the solid boundaries. The contact is considered
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to be concentrated, i.e., Lz/Lx � 1 (where Lx and Lz are the characteristic contact sizes
along the x- and z-axes) or equivalently dh(x)/dx � 1, where h(x) is the gap between the
cylinder surfaces at point x. Using the above boundary conditions will take the form

u(x,− h(x)
2 ) = u1, u(x, h(x)

2 ) = u2, (7)

w(x,− h(x)
2 ) = − u1

2
dh(x)

dx , w(x, h(x)
2 ) = u2

2
dh(x)

dx . (8)

It will be shown later that in the simplified formulation the function of pressure p is
independent of the variable z. Therefore, under pressure, one can impose the boundary
conditions stemming from the fact that at the contact boundaries the fluid pressure p is
equal to the atmospheric one and, therefore, can be neglected. To avoid cavitation at the
exit from the contact [13], the boundary conditions on p have the form

p(xi) = p(xe) =
dp(xe)

dx = 0, (9)

where xi and xe are the coordinates of the inlet and exit points of the contact.
In addition to that, it is required that the stress −pzz from (3) supports the normal load

P applied to the cylinder, i.e.,

xe∫
xi

[p(x)− τzz(x, h(x)/2)]dx = P. (10)

Being interested in a two-term asymptotic problem solution in α, in (9) and (10), it
is assumed that the two-term asymptotic expansion of pressure p(x, z) in α (i.e., a linear
function of α) is independent of z. That assumption is confirmed later for small α up to the
order of O(α), α� 1, i.e., in the asymptotic expansion of p in α� 1, terms p0 and p1 are
independent of z, while terms p2, p3, . . . depend on both x and z.

The goal is to determine the contact pressure p(x), the gap between the two cylinders
h(x), the coordinate of the exit point from the lubricated contact xe, the components of the
tensor τ in the fluid, etc. Typically, the point of entrance in the lubricated contact, i.e., the
coordinate of the inlet point xi, is known, and it is determined by the amount of lubricant
supplied to the contact. The region where the problem solution is searched is bounded by
x = xi and x = xe as well as by z = −h(x)/2 and z = h(x)/2. Out of these four boundaries
of the region, three are unknown, i.e., x = xe, z = −h(x)/2, and z = h(x)/2 are unknown.
One needs to find a perturbation solution to the above-determined problem in the case
when α� 1. In this case, xe and h(x) are just slightly perturbed values of the exit point xe0
and gap h0(x) realized in a lubricated contact with Newtonian fluid, i.e., when α = 0.

The general case of

α = α0ε, α0 = O(1), ε = Lz
Lx
� 1, (11)

will be considered. Here, α0 is a nonnegative constant. This case allows us to take into ac-
count some of the convective as well as major and minor dissipative terms of the equations.
Also, it allows us to consider the limiting cases α� ε and α� ε by correspondingly taking
α0 � 1 and α0 � 1.

3. Simplification of the Rheological Equations and the Equations of Lubricant Motion

It was shown that the problem solution should be searched for not in the original (x, z)
independent variables but in slightly modified ones (x0, z0). It is due to the fact that the
exit x = xe and upper z = h(x)/2 and lower z = −h(x)/2 boundaries of the lubricated
contact are perturbed ones of the corresponding boundaries x = xe0 and z = ±h0(x0)/2 of
the contact lubricated by a Newtonian fluid (for α = 0). Therefore, let us assume that

xe = xe0 + αxe1 + . . . , h(x) = h0(x0) + αh1(x0) + . . . , (12)
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where xe1 and h1(x0) will be determined as a part of the problem solution. Then, the
problem can be projected on the region [xi, xe0]× [−h0(x0)/2, h0(x0)/2] by introducing the
following new independent variables

x = x0 + αxe1
x0−xi
xe0−xi

, z = h(x)
h0(x0)

z0. (13)

When x0 = xi and x0 = xe0 with the precision of O(α2), α � 1, one obtains x = xi and
x = xe, respectively, and vice versa (see (12) and (13)). The actual definition of the new
variable x0 can be taken as x0 = (xi + xe0)/2 + ξ(xe0 − xi)/2, −1 ≤ ξ ≤ 1, which varies
between xi and xe0.

As it was shown earlier, this projection of the original problem onto the region
[xi, xe0]× [−h0(x0)/ 2, h0(x0)/2] is also dictated by the asymptotic expansion of the bound-
ary conditions on pressure p(x) at the exit point x = xe [31,32].

Let us consider the solution form which should be used in this case. One needs
to modify integration and differentiation operators while converting the problem from
variables (x, z) to variables (x0, z0) as follows (see (12) and (13))

dx = [1 + α xe1
xe0−xi

+ . . .]dx0, dz = [1 + α
h1(x0)
h0(x0)

+ . . .]dz0,

∂
∂x = [1− α xe1

xe0−xi
+ . . .] ∂

∂x0
, ∂

∂z = [1− α
h1(x0)
h0(x0)

+ . . .] ∂
∂z0

.
(14)

Let us consider an arbitrary sufficiently smooth function f (α, x, z) which has to be
expanded asymptotically in α� 1. Then, based on (12) and (13), one has [31,32]

f (α, x, z) = f (0, x, z) + α f1∗(x, z) + . . .

= f (0, x0 +
αxe1(x0−xi)

xe0−xi
+ . . . , (h0(x0)+αh1(x0)+...)z0

h0(x0)
)

+α f1∗(x0 +
αxe1(x0−xi)

xe0−xi
+ . . . , (h0(x0)+αh1(x0)+...)z0

h0(x0)
) + . . .

= f (0, x0, z0) + α[ f1(x0, z0) +
xe1(x0−xi)

xe0−xi

∂ f (0,x0,z0)
∂x0

+ z0h1(x0)
h0(x0)

∂ f (0,x0,z0)
∂z0

] + . . . ,

(15)

where f1∗(x, z) = ∂ f (0,x,z)
∂α and the derivative of f with respect to x0 and z0 are also taken

for α = 0. Therefore, the solution of the problem one will search using the Taylor expan-
sions of the unknown functions such as p(x), u(x, z), τxx(x, z), etc., about x0 and (x0, z0),
retaining just the first two terms of the expansions as well as taking into account the sample
expansion (15) and the perturbed expressions for xe and h(x) from (12) and (13).

