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Abstract: The flexible job shop scheduling problem (FJSP), one of the core problems in the field of
generative manufacturing process planning, has become a hotspot and a challenge in manufacturing
production research. In this study, an improved self-learning genetic algorithm is proposed. The
single mutation approach of the genetic algorithm was improved, while four mutation operators
were designed on the basis of process coding and machine coding; their weights were updated
and their selection mutation operators were adjusted according to the performance in the iterative
process. Combined with the improved population initialization method and the optimized crossover
strategy, the local search capability was enhanced, and the convergence speed was accelerated. The
effectiveness and feasibility of the algorithm were verified by testing the benchmark arithmetic
examples and numerical experiments.

Keywords: self-learning genetic algorithm; flexible job shop scheduling; self-learning variational strategy
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1. Introduction

The flexible job shop problem is an extension of the traditional job shop scheduling
problem [1]. It allows an operation to be handled by any processing machine of a given
set. The flexible shop floor scheduling problem was first proposed by Brucker [2]. The
flexible job shop problem is one of the most important decision-making processes on the
manufacturing floor. The flexible job shop scheduling problem (FJSP) is a hot issue in
the current research in the field of intelligent manufacturing and industrial automation,
which is widely used in discrete manufacturing and process industries. Solving the flexible
workshop scheduling problem can help the enterprise to command, control, and regulate
the effective resources reasonably and improve economic efficiency [3]. In conclusion, it is
meaningful to explore and solve the FJSP.

Intelligent optimization algorithms currently in common use for solving FJSPs in-
clude the genetic algorithm, the ant colony optimization algorithm, the particle swarm
optimization algorithm, the gray wolf algorithm, the taboo search algorithm, etc. With
the introduction of the genetic algorithm (GA), the use of the GA for solving FJSPs has
evolved. A study by Amjad et al. [4] showed that a large number of studies on the FJSP
problem in recent years have used the GA for solving the problem, and in particular, its
excellent global optimization capability and strong robustness make the GA one of the
best algorithms for dealing with global problems. Xiaoyu Gao et al. proposed a genetic
algorithm based on reinforcement learning that used Q-learning to self-learn crossover
probabilities and improve the generalization ability of the genetic algorithm to achieve a
solution to the large-scale flexible job shop scheduling problem [5].

Most of the current optimization algorithms are uncertain and random, and the FJSP
features are weakly connected and have poor stability. Therefore, in this paper, using
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the improved genetic algorithm to solve the flexible workshop scheduling problem, a
self-learning mutation operator was designed, and four mutation schemes were designed
for the characteristics of the flexible job shop scheduling problem. The feasibility and
effectiveness of the proposed algorithm were optimized through algorithm testing and
numerical experiments.

The rest of the paper is organized as follows. Section 2 presents the literature review.
Section 3 describes the definition of the problem. In Section 4, the improved self-learning
genetic algorithm is proposed. Section 5 analyzes the solution results of the improved
self-learning genetic algorithm on various international benchmark instances of the FJSP.
Section 6 summarizes the conclusions of this paper and presents the research directions for
future work.

2. Literature Review

To solve the FJSP, scholars have proposed various algorithms from different perspec-
tives. However, these algorithms have some common drawbacks, such as the large search
space and inability to solve quickly.

