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Abstract: The intention of this paper is to explore the distributed control issues for directed signed
networks in the face of external disturbances under strongly connected topologies. A new class of
nonsingular transformations is provided by introducing an output variable, with which the consensus
can be equivalently transformed into the output stability regardless of whether the associated signed
digraphs are structurally balanced or not. By taking advantage of the standard robust H∞ control
theory, the bipartite consensus and state stability results can be built for signed networks under
structurally balanced and unbalanced conditions, respectively, in which the desired disturbance
rejection performances can also be satisfied. Furthermore, the mathematical expression can be given
for the terminal states of signed networks under the influence of external disturbances. In addition,
two simulations are presented to verify the correctness of our developed results.

Keywords: distributed control; external disturbance; mathematical expression; signed network;
structural balance
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1. Introduction

In the past twenty years, distributed (or coordination) control issues of networked
systems are of interest to researchers because of their potential application values in our
daily production and life, such as distributed coordination of multi-robots, electric power
transmission of smart grids, formation control of aircrafts and so on. Networked systems
constitute of multiple interacting agents and interactions among agents, which can complete
complex tasks that are difficult for a single agent. If there exist only cooperative interactions
among all agents, then these kind of networked systems are termed as unsigned networks
(or traditional networks). The main concerns of distributed control of unsigned networks
are to design a protocol according to the nearest neighbor information such that all agents
can accomplish a common objective under strongly connected topologies [1] and quasi-
strongly connected topologies [2], in which consensus is one of the most fundamental
problems. Consensus indicates that all agents collaborate with each other such that their
terminal states can converge to a common value that may have a relationship with the
communication topologies and initial states of agents.

In practice, unsigned networks inevitably suffer from the effect of external distur-
bances that come from environmental factors, model uncertainties and device aging. The
external disturbances may lead to the degradation of performance and even the instability
of unsigned networks. Hence, it is necessary to explore how to reduce the detrimental
influences of external disturbances and enhance the disturbance rejection abilities of un-
signed networks. In the last decade, research in disturbance rejection control has become a
focus in the area of distributed control for unsigned networks. Disturbance rejection con-
trol problems have been investigated for unsigned networks whose agents are first-order
integrator dynamics [3] and second-order integrator dynamics [4], in which the robust H∞
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control theory is exploited to analyze the consensus performance of unsigned networks.
Moreover, the sufficient conditions have been provided such that all agents can achieve
the consensus objective with the desired disturbance rejection performance by employing
linear matrix inequality (LMI). Some other robust problems have been investigated by
different methods, such as pinning control strategy [5], backstepping control [6], resilient
control [7] and disturbance-observer [8]. In addition, disturbance rejection control problems
have been generalized to unsigned networks under directed communication topologies
and their agents consist of high-order integrator dynamics [9] and general linear dynam-
ics [10]. The distributed control problems have been studied for unsigned networks with
communication delays [11,12].