In the form the problem is formulated above it is very complex for any analytical anal-
ysis except the perturbation method. Therefore, the first goal is to simplify Equations (1)–(8)
and to reduce them to much simpler equations which would allow for an analytical solution
and derivation of analogs of the Reynolds equation. One needs to retain only the terms of
higher orders of magnitude. As it was mentioned earlier, due to the fact that the thickness
of the lubrication layer is much smaller than the extent of the lubricated contact, one has a
small parameter ε = Lz/Lx � 1. Also, let Ux and Uz be the characteristic velocities of the
lubricating fluid in the directions of the x- and z-axes. Then, the following scaling of the
equations can be introduced

λ′1 = Ux
Lx

λ1, x′ = x
Lx

, z′ = z
Lz

, p′ = p L2
z

µ∗Ux Lx
,

u′ = u
Ux

, w′ = w
Uz

, s0 = 2 u2−u1
u1+u2

, {µ′, µ′s, µ′p} = 1
µ∗
{µ, µs, µp},

{τ′xx, τ′sxx, τ′pxx, τ′zx, τ′szx, τ′pzx, τ′zz, τ′szz, τ′pzz} =
Lz{τxx ,τsxx ,τpxx ,τzx ,τszx ,τpzx ,τzz ,τszz ,τpzz}

µ∗Ux
,

(16)
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where µ∗ is the characteristic value of the lubricant viscosity. For simplicity, in the further
analysis, the primes at the dimensionless variables are dropped.

By introducing the above scaling in the continuity Equation (2), one obtains

∂u
∂x + Uz

Ux
Lx
Lz

∂w
∂z = 0. (17)

To retain both terms in Equation (17), one needs to assume that

Uz
Ux

Lx
Lz

= 1. (18)

Then, Equation (17) becomes
∂u
∂x + ∂w

∂z = 0. (19)

Introducing scaling (16) in Equations (1) and (3)–(6) leads to equations

εRe0{u ∂u
∂x + w ∂u

∂z } = −
∂p
∂x + ε ∂τxx

∂x + ∂τzx
∂z ,

ε3Re0{u ∂w
∂x + w ∂w

∂z } = ε2 ∂τzx
∂x −

∂p
∂z + ε ∂τzz

∂z ,
(20)

τxx = τsxx + τpxx, τzx = τszx + τpzx, τzz = τszz + τpzz, τsxx = ε2µs
∂u
∂x ,

τszx = µs(ε2 ∂w
∂x + ∂u

∂z ), τszz = ε2µs
∂w
∂z = −ε2µs

∂u
∂x ,

(21)

τpxx + λ1[u
∂τpxx

∂x + w ∂τpxx
∂z −

2
ε

∂u
∂z τpzx − 2 ∂u

∂x τpxx]− α λ1
εµp

(τ2
pxx + τ2

pzx) = 2εµp
∂u
∂x ,

τpzx + λ1[u
∂τpzx

∂x + w ∂τpzx
∂z −

1
ε

∂u
∂z τpzz − ∂u

∂x τpzx − ∂w
∂z τpzx − ε ∂w

∂x τpxx]

−α λ1
εµp

(τpxx + τpzz)τpzx = µp(
∂u
∂z + ε2 ∂w

∂x ),

τpzz + λ1[u
∂τpzz

∂x + w ∂τpzz
∂z − 2 ∂w

∂z τpzz − 2ε ∂w
∂x τpzx]− α λ1

εµp
(τ2

pzx + τ2
pzz) = 2εµp

∂w
∂z ,

(22)

where Re0 = ρUx Lz
µ∗

is the local Reynolds number.
Let us assume that not only ε� 1 but also Re0 = O(1), α� 1, and

λ1 = λε, λ = O(1), ε� 1. (23)

The latter assumption makes the rheological equations solvable. Otherwise, for λ1 = O(1),
ε� 1, these equations do not have a reasonable solution.

Then, Equations (20)–(22) can be simplified. Based on the example of function f (α, x, z)
expansion for α� 1, one needs to search the problem solution in the form

{τsxx(x, z), τsxz(x, z), τszz(x, z)} = {τsxx0(x0, z0), τsxz0(x0, z0), τszz0(x0, z0)}

+α{τsxx1∗(x0, z0), τsxz1∗(x0, z0), τszz1∗(x0, z0)}+ . . . ,

{τsxx1∗(x0, z0), τsxz1∗(x0, z0), τszz1∗(x0, z0)}

= {τsxx1(x0, z0), τsxz1(x0, z0), τszz1(x0, z0)}

+xe1
x0−xi
xe0−xi

∂
∂x0
{τsxx0(x0, z0), τsxz0(x0, z0), τszz0(x0, z0)}

+z0
h1(x0)
h0(x0)

∂
∂z0
{τsxx0(x0, z0), τsxz0(x0, z0), τszz0(x0, z0)},

(24)



Mathematics 2023, 11, 4679 7 of 25

{τpxx(x, z), τpxz(x, z), τpzz(x, z)} = {τpxx0(x0, z0), τpxz0(x0, z0), τpzz0(x0, z0)}

+α{τpxx1∗(x0, z0), τpxz1∗(x0, z0), τpzz1∗(x0, z0)}+ . . . ,

{τpxx1∗(x0, z0), τpxz1∗(x0, z0), τpzz1∗(x0, z0)}

= {τpxx1(x0, z0), τpxz1(x0, z0), τpzz1(x0, z0)}

+xe1
x0−xi
xe0−xi

∂
∂x0
{τpxx0(x0, z0), τpxz0(x0, z0), τpzz0(x0, z0)}

+z0
h1(x0)
h0(x0)

∂
∂z0
{τpxx0(x0, z0), τpxz0(x0, z0), τpzz0(x0, z0)},

(25)

p(x) = p0(x0) + αp1∗(x0) + . . . ,

p1∗(x0) = p1(x0) + xe1
x0−xi
xe0−xi

dp0(x0)
dx0

,

u(x, z) = u0(x0, z0) + αu1∗(x0, z0) + . . . ,

u1∗(x0, z0) = u1(x0, z0) + xe1
x0−xi
xe0−xi

∂u0(x0,z0)
∂x0

+ z0
h1(x0)
h0(x0)

∂u0(x0,z0)
∂z0

,

w(x, z) = w0(x0, z0) + αw1∗(x0, z0) + . . . ,

w1∗(x0, z0) = w1(x0, z0) + xe1
x0−xi
xe0−xi

∂w0(x0,z0)
∂x0

+ z0
h1(x0)
h0(x0)