Zhang Guohui et al. designed an initialization method combining global search, local
search, and random generation to improve the quality of the initial solutions of populations
and accelerate the convergence of genetic algorithms [6]; Taillard E D applied the forbidden
search global optimization technique to the job shop scheduling problem, which provides
an optimal solution in polynomial mean time in experiments but requires an exponential
computational time in specific problems [7]; Holsapple C W et al. proposed a hybrid
scheduling production algorithm based on artificial intelligence using genetic algorithms
and domain knowledge fused with filtering algorithms for optimal searching [8]; Nouiri
M et al. proposed an efficient particle swarm optimization algorithm to distribute PSOs
into a multi-agent system (MAS) to decentralize the decision-making and involve each
entity in the overall problem solution [9]. Caldeira R H et al. investigated a Pareto-based
discrete Jaya algorithm to solve the flexible shop floor scheduling problem, incorporating
problem-specific domain local search techniques into the approach and proposing a dy-
namic mutation operator and an improved congestion distance metric to enhance diversity
in the search process [10]. Wagner J et al. combined the policy gradient algorithm with a
participant–evaluator architecture and interpreted the production system as a multi-agent
system, which experimentally generated plans that performed better than scheduling rules
when tested in different production environments [11]. Guo Q. et al. designed a matrix
coding-based approach to solve the flexible shop floor scheduling problem to improve
the genetic algorithm [12]. Tang et al. proposed a hybrid algorithm by combining chaotic
particle swarm optimization with the genetic algorithm in their paper [13]. Zhang Xiaox-
ing et al. proposed an improved hybrid frog jumping algorithm, which avoided illegal
solution generation and the trimming of the algorithm and accelerated the algorithm’s
optimization rate by designing a local updating strategy based on the MPX (Maximum
Preserved Crossover) operation and the gene shifting operation of the uniparental genetic
algorithm [14].

Tengfei Zhang et al. discussed an improved genetic algorithm for solving the flexible
job shop scheduling problem, which greatly improved the quality of the solution and
the speed of obtaining the optimal solution by improving the intersection and mutation
methods of generating machine and process codes, and they adopted a special method to
prevent the algorithm from falling into local optimization in multiple stages [15]. Wang
Jia-yi et al. improved the crossover operator and optimized the variation operator on the
basis of the process from multiple parents and the crossover of the machine layer, and
they confirmed the effectiveness of the algorithm after comparison [16]. Wang Su et al.
combined the POS algorithm with the GA algorithm, borrowed the rewarming strategy
in the SA algorithm, and replaced the population of a specific number of generations in
the GA algorithm with the individual extreme value population generated by the PSO
algorithm, which introduced the adaptive control factor and the permutation operation,
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thus effectively solving the problem caused by the random generation of the initial pop-
ulation. Abd El-Wahed Khalifa et al. proposed a novel method called multistage fuzzy
binding to solve the problem of job processing time, weight, and break-down machine
characterized by piecewise quadratic fuzzy numbers [17]. Majumder et al. proposed a
varying population genetic algorithm with indeterminate crossover (VPGAwIC). A new
strategy for determining chromosome lifespan was defined. The age of each chromosome
increases with the generations. A chromosome was considered dead and removed from
the population if its age was greater than its lifespan [18].

Since the traditional genetic algorithm has low search efficiency and is not easy to
converge when solving the flexible workshop scheduling problem, this paper constructed
a flexible workshop scheduling model with the goal of minimizing the maximum com-
pletion time on the basis of the above research, combined with the actual situation and
its characteristics in the scheduling process of the actual flexible production workshop.
A combination of global selection, local selection, and random selection was adopted in
the process of population initialization to generate high-quality initial populations in the
initialization stage. A double-layer integer-coded chromosome was adopted; a process
code and a machine code based on process arrangement constraints and machine selection
were designed, respectively; a selection operation combining the roulette selection strategy
and elite retention strategy was designed; a self-learning mutation strategy based on a
scoring mechanism was designed; and four kinds of mutation schemes were designed
for the mutation operation to improve the population searching ability; and finally, the
updated optimal fitness values of the offspring and the parent generation were selected for
the next generation. In this way, the solution space was searched effectively.

3. Problem Description
3.1. Flexible Shop Floor Scheduling Model

Flexible job shop scheduling is defined as N workpieces J = {J 1, J2, J3, . . . . . . , Jn},
which are processed sequentially on M machines M = {M 1, M2, M3, . . . . . . , Mm}; each
workpiece Ji contains Oi j(j = 1, 2, . . . . . . , N) processes, and the processing time of each pro-
cess of each workpiece on each machine is known. The task of flexible job shop scheduling
is to determine the order in which the workpieces are to be processed on each machine in
order to optimize the specified performance metrics. The symbols are defined as shown in
Table 1.