The aforementioned works only concentrate on unsigned networks whose interac-
tions among agents are only cooperative. In actual applications, we can find that both
cooperative interactions and antagonistic interactions exist in networked systems due to
competition relationships among agents. Different from unsigned networks, these types of
network appear from social networks, which contain practical applications in the field of
opinion dynamics, political science, economic analysis and crime prevention (see [13,14] for
more explanations). For the purposes of describing the interactions among agents, signed
digraphs are employed, in which the positive and negative weights of edges can describe
the cooperative and antagonistic interactions between any two different agents. In contrast
to unsigned networks, these networked systems are termed as signed networks. In the past
few years, signed networks have turned into a focus in exploring the distributed control
of networked systems. In [15], a fundamental framework has been built for exploring
the bipartite consensus of all agents under strongly connected signed digraphs. In order
to measure the total difference of all agents, the Laplacian potential has been proposed
for signed digraphs in [15]. It is shown that a protocol has been induced from Laplacian
potentials such that all agents can achieve the bipartite consensus objective if the struc-
tural balance condition is satisfied and otherwise, they can reach the state stability. In
this framework, the bipartite consensus problems have further been extended to general
signed networks whose topologies and dynamics may be different. In [16], the topology
has been considered as quasi-strong connectivity instead of strong connectivity, in which
all agents can be divided into two groups: rooted agents and non-rooted agents. The
prescribed time interval bipartite consensus problems have been explored in [17], in which
the distributed protocol has been designed to ensure the interval bipartite consensus in
the prescribed time. With the protocol proposed in [15] being used, all rooted agents can
achieve the bipartite consensus objective and all non-rooted agents spread in a interval
formed by rooted agents. When the communication topology is switching, the bipartite
consensus problems have been studied for signed networks’ nonlinear dynamics [18], in
which the sufficient conditions are presented. Furthermore, other collective behaviors have
been removed owing to the existence of antagonistic interactions, e.g., modulus consensus
under discrete-time dynamics [19] and continuous-time dynamics [20], bipartite formation
under nonlinear dynamics [21] and fully distributed control [22], finite-time bipartite con-
sensus with event-triggered method [23] and sliding-mode control [24], bipartite tracking
consensus by introducing a virtual leader [25] and pinning control [26], bipartite output
consensus with input saturation [27] and nonlinear dynamics [28]. Additionally, bipartite
consensus has been studied for signed networks with general linear dynamics [29], input
saturation [30], measurement noises [31] and heterogeneous systems [32]. In spite of these
plentiful works on signed networks, little work has been produced on the distributed
control problems of signed networks in the presence of external disturbances which are
inevitable in actual applications.

The goal of this paper is to address the robust consensus problems of directed signed
networks under the strongly connected signed digraphs and the effect of external distur-
bances. The main contributions include the following.

1. We introduced an output variable for signed networks. This leads to the consensus
issues being converted into the corresponding output stability issues. We focused
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on the stability instead of consensus, which provide a convenient approach to deal
with consensus problems of signed networks. To be specific, for structurally balanced
cases, we applied the nonsingular transformation to signed networks, in which a
reduced-order system was developed and its output stability reflected the bipartite
consensus of signed networks.

2. Using the tools of robust H∞ control, we derived the necessary and sufficient condi-
tions to ensure the bipartite consensus (or state stability) objective of directed signed
networks under structurally balanced (or unbalanced) conditions. Moreover, the
desired disturbance rejection performance was also satisfied.

3. When the signed network was structurally balanced, we provided the mathematical
expression for the terminal states of all agents. It is worth noting that the terminal
states had a relationship with the external disturbances. When considering the struc-
turally unbalanced signed network, the external disturbance had no effect on the
terminal values of agents.

The remainder of this paper is arranged as follows. In Section 2, notations and
preliminaries used in this paper are provided for signed digraphs. In Section 3, we introduce
the problem descriptions for bipartite consensus of signed networks under the influence
of external disturbances. We propose the nonsingular transformation for structurally
balanced and unbalanced signed networks in Section 4, with which a reduced-order system
model can be established. In Section 4, the robust consensus results can be built for signed
networks. In Section 5, we give two simulation examples to illustrate the correctness of the
developed results. In Section 6, conclusions are provided.

Notations: When considering a positive integer m, we denote In = {1, 2, · · · , n},
1n = [1, 1, · · · , 1]T ∈ Rn, 0n = [0, 0, · · · , 0]T ∈ Rn and diag{d1, d2, · · · , dn} as a diagonal
matrix whose diagonal elements are d1, d2, · · · , dn and non-diagonal elements are zero.
When considering b ∈ R, we denote |a| as the absolute value of a and sgn(a) as the sign of
a, i.e.,

sgn(a) =


1, a > 0

0, a = 0

−1, a < 0.

For a vector x(t) ∈ Rn, we denote ||x(t)|| and ||x(t)||2 = [
∫ ∞

0 xT(t)x(t)dt]1/2 as the Eu-
clidean norm and the energy of the vector x(t), respectively. If ||x(t)||2 < ∞ holds, we
denote x(t) ∈ L2. That is to say, it is a square integral.