∂w0(x0,z0)
∂z0

,

(26)

where p0(x0), u0(x0, z0), w0(x0, z0), τsxx0(x0, z0), τsxz0(x0, z0), τszz0(x0, z0), τpxx0(x0, z0),
τpxz0(x0, z0), τpzz0(x0, z0) and u1(x0, z0), w1(x0, z0), τsxx1(x0, z0), τsxz1(x0, z0), τszz1(x0, z0),
τpxx1(x0, z0), τpxz1(x0, z0), τpzz1(x0, z0) are the unknown main and first-order approxima-
tions of the corresponding functions while the gap h(x) between two contact rigid solids
and functions h0(x0) and h1(x0) are described by the equations (see (12))

h(x) = he +
x2−x2

e
γ0

,

h(x) = h0(x0) + αh1(x0) + . . . , he = he0 + αhe1 + . . . ,
(27)

h0(x0) = he0 +
x2

0−x2
e0

γ0
, h1(x0) = he1 +

2xe1
γ0

[ x0(x0−xi)
xe0−xi

− xe0], (28)

where γ0 = 2LzRe
L2

x
, he is the a priori unknown lubrication film thickness at the exit point

x = xe, Re is the effective curvature radius of the contacting solids, Re = R/2 and he0, he1,
xe0, and xe1 are unknown components of the perturbed solution.

Substituting (12) and (15) and using (14) in Equations (19)–(22), taking into account (11),
and expanding all equations in α� 1 for the first two terms of each of the above expansions,
one obtains equations

− ∂p0
∂x0

+ ∂τzx0
∂z0

= 0, ∂p0
∂z0

= 0,

Re0
α0
{u0

∂u0
∂x0

+ w0
∂u0
∂z0
} = − ∂p1∗

∂x0
+ xe1

xe0−xi

∂p0
∂x0

+ 1
α0

∂τxx0
∂x0

+ ∂τzx1∗
∂z0
− h1

h0

∂τzx0
∂z0

,

− ∂p1∗
∂z0

+ h1
h0

∂p0
∂z0

+ 1
α0

∂τzz0
∂z0

= 0,

(29)

as well as the solutions for the tensor components as follows
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τxx = τsxx + τpxx, τzx = τszx + τpzx, τzz = τszz + τpzz,

τsxx0 = 0, τszz0 = 0, τsxx1∗ =
2µs
α0

∂u0
∂x0

,

τszx0 = µs
∂u0
∂z0

, τszx1∗ = µs[
∂u1∗
∂z0
− h1

h0

∂u0
∂z0

],

τszz1∗ =
2µs
α0

∂w0
∂z0

,

(30)

τpxx0 = 2λµp(
∂u0
∂z0

)2, τpzx0 = µp
∂u0
∂z0

, τpzz0 = 0. (31)

τpxx1∗ = 6λ3µp(
∂u0
∂z0

)4 + 4λµp
∂u0
∂z0

[ ∂u1∗
∂z0
− h1

h0

∂u0
∂z0

]

+λµp(
∂u0
∂z0

)2[4λ2( ∂u0
∂z0

)2 + 1] + 2µp
α0
{ ∂u0

∂x0
− 3λ2 ∂u0

∂z0
[u0

∂2u0
∂x0∂z0

+ w0
∂2u0
∂z2

0
]},

τpzx1∗ = 3λ2µp(
∂u0
∂z0

)3 + µp[
∂u1∗
∂z0
− h1

h0

∂u0
∂z0

]− λµp
α0
{2 ∂u0

∂z0

∂u0
∂x0

+ u0
∂2u0

∂x0∂z0
+ w0

∂2u0
∂z2

0
},

τpzz1∗ = λµp(
∂u0
∂z0

)2 − 2µp
α0

∂u0
∂∂x0

.

(32)

Here, the approximation of the continuity Equation (19) for the main terms of u and w is
used in the form

∂u0
∂x0

+ ∂w0
∂z0

= 0. (33)

Equations (29)–(31) show that functions p0 and p1∗ are independent of z0, i.e., p0 = p0(x0)
and p1∗ = p1∗(x0). That supports the form (26) in which p(x) will be searched as well as
the choice of the boundary and additional conditions imposed on pressure p in the form (9)
and (10).

4. Derivation of the Lubricant Velocity Components u and w

Before solving the continuity Equation (19) and equations of motion (29), one needs to
determine the boundary conditions imposed on u0, u1, w0, and w1. To do that, let us take
conditions (7) and (8) and substitute into them the expansions from (26). Expanding the
obtained boundary conditions in α� 1, one obtains the boundary conditions for the main
and first-order approximations of u and w in the form

u0(x0,− h0(x0)
2 ) = u1, u0(x0, h0(x0)

2 ) = u2,

u1(x0,− h0(x0)
2 ) = −xe1

x0−xi
xe0−xi

∂u0(x0,−h0(x0)/2)
∂x0

+ h1(x0)
2

∂u0(x0,−h0(x0)/2)
∂z0

,

u1(x0, h0(x0)
2 ) = −xe1

x0−xi
xe0−xi

∂u0(x0,h0(x0)/2)
∂x0

− h1(x0)
2

∂u0(x0,h0(x0)/2)
∂z0

,

(34)

w0(x0,− h0(x0)
2 ) = − u1

2
dh0(x0)

dx0
,

w0(x0, h0(x0)
2 ) = u2

2
dh0(x0)

dx0
,

w1(x0,− h0(x0)
2 ) = −xe1

x0−xi
xe0−xi

∂w0(x0,−h0(x0)/2)
∂x0

+ h1(x0)
2

∂w0(x0,−h0(x0)/2)
∂z0

+ u1
2 {

xe1
xe0−xi

dh0(x0)
dx0

− dh1(x0)
dx0
},

w1(x0, h0(x0)
2 ) = −xe1

x0−xi
xe0−xi

∂w0(x0,h0(x0)/2)
∂x0

− h1(x0)
2

∂w0(x0,h0(x0)/2)
∂z0

− u2
2 {

xe1
xe0−xi

dh0(x0)
dx0

− dh1(x0)
dx0
}.