Table 1. Definition of symbols.

n Total number of workpieces
m Total number of machines

i, h Workpiece number
j, k Work sequence number
z Machine number

Oij Workpiece i’s j-th process
Mij Optional machines for process Oij
Sij Start time of process Oij
Cij Completion time of process Oi and process Oij

makespani Completion time of workpiece i
Makespan Maximum completion time

Xijz
Whether process Oij is machined on machine z is a 0–1 variable, and machining
on z is 1

Gijhk Sequence of process Oij and process Ohk, as 0–1 variables, with ij preceded by 1
Tijz Machining time of process Oij on machine z

3.2. Assumptions of the Problem

The basic assumptions for flexible job shop scheduling are as follows:

1. In the same workpiece process, there is a sequential constraint relationship.
2. The workpieces at the beginning of the moment can all be processed.
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3. The workpiece can only be processed on one machine at the same time.
4. Each machine can be added to process any process, but at the same time, a machine

can only process one process.
5. Until the workpiece processing is complete, the machine cannot be interrupted.
6. Each workpiece processing order is known.
7. The processing time of each workpiece process is determined by the corresponding

processing machine.
8. Random factors, such as machine breakdowns, are not considered.

Because the flexible shop scheduling problem design’s objective function is to mini-
mize the maximum completion time, its flexible shop scheduling model is as follows:

Makespan = min{max{makespan i}}
s.t.

Cij−Sij = Tijz (1)

n

∑
z=1

Xijz = 1 (2)

Sij + XijzTijz < Cij (3)

Cij ≤ makespan (4)

XhkzChk + M(Ghkij − 1) ≤ XijzSij (5)

Cij ≤ Si(j+1) (6)

Sij ≥ 0, Tijz ≥ 0, Cij ≥ 0 (7)

Equation (1) means that the process cannot be interrupted after the start of the process;
Equation (2) means that any process is processed only once on the machine; Equation (3)
means that the start time of any process is not greater than the completion time; Equation (4)
means that the completion time of any process is not greater than the maximum completion
time; Equation (5) means that only one process can be processed by each machine at the
same time; Equation (6) means that the completion time of the previous process for any
workpiece is not greater than the start time of the next process; and Equation (7) means
that the start, processing, and completion times for any process are all non-negative.

4. Improving Self-Learning Genetic Algorithms
4.1. Traditional Genetic Algorithms
4.1.1. The Basic Idea of Traditional Genetic Algorithm

The genetic algorithms originated from computer simulation studies performed on
biological systems. It is a stochastic global search and optimization method developed
to mimic the mechanism of biological evolution in nature, drawing on Darwin’s theory
of evolution and Mendel’s doctrine of genetics. Its essence is an efficient, parallel, global
search method that automatically acquires and accumulates knowledge about the search
space during the search process and adaptively controls the search process to find the
best solution.

4.1.2. Traditional Genetic Algorithm Process

Its specific algorithmic flow is shown in Figure 1:
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→ Step 1: Set the maximum number of iterations (Max_Itertions) to 0, set the maxi-
mum number of evolutionary generations to Max, and randomly generate Pop_size
individuals as the initial population P.

→ Step 2: Calculate the fitness of each individual in population P.
→ Step 3: Apply the selection operator to the population. The purpose of selection is to

pass optimized individuals directly to the next generation or produce new individuals
by pairwise crossover and then pass them to the next generation. Selection operation
is based on the evaluation of the fitness of the individuals in the population.

→ Step 4: Apply the crossover operator to the population. The crossover operator plays
a central role in genetic algorithms.

→ Step 5: Apply the variation operator to the population. That is, it is a change in the
gene values on certain loci of the individual strings in the population. The population
P is selected and crossed over and the mutation operator is applied to obtain the next
generation’s population P(Max_Itertions + 1).

→ Step 6: Determine whether the conditions for the end of the algorithm are met; if
they are not satisfied, continue to execute steps 2–5, and if they are satisfied, end the
algorithm and output the results.
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4.2. Improved Self-Learning Genetic Algorithm
4.2.1. Chromosome Coding and Decoding

Transforming the solution of a scheduling problem into a solution of a chromosome
capable of genetic manipulation is called encoding. There are various methods of encoding
chromosomes for genetic algorithms, such as floating-point encoding, binary encoding,
integer encoding, symbolic encoding, matrix encoding, and so on [19]. The method of
encoding the chromosomes directly affects the overall efficiency of the algorithm and is the
key to the genetic algorithm.