2. Preliminaries

A signed network can be modeled as a signed digraph G that is defined by a triple
G = (V , E , A) with a set V = {v1, v2, · · · , vn} of nodes, a set E ⊆ V ×V = {(vj, vi) : vi, vj ∈
V} of edges and a matrix A = [aij] ∈ Rn×n adjacency weights. The elements of A satisfy
aij 6= 0 ⇔ (vj, vi) ∈ E and aij = 0, otherwise. The edge (vj, vi) indicates a directed link
from vj to vi. That is to say, vj can send information to vj and vj is termed as a neighbor of
vi. Moreover, all neighbors of vi can be denoted as N(i) = {vj : (vj, vi) ∈ E}. We suppose
that the signed digraph G does not have self-loops, i.e., aii = 0, ∀i ∈ In. Motivated by [15],
we can define the Laplacian matrix L of G as

L = [lij] with lij =
{

∑n
h=1 |aih|, i = h
−aij, i 6= j. (1)

From [15,16], we can know that the structural balance plays an important role in
exploring distributed control problems of signed networks. We give the definition of
structural balance in the following.

Definition 1. A signed digraph G is said to be structurally balanced if all nodes {v1, v2, · · · , vn}
can be separated into two subsets V1 and V2 satisfying V1 ∪ V2 = V and V1 ∩ V2 = ∅, where
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aij ≥ 0 when vi, vj ∈ V1 or vi, vj ∈ V2 and aij ≤ 0 when vi ∈ V1, vj ∈ V2 or vi ∈ V2, vj ∈ V1.
Otherwise, G is called structurally unbalanced.

For G, we can induce a corresponding unsigned digraph G = (V , E , A), in which
A = |A| = [|aij|] ∈ Rn×n holds. According to (1), its Laplacian matrix L is provided by

L = [lij] with lij =

{
∑n

h=1 |aih|, i = h
−|aij|, i 6= j.

Define a set of all gauge transformations as

Dn = {Dn = diag{σ1, σ2, · · · , σn} : σi ∈ {−1, 1}, i ∈ In}.

It follows from Lemma 1 of [15] that when G meets a structurally balanced condition, a
gauge transformation Dn can be selected from Dn to ensure L = DnLDn. In addition,
removing the ith row and ith column of Dn can construct a new matrix Di

n ∈ R(n−1)×(n−1),
∀i ∈ In.

A directed path P from the initial node vi to the terminal node vj is a sequence of
edges in G, i.e., P = {(vi, vm1), (vm1 , vm2), · · · , (vmk−1 , vj)} with distinct nodes vi, vm1 , vm2 ,
· · · , vmk−1 and vj. The signed digraph G is strongly connected if there exists a directed
path between every different pair of nodes. We assume that the eigenvalues of L are λ1,
λ2, · · · , λn. If G is strongly connected, the eigenvalues λ1, λ2, · · · , λn satisfy the following
results [15].

(R1) L has a zero eigenvalue λ1 = 0 and n− 1 eigenvalues λ2, λ3, · · · , λn with positive real
parts if and only if G is structurally balanced.

(R2) All eigenvalues λ1, λ2, · · · , λn have positive real parts if and only if G is structurally
unbalanced.

3. Problem Description

In this paper, we consider a signed network that consist of n agents, and the communi-
cation among agents can be denoted by a signed digraph G with n nodes. The dynamics of
the ith node can be considered as a first-order integrator as follows:

ẋi(t) = ui(t) + ωi(t), ∀i ∈ In (2)

where xi(t) ∈ R and ui(t) ∈ R are the information state and control input of the ith node at
the time t, and ωi(t) ∈ R represents the external disturbance suffered by the ith node at the
time t. According to [15], the following distributed control protocol is provided by

ui(t) = ∑
vj∈N(i)

aij[xj(t)− sgn(aij)xi(t)], ∀i ∈ In. (3)

Define x(t) = [x1(t), x2(t), · · · , xn(t)]T ∈ Rn, u(t) = [u1(t), u2(t), · · · , un(t)]T ∈ Rn

and ω(t) = [ω1(t), ω2(t), · · · , ωn(t)]T ∈ Rn as the state vector, control input vector and
external disturbance vector, respectively. By employing the Laplacian matrix L, (2) and (3)
can be rewritten as