(35)
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Now, one can turn to solving Equations (19) and (29). Solving the first equation in (29) with
boundary conditions from (34) and taking into account that p0 is independent of z0, one
finds that

u0(x0, z0) = u1 + ( z0
h0

+ 1
2 )(u2 − u1) + (z2

0 −
h2

0
4 ) 1

2µ
dp0
dx0

. (36)

An asymptotic expansion of the continuity equation in α produces Equation (33) and
a similar equation ∂u1∗

∂x0
− xe1

xe0−xi

∂u0
∂x0

+ ∂w1∗
∂z0
− h1

h0

∂w0
∂z0

= 0 for u1∗ and w1∗. Let us integrate
Equation (33) with respect to z0 from −h0/2 to z0 which leads to

w0(x0, z0) = − u1
2

dh0
dx0
−

z0∫
−h0/2

∂u0
∂x0

dz0. (37)

A similar analysis for w1∗ produces the expression

w1∗(x0, z0) = − u1
2 ( dh1

dx0
− xe1

xe0−xi

dh0
dx0

)−
z0∫

−h0/2
{ ∂u1∗

∂x0
+ [ h1

h0
− xe1

xe0−xi
] ∂u0

∂x0
}dz0. (38)

However, the solution to the latter equation does not represent a significant interest as w1∗
is not involved in any relationships for the first-order approximations of functions p, u,
etc., and it will not be considered in detail.

Using (36) in (37), one obtains

w0(x0, z0) = − u1
2

dh0
dx0

+ (z2
0 −

h2
0

4 ) u2−u1
2h2

0

dh0
dx0

+ (z3
0 +

h3
0

8 ) 1
3µh0

dh0
dx0

dp0
dx0

−(z3
0 −

3h2
0z0
4 − h3

0
4 ) 1

6µh2
0

d
dx0

(h2
0

dp0
dx0

).

(39)

To show that this expression for w0 satisfies the second boundary condition from (35) at
z0 = h0/2, it is sufficient to use the Reynolds equation of order zero (see below Equation (44)).

Now, let us determine u1. Keeping in mind that p0 and p1∗ are independent of z0 and
using the third equation in (29) and the third and fourth boundary conditions in (34) as
well as the representation of u1∗ from (26), one obtains

u1(x0, z0) = xe1
x0−xi
xe0−xi

dh0
dx0

(z0
u2−u1

h2
0

+ h0
4µ

dp0
dx0

)− h0h1
4µ

dp0
dx0

+ (z2
0 −

h2
0

4 ) 1
2µ

dp1
dx0

− 3λ2µp
µ2

dp0
dx0
{ 3

2 (z
2
0 −

h2
0

4 )( u2−u1
h0

)2 + (z3
0 +

h3
0

8 ) u2−u1
h0

1
µ

dp0
dx0
− (z0 +

h0
2 ) u2−u1

h0

h2
0

4µ
dp0
dx0

+(z4
0 −

h4
0

16 )
1

4µ2 (
dp0
dx0

)2} − z0(u2 − u1)
h1
h2

0
+

λµp
2α0µ (z

2
0 −

h2
0

4 ){(u2 − u1)
2 1

h3
0

dh0
dx0

+ u1+u2
2

1
µ

d2 p0
dx2

0
− h2

0
4µ2

dp0
dx0

d2 p0
dx2

0
− h0

4µ2
dh0
dx0

( dp0
dx0

)2}+ Re0
α0µ{−

u2−u1
4h0

[(z4
0 −

h4
0

16 )
u2−u1

6h2
0

+(z3
0 +

h3
0

8 ) u1+u2
3h0

+ (z2
0 −

h2
0

4 ) 3u1+u2
4 − (z0 +

h0
2 )h0

u1+u2
12 )] dh0

dx0
+ [(z5

0 +
h5

0
32 )

u2−u1
15h0

+(z4
0 −

h4
0

16 )
u1+u2

12 − (z2
0 −

h2
0

4 )h2
0

5u1+u2
24 − (z0 +

h0
2 )h3

0
u2−u1

240 ] 1
4µ

d2 p0
dx2

0

+[−z3
0 −

3z2
0h0
2 +

z0h2
0

4 +
3h3

0
8 ] u1

12
1
µ

dh0
dx0

dp0
dx0

+ [
z6

0
45 +

z3
0h3

0
18 +

z2
0h4

0
16 −

z0h5
0

72 −
23h6

0
1440 ]

1
8µ2

dp0
dx0

d2 p0
dx2

0

+[(z0 +
h0
2 )4 − h3

0(z0 +
h0
2 )] h0

96µ2
dh0
dx0

( dp0
dx0

)2}.

(40)
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5. Reynolds Equations and Their Analysis

Based on the above analysis, let us derive the zero- and first-order Reynolds equations.
Integrating the continuity Equation (2) with respect to z from −h(x)/2 to h(x)/2, using
the boundary conditions (7) and (8) as well as changing the order of integration and
differentiation leads to the equation

d
dx

h/2∫
−h/2

u(x, z)dz = 0, (41)

which will lead to the necessary Reynolds equations. Using (14) and the asymptotic
representations of u from (26) and h from (27) and (28) and expanding (41) in α� 1, one
derives the zero-order Reynolds equation

d
dx0

h0/2∫
−h0/2

u0(x0, z0)dz0 = 0, (42)

and the first-order Reynolds equation

d
dx0
{

h0/2∫
−h0/2

u1∗(x0, z0)dz0 +
h1
h0

h0/2∫
−h0/2

u0(x0, z0)dz0} = 0. (43)

Substituting the expression for u0 from (36) into (42) leads to the zero-order Reynolds
equation which is just the traditional Reynolds equation for a Newtonian fluid

d
dx0
{ h3

0
12µ

dp0
dx0
− u1+u2

2 h0} = 0. (44)

Similarly, substituting u0, u1, and u1∗ from (36), (40), and (26) into (42), one derives the
first-order Reynolds equation

d
dx0
{ h3

0
12µ

dp1
dx0
− u1+u2

2 h1 + xe1
x0−xi
xe0−xi

h3
0

12µ
d2 p0
dx2

0
+

h1h2
0

4µ
dp0
dx0
− 3λ2µp

4µ2 h0
dp0
dx0

[(u2 − u1)
2

+
h4

0
20µ2 (

dp0
dx0

)2] +
λµph3

0
12α0µ [

(u2−u1)
2

h3
0

dh0
dx0

+ u1+u2
2

1
µ

d2 p0
dx2

0
− h2

0
4µ2

dp0
dx0

d2 p0
dx2

0
− h0

4µ2
dh0
dx0

( dp0
dx0

)2]