The flexible shop scheduling problem contains two word problems: machine selection
and process sequencing. In this paper, we adopted a two-layer integer coding approach
based on process ordering constraints and machine selection constraints. These were
machine code MS and process code OS; machine code determines the machine for the
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process selection, and process code determines the sequential processing order. Combining
the two encodings is a feasible solution to the flexible shop scheduling problem and
excludes the problem of chromosomes that are not feasible solutions. Machine coding and
process coding are shown in Figure 2.
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Machine Selection Code (MS): We used integer values to represent the selection of
machines, which were arranged in the order of the workpieces’ operations. In Figure 2,
O11 pointing to 4 means that the first operation of workpiece 1 was machined on the
fourth machine in the set of selectable machines, and O12 pointing to 1 means that the
second operation of workpiece 1 was machined on the first machine in the set of selectable
machines. The length of the machine code was determined by the number of processes of
all the workpieces and was the sum of all the processes, so the length was L = ∑ Oij.

Operation Selection Code (OS): We used the integer value to indicate the workpiece
operation’s processing order according to the number of times the value was indicated for
the current workpiece operations number, as shown in the figure; the operation code in the
first occurrence of 2 was O21, and the operation code in the number 2 s occurrence was O22.
The length of the operation code length by the number of all the workpieces of the process
was determined by the length of the machine code for the same length, given as L = ∑ Oij.

OS encoding and MS encoding are of equal length, both being L. This encoding ensures
that the solutions generated by subsequent strategies, such as crossover, mutation, and
local search, are still feasible and are simple and flexible without any requirements on the
length of the process or the number of artifacts. On the other hand, individual operations
on one layer do not affect the other layer, providing strong parallel performance.

The solution is a combination of machine coding and process coding, and the solution
can be decoded as semi-active, active, non-delayed, or hybrid scheduling. The goal of this
paper was to minimize the maximum completion time, so active scheduling was used. The
specific steps for decoding were as follows:

→ Step 1: Generate machining machines for each operation based on machine codes;
→ Step 2: Determine the set of workpieces for each machining machine;
→ Step 3: Determine the set of machining machines for each workpiece;
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→ Step 4: Determine an allowable start time for each operation;
→ Step 5: Check the idle time of the machining machines for each operation;
→ Step 6: Generate the set of start times and finish times for each workpiece.

4.2.2. Fitness Function

The fitness function is an important criterion for judging chromosomes and is used to
compare the advantages and disadvantages of individual chromosomes; it is an important
part of the genetic algorithm. In the workshop scheduling problem, with the goal of
minimizing the maximum completion time, the genetic algorithm usually adopts the
inverse of the chromosome decoding value as the fitness value, but the fitness values
of the chromosomes in the method are not very different; the individual chromosomes’
differences are not clearly expressed, which is not conducive to the subsequent application
of the fitness value. In this paper, the quotient of the function difference was used to solve
the fitness value. The formula is as follows:

F(i) =
fmax − fi

fmax − favg
(8)

fmax is the large maximum value of the completion time, fi is the completion time of
the current chromosome, and favg is the average chromosome completion time.

4.2.3. Population Initialization

In genetic algorithms, population initialization is a decisive step, and the quality of
the initial solution directly affects the distribution of the population in the whole search
space and the convergence speed of the algorithm. Previous studies have usually used
random initialization methods, which makes the solution quality low and often requires
more iterations to obtain a better-quality population; in addition, the program running
time is too long in the case of increasing problem size. Therefore, in this paper, the MS
codes were initialized by GLR, which is a combination of global selection, local selection,
and random selection [20] in a ratio of 3:1:1, and the OS codes were randomly generated.
Finally, the MS codes and OS codes were combined into chromosomes. Global selection
aims to ensure that all processing machines have the shortest processing time from a global
perspective; local selection aims to ensure that all processing machines have the shortest
processing time from the perspective of the independence of each workpiece; and random
selection aims to make the initial population distributed as much as possible throughout
the entire solution space to improve the diversity of the population. Generating individuals
in the initial population according to a certain ratio can significantly improve the quality of
chromosomes in the initial population.