ẋ(t) = −Lx(t) + ω(t). (4)

We say that the bipartite consensus and state stability objective can be achieved for
the dynamic system (4) if the following results

(1)
lim
t→∞

(
|xi(t)| − |xj(t)|

)
= 0, ∀i, j ∈ In; (5)

(2)
lim
t→∞

xi(t) = 0, ∀i ∈ In. (6)

hold, respectively, for any initial state xi(0), ∀i ∈ In.
In the following, an assumption is provided for the external disturbance ω(t).
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Assumption 1. The external disturbance ω(t) satisfies the following two conditions:

(C1)
∫ ∞

0 ω(t)dt is absolutely convergent;
(C2) there exists a constant vector y ∈ Rn such that∫ ∞

0
ω(t)dt = y. (7)

Remark 1. We should point out that Assumption 1 can guarantee that the energy of ω(t) is
bounded (i.e., ω(t) ∈ L2). However, when the energy of ω(t) is bounded, ω(t) may not satisfy
Assumption 1. These kind of disturbances are relatively common in our daily life, such as a gust of
wind, unmodeled dynamics and interfering electromagnetic pulses.

When the external disturbance ω(t) does not exist (i.e., ω(t) = 0n), the system (4)
turns into

ẋ(t) = −Lx(t). (8)

For the sake of the following analyses, we provide the consensus results of the system (8)
in the following proposition (see [15] for more details).

Proposition 1. Consider the system (8) whose communication topology is a strongly connected
signed digraph G. Then,

(1) the bipartite consensus can be achieved for the system (8) if and only if G is structurally
balanced. Moreover, the terminal value x(∞) is given by

x(∞) =
(
νTx(0)

)
Dn1n (9)

where Dn1n and ν are the right and left eigenvector of L associated with eigenvalue zero,
respectively, and νT Dn1n = 1.

(2) the state stability can be reached for the system (8) if and only if G is structurally unbalanced.

From Proposition 1, we can realize the fundamental consensus results of signed net-
works without external disturbances. It is clear to see that Proposition 1 may be ineffective
once there exist external disturbances in signed networks. Obviously, the existence of
external disturbances may generate effects on the performance and the terminal value
of the system (4). It is reasonable and necessary to require the system (4) to possess the
resilience ability when it suffers from the external disturbance ω(t). Motivated by these dis-
cussions, we investigate how to measure the resilience ability of system (4) subject to ω(t)
satisfying energy bounded condition (i.e., ω(t) ∈ L2) and further explore the mathematical
expression for the terminal value of the system (4).

3.1. Nonsingular Transformation

From the definitions of bipartite consensus (5) and asymptotic stability (i.e.,
limt→∞ xi(t) = 0 for ∀i ∈ In), we can easily see that there exist essential differences be-
tween them. According to [3,6,7,9], the stability plays a crucial role in the robust consensus
convergence analyses of unsigned networks. Toward this end, we aim to introduce a class
of nonsingular transformations for signed networks in this section, which is convenient for
the convergence analyses of signed networks.

3.2. Structurally Balanced Case

When G is structurally balanced, it is imperative to obtain Dn = diag{σ1, σ2, · · · , σn} ∈
Dn that satisfies L = DnLDn. For some j ∈ In, we introduce a series of states as

zi(t) =

{
σixi(t)− σjxj(t), i < j

σi+1xi+1(t)− σjxj(t), i ≥ j
for each i ∈ In−1. (10)

From (10), we can easily see that the bipartite consensus objective (5) is identical to
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lim
t→∞

zi(t) = 0 for each i ∈ In−1.