− Re0
16α0µ [

(u2−u1)(3u2+7u1)
15 h2

0
dh0
dx0

+ u2+11u1
90

h5
0

µ
d2 p0
dx2

0

+ u1
3

h4
0

µ
dh0
dx0

dp0
dx0
− 3h7

0
140µ2

dp0
dx0

d2 p0
dx2

0
− h6

0
20µ2

dh0
dx0

( dp0
dx0

)2]} = 0,

(45)

which takes into account the presence of polymeric additive in the lubricant.
Now, let us determine the boundary and additional conditions for p0 and p1. Substi-

tuting the representation for p(x) from (26) in (9) and expanding them in α � 1 leads to
the boundary conditions on p0 and p1 in the form

p0(xi) = p0(xe0) = 0, dp0(xe0)
dx0

= 0, (46)

p1(xi) = p1(xe0) = 0, dp1(xe0)
dx0

= −xe1
d2 p0(xe0)

dx2
0

. (47)

Let us introduce dimensionless variables (16) in (10) which will result in the equation

xe∫
xi

{p(x)− ετzz(x, h(x)
2 )}dx = P. (48)
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Taking into account that α � 1 and that τzz0 = 0 (see (30) and (31)), and taking into
account (14), (24) and (25), and expanding this integral condition in α� 1 and integrating
by parts produces equations

xe0∫
xi

p0(x0)dx0 = P, (49)

xe0∫
xi

p1(x0)dx0 = 0. (50)

Now, one can finally formulate the specific boundary value problems for the zero-
order Reynolds equation, i.e., for the given values of Re, u1, u2, P, and xi, one needs to
solve Equations (44), (46) and (49), and the first equation in (28) for p0(x0), h0(x0), he0,
and xe0 while for the first-order Reynolds equation for the given values of Re, u1, u2, P, xi
and main solution p0(x0), h0(x0), he0, and xe0, one needs to solve Equations (45), (47)
and (50), and the second equation in (28) for p1(x0), h1(x0), he1, and xe1. Let us use the
dimensionless variables (16) more convenient for the analysis of hydrodynamic lubrication
problems [29] by assuming that

{a, c0, c1} = {xi, xe0, xe1}, Lx = 2Re
θ , Lz = h0e,

Ux = u1+u2
2 , Uz =

u1+u2
2

h0eθ
2Re

, u′1 = 1− s0
2 , u′2 = 1 + s0

2

(51)

and
{F′f r−, F′f r+} =

1
P{Ff r−, Ff r+}, E′ = 1

P(u1+u2)
E,

Q′ = 2
(u1+u2)h0e

Q, N′1 = 2h0e
µ∗(u1+u2)

N1, θ2 = P
3πµ∗(u1+u2)

, γ0 = θ2 he0
2Re

,
(52)

Here, θ is a dimensionless constant dependent on some of the problem input data, a
and c are the dimensionless coordinates of the contact inlet and exit points, respectively,
c = c0 + αc1 + . . ., s0 is the slide-to-roll ratio, γ0 is the main term of the dimensionless
lubrication film thickness at the exit from the contact, Q is the lubricant volume flux through
the gap between the contact solids, N1 is the additional pressure which in the dimensional
form is given by N1 = τxx − τzz, Ff r− and Ff r+ which are the friction forces acting on
the surfaces of the two cylinders, respectively, which in the dimensional form are equal

to Ff r± =
xe∫
xi

τxz(x,±h(x)/2)dx, while E is the loss of energy in the contact, which in the

dimensional form is E =
xe∫
xi

dx
h/2∫
−h/2

τxz(x, z) ∂u(x,z)
∂z dz. In the dimensionless form, these

formulas have the following form (primes are omitted)

Ff r± = 1
6πγ0θ {

c0∫
a

τxz0(x0,± h0(x0)
2 )dx0

+α
c0∫
a
[τxz1∗(x0,± h0(x0)

2 ) + c1
c0−a τxz0(x0,± h0(x0)

2 )]dx0}+ . . . ,

(53)

E = 1
12πγ0θ {

c0∫
a

dx0

h0(x0)/2∫
−h0(x0)/2

τxz0(x0, z0)
∂u0(x0,z0)

∂z0
dz0

+α
c0∫
a

dx0

h0(x0)/2∫
−h0(x0)/2

[τxz0(x0, z0)
∂u1∗(x0,z0)

∂z0

+τxz1∗(x0, z0)
∂u0(x0,z0)

∂z0
+ c1

c0−a τxz0(x0, z0)
∂u0(x0,z0)

∂z0
]dz0}+ . . . ,

(54)
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Q(x0) = h0(x0)
1/2∫
−1/2

u0(x0, z)dz + α{h1(x0)
1/2∫
−1/2

u0(x0, z)dz

+h0(x0)
1/2∫
−1/2

u1(x0, z)dz}+ . . . ,

(55)

N1 = τxx(x, z)− τzz(x, z) = τxx0(x0, z0) + α[τxx1∗(x0, z0)− τzz1∗(x0, z0)] + . . . , (56)

he = 1 + αhe1 + . . . (57)

Obviously, Q(x0) = const, i.e., it is independent of x0.
In these dimensionless variables, the small parameter ε involved in (23) is determined

as follows ε = γ0
θ (see (51) and (52)).

By introducing the dimensionless variables from (52), one obtains the following
dimensionless problems for the Reynolds equation of the zero-order

h3
0

12µ
dp0
dx0

= h0 − 1, p0(a) = p0(c0) = 0,

γ0(h0 − 1) = x2
0 − c2

0,
c0∫
a

p0(x0)dx0 = 6πγ2
0.

(58)

and the following dimensionless problem for the Reynolds equation of the first-order

d
dx0
{ h3

0
12µ

dp1
dx0
− h1 + c1

x0−a
c0−a

h3
0

12µ
d2 p0
dx2

0
+

h1h2
0

4µ
dp0
dx0
− 3λ2µp

4µ2 h0
dp0
dx0

[s2
0 +

h4
0

20µ2 (
dp0
dx0

)2]

+
λµph3

0
12α0µ [

s2
0

h3
0

dh0
dx0

+ 1
µ

d2 p0
dx2

0
− h2

0
4µ2

dp0
dx0

d2 p0
dx2

0
− h0

4µ2
dh0
dx0

( dp0
dx0

)2]− Re0
16α0µ [

2s0(5−s0)
15 h2

0
dh0
dx0

+ 12−5s0
90

h5
0

µ
d2 p0
dx2

0
+ 2−s0

6
h4

0
µ

dh0
dx0

dp0
dx0
− 3h7

0
140µ2

dp0
dx0

d2 p0
dx2

0
− h6

0
20µ2

dh0
dx0

( dp0
dx0

)2]} = 0,

h1(x0) = he1 +
2c1

c0−a [h0 − 1 + a(c0−x0)
γ0

],

p1(a) = p1(c0) = 0, dp1(c0)
dx0

= −c1
d2 p0(c0)

dx2
0

.