4.2.4. Select of Operator

In genetic algorithms, selection operators select individuals on the basis of fitness. In
this paper, two selection operators were used. The first one was a selection method based
on the roulette algorithm, which selects each individual by the ratio of the fitness value
of each individual in the population to the total fitness of the population; this method can
better retain the individuals with higher fitness value, and at the same time, it also retains a
certain amount of diversity in the population. The other operation was a selection method
based on elite retention. Using this method, it is possible to retain individuals with good
fitness values in the parent generation in the offspring.

4.2.5. Crossover Operator

Crossover operations are a key step in biological evolution and can be used to model
the genetic manipulation of the genome. Specifically, a crossover operation is a random
combination of genetic information from two or more parents in a genetic algorithm to
produce a new offspring. The purpose of the crossover operation is to obtain an optimal
solution in a genetic algorithm, which allows the offspring to obtain the advantages of
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the parents and helps improve the performance of the offspring. The spatial search ability
of the genetic algorithm mainly relies on crossover operation, while traditional genetic
algorithms mostly rely on two parents to generate offspring, and there are situations in
which the final offspring has inferior advantages and disadvantages compared with the
parents. Therefore, in this paper, we improved on the POX crossover by comparing the
parent as well as the generated offspring after the crossover operation to produce the best
individual.

In this paper, for the process coding (OS), priority cross operation (POX) was used [21].
The POX cross-flow is shown in Figure 3. The basic flow of POX is shown in Algorithm 1:

Algorithm 1 Pseudo-code of the POX

1: The set of jobs is randomly divided into two groups, JOB1 and JOB2.
2: Any element of J1 belonging to P1 is appended to the same position of C1 and deleted in P1,
and any element belonging to P2 is appended to the same position of C2 and deleted in P2.
3: The remaining elements in P2 are sequentially appended to the remaining empty spaces in O1,
and the remaining elements in P1 are sequentially appended to the remaining empty spaces in the
remaining empty space in O2.
4: Evaluate populations P1, P2, C1, and C2.
5: Return the best individual.
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For the machine-coded MS, multipoint crossover is used as the crossover operator. In
this operator, r(r < L) positions are first selected. Then, two offspring codes are generated
by exchanging the positional elements of multiple-parent machine codes. Because each
gene in these two codes represents a machine selected by a fixed operation, the number of
operations does not change throughout the search. Simultaneously, the selected parents
are viable, and this crossover ensures that viable offspring are generated. The specific
operation is shown in Figure 4:
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4.2.6. Improving Self-Learning Variants

The mutation operation of genetic algorithms is a stochastic change technique in
which the values of some of the attributes of one or more individuals are altered in a
low-probability manner. The mutation operation can introduce new genetic traits to a
population, which can make the population differ from one individual to another, thus
serving to facilitate the population’s search for a better solution. Usually, mutation takes
the form of a swap mutation or an insertion mutation, but both of these methods drastically
change the order of the artifact process, resulting in the need to fix illegal loci during the run.
Therefore, this paper proposes a self-learning mutation operation and designed multiple
mutations to enhance the local search capability of the genetic algorithm, while the search
capability for the global optimal solution was also improved because of the existence of
multiple mutation operations, which change the previous method of single mutation. The
self-learning mutation operations were also designed. Four variant operations were de-
signed: the machine greedy variant [22], the machine random selection variant, the process
random multi-switching variant, and the process two-point variant. At the beginning of
the algorithm, the same weights were set for each of the four variations.

The choice of mutation mode is introduced by the following equation:

Pi =
wi

∑
i=1

wi
(9)
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wi is the weight of the mutation mode, and Pi is the probability of choosing the
mutation mode i. The variant method is determined by the weights; the higher the weight,
the higher the probability of choosing that variant method.

The mutation operator was designed as follows:
Machine greedy variant: Randomly select r positions from the machine code, and

select the machine with the shortest processing time for the current operation among the
selected positions.