Let us denote z(t) = [z1(t), z2(t), · · · , zn−1(t)]T ∈ Rn−1. With (4), we can induce the
following system {

ẋ(t) = −Lx(t) + ω(t)

z(t) = Ex(t)
(11)

where E ∈ R(n−1)×n and

E =


[−σ11n−1, D1

n], j = 1

[d1, · · · , dj−1,−σj1n−1, dj, · · · , dn−1], 1 < j < n

[Dn
n , − σn1n−1], j = n

in which di, ∀i ∈ In−1, is the ith column of the matrix Dj
n. Thus, the bipartite consensus

of the system (4) can be considered as an output stability problem of the system (11) [i.e.,
limt→∞ z(t) = 0n−1]. For the system (11), we can calculate its transfer function matrix
Tzω(s) = E(sI + L)−1 that plays an important role in analysing the consensus performance
of the system (11) with respect to the external disturbance ω(t).

Since the signed digraph G is both strongly connected and structurally balanced,
there exists a gauge transformation Dn ∈ Dn such that L = DnLDn, LDn1n = 0n and
EDn1n = 0n−1 hold. It leads to

E
EL
EL2

...
ELn−1

Dn1n = 0n(n−1) ∈ Rn(n−1).

Hence, we can further deduce

rank




E

EL
EL2

...
ELn−1



 < n

that indicates the unobservability of the system (11). However, we should point out that the
transfer function matrix Tzω(s) reflects the relationship between the external disturbance
ω(t) and the state variables of (11) that are both controllable and observable. In the
following, we aim to select all controllable and observable state variables of (11). Toward
this end, we introduce two matrices F ∈ Rn×(n−1) and C ∈ R1×n as follows:

F =


[0n−1, D1

n]
T , j = 1

[d1, · · · , dj−1, 0n−1, dj, · · · , dn−1]
T , 1 < j < n

[Dn
n , 0n−1], j = n

and

C =

{
[dT

j , 0], j < n

[0, 0, · · · , 0, 1], j = n .

Let us denote Q =
[

CT ET ]T ∈ Rn×n. It can be easily verified that the inverse
matrix of Q is provided by Q−1 =

[
Dn1n F

]
, where CDn1n = 1, CF = 0T

n−1, EDn1n =
0n−1, EF = In−1 and Dn1nC + FE = In. We introduce an auxiliary vector as follows
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x̃ = x− Dn1nC
∫ t

0
ω(τ)dτ. (12)

Through (11) and (12), we have{
˙̃x(t) = −Lx̃(t) + (In − Dn1nC)ω(t)

z(t) = Ex̃(t)
(13)

in which LDn1n = 0n and EDn1n = 0n−1 are employed. We define x̂(t) = Qx̃(t) and
β(t) = Cx̃(t), and can further derive

x̂(t) = Qx̃(t) =
[

C
E

]
x̃(t) =

[
β(t)
z(t)

]
. (14)

From (13) and (14), it follows[
β̇(t)
ż(t)

]
= −QLQ−1

[
β(t)
z(t)

]
+ Q(In − Dn1nC)ω(t)

= −
[

CLDn1n CLF
ELDn1n ELF

][
β(t)
z(t)

]
+

[
0

Eω(t)

]
= −

[
0 CLF

0n−1 ELF

][
β(t)
z(t)

]
+

[
0

Eω(t)

] (15)

in which LDn1n = 0n and EDn1n = 0n−1 are inserted. Since the signed digraph G is
strongly connected and structurally balanced, it follows from Lemma 1 of [15] that the
Laplacian matrix L has a zero eigenvalue and n− 1 eigenvalues with positive real parts.
This, together with (15), guarantees that all eigenvalues of ELF contain positive real parts
and −ELF is Hurwitz stable. Based on (15), we can induce two subsystems as

β̇(t) = −CLFz(t) (16)

and
ż(t) = −ELFz(t) + Eω(t). (17)

It can be easily seen from (16) that the convergence of β(t) is only dependent on z(t)
and has no relationship with ω(t). For the subsystem (17), we can calculate

rank
([

E −ELFE · · · (−ELF)n−2E
])

= n− 1

and

rank




In−1
−ELF

...
(−ELF)n−2


 = n− 1,

which implies that the subsystem (17) is both controllable and observable. Moreover, the
transfer function matrix Tzω(s) of the subsystem (17) satisfies