(59)

Equation (58) describe the lubrication process by a Newtonian fluid [13,29] and their
solution has the form

p0(x0) = 12µγ2
0{K2(x0)− γ0K3(x0)}, (60)

where the unknown constants γ0 and c0 satisfy the following system of algebraic equa-
tions [13,29]

K2(c0)− γ0K3(c0) = 0, µ{K2(c0)− γ0K3(c0)} = π
2 . (61)

Double integration of the Reynolds equation from (59) with its boundary and addi-
tional condition leads to the solution
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p1(x0) = 12µ{3γ3
0[γ0K4(x0)− K3(x0)]he1 − 2c0c1γ2

0(3γ0K4(x0)− 2K3(x0))

+
9λ2µp

5µ [(5s2
0 + 36)γ4

0K4(x0)− γ5
0(5s2

0 + 108)K5(x0) + 108γ6
0K6(x0)− 36γ7

0K7(x0)]

+
λµp

12α0µ [2c0γ2
0(s

2
0 + 12)K3(x0)− (s2

0 + 12)γ2
0L3(x0) + 72γ3

0(L4(x0)− γ0L5(x0))]

− Re0
16µα0

[
4c0(−s2

0+12)
15 γ2

0K3(x0) +
2(s2

0+
12
7 )

15 L1(x0) +
8
35 γ0L2(x0)−

72γ2
0

35 L3(x0)]},

(62)

where the unknowns c1 and he1 are determined from the system of two linear algebraic
equations

12µ{3γ3
0[γ0K4(c0)− K3(c0)]he1 − 2c0c1γ2

0(3γ0K4(c0)− 2K3(c0)) +
9λ2µp

5µ [(5s2
0

+36)γ4
0K4(c0)− γ5

0(5s2
0 + 108)K5(c0) + 108γ6

0K6(c0)− 36γ7
0K7(c0)]

+
λµp

12α0µ [2c0γ2
0(s

2
0 + 12)K3(c0)− (s2

0 + 12)γ2
0L3(c0) + 72γ3

0(L4(c0)− γ0L5(c0))]

− Re0
16µα0

[
4c0(−s2

0+12)
15 γ2

0K3(c0) +
2(s2

0+
12
7 )

15 L1(c0) +
8

35 γ0L2(c0)−
72γ2

0
35 L3(c0)]} = 0,

(63)

12µ{3γ3
0[γ0K4(c0)− K3(c0)]he1 − 2c0c1γ2

0(3γ0K4(c0)− 2K3(c0))

+
9λ2µp

5µ [(5s2
0 + 36)γ4

0K4(c0)− γ5
0(5s2

0 + 108)K5(c0) + 108γ6
0K6(c0)− 36γ7

0K7(c0)]

+
λµp

12α0µ [2c0γ2
0(s

2
0 + 12)K3(c0)− (s2

0 + 12)γ2
0L3(c0) + 72γ3

0(L4(c0)− γ0L5(c0))]

− Re0
16µα0

[
4c0(−s2

0+12)
15 γ2

0K3(c0) +
2(s2

0+
12
7 )

15 L1(c0) +
8

35 γ0L2(c0)−
72γ2

0
35 L3(c0)]} = 0,

(64)

In (60)–(64), the following integrals—Kn(x0), Ln(x0), and Kn(c0), Ln(c0), n ≥ 1—
are used

Kn(x) =
x∫
a

dx0
γn

0 hn
0 (x0)

= 1
2(n−1)(γ0−c2

0)
[ x
(γ0−c2

0+x2)n−1 − a
(γ0−c2

0+a2)n−1 ]

+ 2n−3
2(n−1)(γ0−c2

0)
Kn−1(x), n > 1,

Kn(c0) =
c0∫
a

Kn(x0)dx0 = c0Kn(c0)− 1
2 Ln(c0),

Ln(x) =
x∫
a

2x0dx0
γn

0 hn
0 (x0)

= 1
1−n [

1
(γ0−c+02+x2)n−1 − 1

(γ0−c2
0+a2)n−1 ], n > 1,

Ln(c0) =
c0∫
a

Ln(x0)dx0 = 1
1−n [Kn−1(c0)− c0−a

(γ0−c2
0+a2)n−1 ], n > 1.

(65)

The solution of the nonlinear system (61) for c0 and γ0 can be found iteratively using
Newton’s method. To start the iteration process, an initial approximation of the solution
should be chosen according to [13,29].

Therefore, the approach to solution of the problem is first to solve the system (61)
for γ0 and c0 and then to solve the linear system (63) and (64) for he1 and c1. Having the
values of γ0, he1, c0, and c1 allows to analytically calculate the functions of pressure p(x0)
and gap h(x0) as well as the exit lubrication film thickness he = 1 + αhe1 + . . . and the
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exit coordinate c = c0 + αc1 + . . . . In addition, from Formulas (53)–(56), one can find the
friction forces Ff r±, the energy loss E in the contact, the lubricant volume flux Q, and the
additional pressure N1.

Using integrals Kn, Kn, Ln, and Ln, the problem solution can be calculated analytically.
However, due to the fact that the formulas are sufficiently complex for manual calculations,
it is advisable to use some quadrature formulas (for example, the trapezoid rule) for
calculation of some of the integrals, for example, the integrals for Ff r±, E, etc.

6. Examples of Some Specific Lubrication Problem Solutions and Discussion

Now, let us consider some results which can be extracted from the obtained approxi-
mate solutions. It will always be assumed that µ = 1. The basic set the following values:
a = −10, Re = 0.01 m, P = 2× 104 N/m, µ∗ = 6× 10−3 N·s/m2, ρ = 800 kg/ m3, u1 = 0,
u2 = 10 m/s, ε = γ0/θ ≈ 0.0008, µp = 0.2, λ = 1, α0 = 1, and s0 = 2 will be taken. Below,
all figures are presented in the dimensionless variables.