Machine random selection variant: Randomly select r positions from the machine code,
and randomly select the machine in the selected position for which the current operation is
selectable for processing.

Process randomized multi-swap mutation: Select r positions from the process code,
disrupt the genes in the r positions, and then place the process code sequentially into the
process code again.

Process two-point mutation: Two genes with two digits different from the process
code are selected for exchange.

Whenever a mutation operation was performed, we made an assessment of the good-
ness of the mutation method; if the mutation pair was improved, the weight of the mutation
method was increased, and vice versa, if the mutation pair was worsened, the weight of
the mutation method is decreased; and at the same time, the upper and lower limits of the
weight were set to prevent the mutation method from converging to a single method. The
formula for adjusting the weights is as follows:

wi =

{
wi +

fi− fmin
fmin

i f (wi < wmax)

wi +
fi

fmin
i f (wi > wmin)

wi is the weight of the mutation mode, fi is the fitness value of the chromosome after
the mutation, fmin is the global chromosome optimal solution, and wmax, wmin are the
upper and lower limits of the wi weights.

4.3. Algorithmic Process

In this paper, the algorithm flow chart for the improvement of the genetic algorithm
combined with the flexible workshop scheduling problem, is shown in Figure 5. The
pseudo-code is given by Algorithm 2.

Algorithm 2 Pseudo-code of the improved self-learning genetic algorithm for the FJSP

1: Set up the initial improved self-learning genetic algorithm parameter
2: GRL population initialization
3: For i = 0,. . .. . ., Max_Itertions do
4: Evaluate the populations
5: Elite selection strategy
6: For j = 1,. . .., population size do
7: If random() < Pc
8: Crossover(j,random(1, population size))
9: If random() < Pm
10: Self-learning mutation(j)
11: Select the mutation mode
12: Weighting update
13: End
14: Decode()
14: End
15 Output: the best solution
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5. Experimental Analyses
5.1. Parameterization

In order to verify the effectiveness of the improved self-learning genetic algorithm
in solving the flexible workshop scheduling problem, the program was programmed in
Python language under pycharm, and the program processor was Intel(R) Core(TM) i5-
6300HQ; the main frequency was 2.30 Hz, the memory was 8 GB, and the operating system
was a 64-bit Windows 10 running on a personal computer. The specific parameter settings
of the algorithm are shown in Table 2:

Table 2. The specific parameters of the algorithm.

Parameters

Population size: Pop_size 200
Crossover probability: Pc 0.9

Probability of mutation: Pm 0.1
Number of elite reserves: len 1

Maximum number of iterations: Max_Itertions 100
Percentage of population initialization: GS:LS:RS 3:1:1
Self-learning variant weights: W1; W2; W3; W4 W1 = W2 = W3 = W4 = 10

5.2. Experiment 1

To illustrate the performance of the self-learning genetic algorithm proposed in this
paper for solving FJSP problems, this paper’s experiments were compared with the simula-
tion experiments in the literature [23], and the experimental data were consistent with the
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paper of [23], as shown in Table 3. Figures 6 and 7 show the scheduling schemes obtained
by the algorithms in the literature [23] and in this paper, respectively. In the table, Ji,j is the
jth process of the ith workpiece, and M1–M8 are individual processing machines.

Table 3. Arithmetic source data.

Workpiece
Number

Working
Procedure

Ji,j

Processing Time for Each Workpiece and Each Process on Selectable Processing Machines

1

M1 M2 M3 M4 M5 M6 M7 M8
J1,1 5 3 5 3 3 - 10 9
J1,2 10 - 5 8 3 9 9 6
J1,3 - 10 - 5 6 2 4 5

2

J2,1 5 7 3 9 8 - 9 -
J2,2 - 8 5 2 6 7 10 9
J2,3 - 10 - 5 6 4 1 7
J2,4 10 8 9 6 4 7 - -

3
J3,1 10 - - 7 6 5 2 4
J3,2 - 10 6 4 8 9 10 -
J3,3 1 4 5 6 - 10 - 7

4
J4,1 3 1 6 5 9 7 8 4
J4,2 12 11 7 8 10 5 6 9
J4,3 4 6 2 10 3 9 5 7

5

J5,1 3 6 7 8 9 - 10 -
J5,2 10 7 - 4 9 8 6 -
J5,3 - 9 8 7 4 2 7 -
J5,4 11 9 - 6 7 5 3 6

6
J6,1 6 7 1 4 6 9 - 10
J6,2 11 - 9 9 9 7 8 4
J6,3 10 5 9 10 11 - 10 -

7
J7,1 5 4 2 6 7 - 10 -
J7,2 - 9 - 9 11 9 10 5
J7,3 - 8 9 3 8 6 - 10

8

J8,1 2 8 5 9 - 4 - 8
J8,2 7 4 7 8 9 - 10 -
J8,3 9 9 - 8 5 6 7 1
J8,4 9 - 3 7 1 5 8 -
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The experimental results are shown in Figures 6 and 7. The maximum completion time
in reference [23] was 33. The scheduling scheme obtained by the algorithm in this paper
had a maximum completion time of 14, which is better than that in reference [23], and it
is more reasonable in terms of machine allocation and process sequence. Comparing the
data calculations in Table 3, the algorithm proposed in this paper improved the efficiency
by 57.5%.

5.3. Experiment 2

In order to illustrate the performance of the self-learning genetic algorithm proposed in
this paper in solving the FJSP problem, it was applied to the benchmark cases MK01–MK10
in the benchmark calculus, which were run 20 times to obtain the optimal solution, and the
results of the runs are shown in Table 4.

Table 4. Comparison of benchmark samples.

MK
Algorithms N ×m GWO IDE HQPSO ALPS-GA ILGA This Paper

MK01 10 × 6 42 40 42 40 40 40
MK02 10 × 6 31 28 28 29 28 27
MK03 15 × 8 204 204 204 207 204 204
MK04 15 × 8 68 71 70 65 64 64
MK05 15 × 4 179 179 179 181 175 173
MK06 10 × 15 68 73 68 81 71 63
MK07 20 × 5 155 146 149 149 145 140
MK08 20 × 10 523 528 523 555 523 523
MK09 20 × 10 — 321 342 342 315 307
MK10 20 × 15 — 235 246 255 260 218

The following experimental results of MK algorithms are for the grey wolf optimiza-
tion (GWO) algorithm proposed by Jiang Tian-hua [24], the improved differential evolution
(IDE) algorithm proposed by Prasert et al. [25], the hybrid quantum particle swarm opti-
mization (HQPSO) proposed by Zhang et al. [26], the ALPS-GA algorithm proposed by
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Jiang Hou-min et al. [27], and the improved learning genetic algorithm (ILGA) proposed
by Zhang Liang et al. [28].

As can be seen in Table 4, with the improved self-learning genetic algorithm proposed
in this paper, the MK algorithms in MK02, MK05, MK06, MK07, MK09, and MK10 were
better than those of the results of the other papers and have been bolded. The comparison
shows that in terms of solution depth, the algorithms in this paper achieved better solutions
than the listed algorithms, except for the MK01, MK03, MK04, and MK08 algorithms.

In order to prove the local search ability of the improved self-learning genetic algorithm
proposed in this paper, experiments were carried out using MK05 in Brandimarte’s ten
examples, which were solved by the genetic algorithm with the self-learning mutation
operator, the improved genetic algorithm with the removal of the self-learning mutation
operator, and the traditional genetic algorithm, respectively, and the optimal individuals’
objective function values in the solution sets of the three algorithms were recorded by
repeating the experiments 50 times. The results of the experiments are shown in Figure 8.
In the 50 experiments, the optimal individual Cmax obtained by the genetic algorithm
with the addition of the self-learning mutation operator was mainly concentrated below
the optimal solution of 142, while the optimal individual Cmax obtained by the improved
genetic algorithm with the removal of the self-learning mutation operator was mainly
concentrated in the suboptimal solutions of 144 and 145; the optimal individual Cmax
obtained by the traditional genetic algorithm was mainly concentrated in the suboptimal
solution of 146 or so. It was proven that the improved genetic algorithm with the addition
of the self-learning mutation operator is significantly better than the improved genetic
algorithm with the removal of the self-learning mutation operator and the traditional
genetic algorithm in terms of the stability of the solution and the depth of the search. When
the size of the problem increased and the topology of the solution space was complex, the
self-learning mutation operator proposed in this paper could quickly and stably search for
a better solution on the basis of the global optimization of the genetic algorithm.
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5.4. Experiment 3