Figure 2 represents the plots of contact pressure in the lubricated contact obtained
for different values of α0 and λ. For α0 = 1 and λ = 2, the pressure distribution is very
close to the one for the corresponding Newtonian fluid (see [13,29]). It is clear from these
graphs that the maximum of the contact pressure tends to increase with the growth in
α0 and λ, while the size of the contact region tends to decrease due to decrease in c (see
Figure 3). The variations in the contact pressure distribution compared to the corresponding
Newtonian one remain insignificant for small values of the mobility factor α0 even for a
relatively large lubricant relaxation time λ. However, for relatively large values of the
mobility factor α0, the former variations in pressure p(x) and exit coordinate c become
significant. Figure 4 shows the dependence of the exit coordinate c on the lubricant additive
viscosity µp, which qualitatively (being linear) resembles the dependence of c on λ from
Figure 3 which is nonlinear.

For α0 = 0, the Giesekus model becomes the convected Maxwell model and the value
of the exit coordinate c tends slightly to increase with increase in both λ and µp.

The dependence of the exit film thickness he on the lubrication relaxation time λ and
lubricant additive viscosity µp is represented in Figures 5 and 6, which show beneficial
(increasing) behavior of he with increase in α0, λ, and µp. The only difference is in whether
it happens linearly or nonlinearly. A similar behavior of the minimum lubrication film
thickness hmin is shown in Figures 7 and 8.

p(x)

x

Figure 2. Plots of contact pressure distributions p(x) for the basic set of input parameters and
different values of α0 and λ.
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Figure 3. Plots of the dependence of the relative lubricated contact exit coordinate c/c0 versus λ for
different values of α0.

Figure 4. Plots of the dependence of the relative lubricated contact exit coordinate c/c0 versus µp for
different values of α0.
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Figure 5. Plots of the dependence of the exit lubrication film thickness he versus λ for different values
of α0.

Figure 6. Plots of the dependence of the exit lubrication film thickness he versus µp for different
values of α0.



Mathematics 2023, 11, 4679 17 of 25

Figure 7. Plots of the dependence of the minimum lubrication film thickness hmin versus λ for
different values of α0.

Figure 8. Plots of the dependence of the minimum lubrication film thickness hmin versus µp for
different values of α0.

As it is clear from Figures 9 and 10, depending on the value of the mobility factor
α0, the friction force F+ may display an increasing or decreasing behavior with λ and
µp. Specifically, for smaller values of α0, the friction force F+ decreases with λ and µp,
while for larger values of α0, the friction force F+ monotonically increases with λ and µp.
A similar behavior exhibits the energy loss in the contact E presented in Figure 11. The fact
that the exit lubrication film thickness he always is greater than in the corresponding case
of a Newtonian fluid and that one can pick the mobility factor α0 value for which the
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friction force F+ and energy loss E are just a bit higher than in the case of a Newtonian
liquid provides an opportunity to optimize the lubricant design to increase lubrication
film thickness and, at the same time, to practically not increase the frictional and energy
losses. For example, for α0 = 1 and λ = 3, it is possible to achieve an increase in the
minimum lubrication film thickness hmin by about 2% while the friction F+ and energy E
losses would increase by about only 1% compared to the lubricant with the corresponding
Newtonian rheology.

Figure 9. Plots of the friction force F+ versus λ for different values of α0.

Figure 10. Plots of the friction force F+ versus µp for different values of α0.
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Figure 11. Plots of the contact energy loss E versus λ for different values of α0.

The behavior of the lubricant flux Q as a function of the lubricant relaxation time λ
and lubricant additive viscosity µp are depicted in Figures 12 and 13, and its behavior
resembles the behavior of the exit film thickness he from Figures 5 and 6.

Some graphs of the additional pressure distribution N1 versus x for z = 0 are presented
in Figures 14 and 15. In a sense, the behavior of N1(x, 0) resembles the behavior of p(x)
from Figure 2.

Figure 12. Plots of the lubricant volume flux Q versus λ for different values of α0.
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Figure 13. Plots of the lubricant volume flux Q versus µp for different values of α0.

Figure 14. The plots N1 is constructed at z = 0 and λ = 1 for different values of α0.
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x

Figure 15. The plots N1 is constructed at z = 0 and λ = 3 for different values of α0.

7. One Problem Generalization

In the above analysis, a lubrication problem for two parallel cylinders of the same
radius has been considered. Now, let us briefly consider the generalization of this problem
on the case of two parallel cylinders with different radii R1 and R2. Then, in the same
coordinate system as before, all equations of the problem formulation remain the same as
before except for the boundary conditions for the lubricant velocity components, which
now look as follows

u(x,−H1(x)) = u1, u(x, H2(x)) = u2, (66)

w(x,−H1(x)) = −u1
dH1(x)

dx , w(x, H2(x)) = u2
dH2(x)

dx , (67)

and the equilibrium condition

xe∫
xi

[p(x)− τzz(x, H2(x))]dx = P, (68)

where z = −H1(x) and z = H2(x) are the cylinder surfaces which are represented by
equations

Hi(x) = he
2 + x2−x2

e
2Ri

, i = 1, 2, h(x) = H1(x) + H2(x),

Hi(x) = hi0(x0) + αhi1(x0) + . . . , i = 1, 2, he = he0 + αhe1 + . . . ,
(69)

h0(x0) = h10(x0) + h20(x0) = he0 +
x2

0−x2
e0

2Re
,

h1(x0) = h11(x0) + h21(x0) = he1 +
xe1
Re
[ x0(x0−xi)

xe0−xi
− xe0],

(70)

where Re is the effective radius of the cylinders, 1/Re = 1/R1 + 1/R2.
The analysis of the system of these equations is conducted for α � 1 in the manner

similar to the one used above, but in (13), the variable z remained intact. The assumptions
(11) and (23) regarding α and λ1 remain the same. Then, using the same dimensionless
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variables as in (16) and asymptotic representations of solution components in which terms
proportional to h1 are omitted, one obtains Equations (29)–(32), in which terms proportional
to h1 are omitted. To derive the expressions for u0, w0, and u1, one needs to use asymptotic
boundary conditions (34) and (35) following from (66) and (67), in which h1(x0)

2 on the lower
and upper surfaces should be replaced by h11(x0) and h21(x0), respectfully.

After that, the expressions for u0, w0, and u1 have the form

u0(x0, z) = (u2h10+u1h20)
h0

+ (u2−u1)
h0

z + (z− h20)(z + h10)
1

2µ
dp0
dx0

, (71)

w0(x0, z) = −u1
dh10
dx0

+ (u1 − u2)
(z+h10)

2

2h2
0

dh20
dx0

+ (u1 − u2)
(z+h10)(z−h10−2h20)

2h2
0

dh10
dx0

+((z + h10)(z− h10 − 2h20)
dh10
dx0
− (z + h10)

2 dh20
dx0

) 1
4µ

dp0
dx0

+(z + h10)
2(z− h10 − 2h20)

1
6µ

d2 p0
dx2

0
,

(72)

u1(x0, z) = xe1
(x0−xi)
(xe0−xi)

[(h20 − z) dh10
dx0

+ (h10 + z) dh20
dx0

] 1
2µ

dp0
dx0

+[(z− h20)h11 − h21(z + h10)]
1

2µ
dp0
dx0

+ (u2 − u1)xe1
(x0−xi)
(xe0−xi)

[(z− h20)
dh10
dx0

+(h10 + z) dh20
dx0

] 1
h2

0
+ (z− h20)(z + h10)

1
2µ

dp1
dx0
− (u2 − u1)(zh1 + h12h10 − h11h20)

1
h2

0

− 3λ2µp

µ2
dp0
dx0
{3(u2 − u1)

2(z− h21)(z + h11)
1

2h2
0
+ (u2 − u1)(z− h21)(z + h11)(z

+ h11−h21
2 ) 1

h0

1
µ

dp0
dx0

+ (z− h21)(z + h11)(z2 − h11 + h21 +
h2

11+h2
21

2 ) 1
4µ2 (

dp0
dx0

)2}

+
λµp
2α0µ (z− h20)(z + h10){(u2 − u1)

2 1
h3

0

dh0
dx0

+ u1+u2
2

1
µ

d2 p0

dx2
0
− h2

0
4µ2

dp0
dx0

d2 p0

dx2
0

− h0
4µ2

dh0
dx0

(
dp0
dx0

)2}+ Re0
α0µ (z− h20)(z + h10){−(u2 − u1)

1
24h3

0
[(u2 − u1)[3h2

10

+3(z + h20)h10 + z2 + h20z + h2
20] + 4u1h0(z + 2h10 + h20)]

dh0
dx0

+[−(z + 2h10 + h20)
h0u1

3 + 1
4 (u1 − u2

3 )[3h2
10 + 3(z + h20)h10 + z2 + zh20 + h2

20]

−(u1 − u2)(2h2
10 + 2(z + h20)h10 + z2 + h2

20)(z + 2h10 + h20)
1

15h0
] 1

4µ
d2 p0

dx2
0

−u1(z + 2h10 + h20)
1

12µ
dh0
dx0

dp0
dx0

+ [4z4 + 4(5h10 + h20 − 3h0)z3 + (40h2
10

+4(5h20 − 12h0)h10 + 4h2
20 − 12h20h0 + 15h2

0)z
2

+(40h3
10 + 8(5h20 − 9h0)h2

10 + (45h2
0 − 48h20h0 + 20h2

20)h10 + 4h3
20 − 12h2

20h0

+15h2
0h20)z + 20h4

10 + 8(−6h0 + 5h20)h3
10 + (45h2

0 − 72h20h0 + 40h2
20)h

2
10

+(45h2
0h20 − 48h2

20h0 + 20h3
20)h10 + 4h4

20 − 12h3
20h0 + 15h2

20h2
0]

1
1440µ2

dp0
dx0

d2 p0

dx2
0

+[3h2
10 + 3(z + h20)h10 + z2 + h20z + h2

20]
h0

96µ2
dh0
dx0

(
dp0
dx0

)2}.

(73)
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The Reynolds equations of the first and second order are derived from the equation (for
comparison, see (41))

d
dx

H2∫
−H1

u(x, z)dz = 0. (74)

Using the obtained asymptotic solution representations, one derives the zero-order Reynolds
equation

d
dx0

h20∫
−h10

u0(x0, z)dz = 0, (75)

and the first-order Reynolds equation

d
dx0
{

h20∫
−h10

u1∗(x0, z)dz + h11u1 + h21u2} = 0. (76)

Substitution of the expressions for u0 and u1 from (71) and (73) into (75) and (76) leads
to precisely the same Reynolds Equations (44) and (45) with boundaries (46) and (47) and
additional conditions (49) and (50) derived for the case of cylinders of the same radius R;
however, in this case, 1/Re = 1/R1 + 1/R2. The rest of the analysis is identical with the
one conducted above for the case of cylinders of the same radius R.

Formulas for the friction forces Ff r± and energy loss E obviously become transformed
to the following ones

Ff r− =
xe∫
xi

τxz(x,−H1(x))dx,

Ff r+ =
xe∫
xi

τxz(x, H2(x))dx,

E =
xe∫
xi

dx
H2∫
−H1

τxz(x, z) ∂u(x,z)
∂z dz.

(77)

8. Conclusions

This study is concerned with the new asymptotic solution of the steady hydrodynamic
problem of lubrication of two rigid cylinders rolling and sliding over each other and then
being separated from each other by a non-Newtonian fluid described by the Geisekus
rheology. The problem is considered in the case when the lubricant mobility factor α,
lubricant relaxation time λ1, and characteristic dimensionless gap ε are of the same order of
magnitude. Using the modification of the regular perturbation method, it was possible to
simplify the original rheological equation of the Giesekus model and to obtain the first two
Reynolds equations for determining the main and first terms of the asymptotic expansion
of contact pressure with respect to small mobility factor α. The solutions of these equations
are obtained analytically. Using these solutions, the coordinate of the exit point from
the contact and the exit lubrication film thickness were determined. After that, it was
numerically investigated the influence of the problem input parameters on contact pressure,
lubrication film thickness, lubricant flux, friction force, contact energy loss, etc. For α = 0,
the Giesekus rheology turns into the convected Maxwell one. Graphs show that as the
mobility factor α increases, the problem characteristics significantly deviate from the ones
for the convected Maxwell case. Also, the solution demonstrates a significant dependence
on the lubricant relaxation time. Therefore, the conclusion can be drawn that neglecting to
take into account the lubricant mobility factor and lubricant relaxation time can lead to a
significantly distorted picture of what is going on in a lubricated contact. The relatively
simple solution obtained in the study would allow us to take into account the details of a
complex rheology of lubricating oils.
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