In order to illustrate the performance of the self-learning genetic algorithm proposed
in this paper in comparison with the traditional genetic algorithm and the improved
genetic algorithm in solving the FJSP problem, it was applied to the MK01–MK10 bench-
mark examples and was run to output its maximum completion time with the number of
population iterations.

Figure 9 shows the MK05, MK07, MK09, and MK10 examples of the MK05, MK07,
MK09, and MK10 algorithms, respectively. In Figure 9, it can be seen that the self-learning
genetic algorithm’s pre-convergence speed was very fast, which indicates that the self-
learning genetic algorithm in the crossover process of the pox crossover operator played a
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key role in searching for the solution space, and it searched for the optimal solution rela-
tively quickly. The comparison curve shows that the adaptive mutation operator enhanced
the algorithm’s ability to find the optimal solution; compared with the traditional genetic
algorithm, its convergence speed is faster, and its search ability is greater. Meanwhile, as the
self-learning mutation strategy of the algorithm changes with the number of iterations, the
w-weights in its self-learning mutation operator are constantly updated, which enhances
the self-learning mutation operator in the later stages of the local search efficiency. It can
be seen that the variable self-learning mutation strategy proposed in this paper results in
a greater enhancement of the algorithm’s local optimization ability, and at the same time,
compared with the traditional genetic algorithm, the algorithm proposed in this paper has
a faster convergence speed and a stronger search ability.
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In contrast to the genetic algorithm and the improved genetic algorithm, it was shown
that the initial population in the improved genetic algorithm generates quality solutions
significantly better than the traditional genetic algorithm, and its convergence speed and
traditional genetic algorithm to the solution space of the search ability was also stronger
than the traditional genetic algorithm. In addition, the improved genetic algorithm in
this paper added the self-learning mutation strategy and designed four kinds of mutation
methods; as can be seen in the convergence curve in Figure 9, the convergence speed of
this paper’s algorithm and the ability to search for the solution space are stronger than
those of the two algorithms. The feasibility of this paper’s algorithm is illustrated by
the experimental results, and the algorithm has a strong search ability and can solve the
FJSP effectively.

6. Discussion

The FJSP is a combinatorial optimization problem that requires assigning different
production tasks to different machines or workers in a limited amount of time in order
to maximize customer satisfaction and production efficiency. Solving the FJSP can help
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enterprises achieve multiple goals, such as refined management, improved productivity,
cost reduction, and product quality. The government can encourage enterprises to increase
research and investment in the FJSP by formulating relevant policies to promote technolog-
ical innovation and industrial upgrading in related fields. In this paper, the Brandimarte
examples verify the validity of the proposed algorithm, but no other examples are available.
Variational operators may behave differently in different examples, so it is essential to
identify how to find more universal variational operators. Meanwhile, the process of
adjusting the weights may fall into the local exploration problem, which can be considered
to increase the perturbation of the weights.

7. Conclusions

In this paper, an improved self-learning genetic algorithm is proposed; four variant
operators were designed according to the characteristics of the FJSP, which strengthened
the local search ability of the genetic algorithm and expanded the ability to find better
individuals. At the same time, weights were designed for the mutation operators, and
the weights were updated according to their local search of flexible workshop scheduling
at different stages to strengthen the search ability for the solution space where the global
optimal solution might exist. The results showed good performance compared with the
algorithms in the references, especially in the Brandimarte examples. In future research,
it is recommended to consider designing more variational operators to combine with
other intelligent optimization algorithms and to find a more appropriate way to update
the weights. In addition, multi-objective FJSP and dynamic scheduling problems can be
explored in depth to make the algorithms for solving job shop scheduling problems more
efficient, complete, and adaptable.
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