Tzω(s) = (sIn−1 + ELF)−1E

= (sIn−1 + ELF)−1E(In − Dn1nC)

= E(sIn + LFE)−1(In − Dn1nC)

= E[sIn + L(Dn1nC + FE)]−1(In − Dn1nC)

= E(sIn + L)−1(In − Dn1nC)

= E(sIn + L)−1

in which we use EDn1n = 0n−1, LDn1n = 0n and Dn1nC + FE = In. From the above
discussions, we can realize that the system (4) and its subsystem (17) have the same
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transfer function matrix. Therefore, we can investigate the consensus performance of the
system (4) by considering its subsystem (17), which provides a method to deal with bipartite
consensus problems from the viewpoint of stability.

3.3. Structurally Unbalanced Case

When G is structurally unbalanced, we directly give an output vector z(t) = x(t). Thus,{
ẋ(t) = −Lx(t) + ω(t)

z(t) = x(t).
(18)

Due to the structural unbalance of G, it follows from the result R2 that all eigenvalues λ1,
λ2, · · · , λn of L have positive real parts and rank(L) = n holds. With rank(L) = n, we
can calculate

rank
([

In −L · · · (−L)n−1 ]) = n (19)

and

rank




In
−L
−L2

...
−Ln−1



 = n. (20)

From (19) and (20), we can realize that the system (18) is not only controllable but
also observable.

4. Main Results

In this section, we investigate the convergence performance of directed signed net-
works in the presence of external disturbances, in which a class of energy-bounded external
disturbances is considered. In the following, an induced transfer function matrix norm can
be given by

||Tzω(s)||2−2 = sup
||ω(t)||2≤1

||z(t)||2

It is worthwhile noticing that the induced norm ||Tzω(s)||2−2 can also be considered as the
H∞ norm of Tzω(s). It follows from [33] that

||Tzω(s)||2−2 = sup
ω(t) 6=0n , ω(t)∈L2

||z(t)||2
||ω(t)||2

. (21)

Based on (21), we can further induce ||z(t)||2 ≤ ||Tzω(s)||2−2||ω(t)||2, which denotes that
||Tzω(s)||2−2 can be employed to measure the resilience performance of the signed network
(11) or (18) subject to ω(t) ∈ L2. That is to say, by considering the external disturbance
ω(t) ∈ L2, we can minimize its detrimental effect on the energy of the output signal z(t)
through investigating ||Tzω(s)||2−2.

The following theorem can propose a method to identify whether ||Tzω(s)||2−2 satisfies
a prescribed performance index or not.

Theorem 1. Consider the system (4) under a strongly connected signed digraph G, and let the
external disturbance ω(t) satisfy ω(t) ∈ L2. For a given performance index γ > 0, the following
results hold.

(1) When G is structurally balanced, the bipartite consensus objective (5) holds with ||Tzω(s)||2−2 <

γ if and only if there exists a positive definite matrix P ∈ R(n−1)×(n−1) satisfying the following
matrix inequality:

−FT LTET P− PELF +
1

γ2 PEET P + In−1 < 0. (22)
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In particular, if the external disturbance ω(t) satisfies Assumption 1, then for arbitrary initial
state x(0) ∈ Rn, the terminal value of the system (4) is provided by

x(∞) = νT(x(0) + y)Dn1n (23)

where Dn1n and ν are the right and left eigenvector of L associated with the zero eigenvalue,
respectively, and Dn1n and ν satisfy νT Dn1n = 1.

(2) When G is structurally unbalanced, the state stability objective (6) holds with ||Tzω(s)||2−2 <
γ if and only if there exists a positive definite matrix P ∈ Rn×n satisfying the following
matrix inequality:

−LT P− PL +
1

γ2 PT P + In < 0. (24)

Proof. (1) Sufficiency: The proof of sufficiency is divided into the following two steps.
Step 1. We first give the proof of the system (4) achieving the bipartite consensus

objective (5). On one hand, owing to all eigenvalues of ELF with positive real parts, we
realize that the matrix −ELF is Hurwitz stable. On the other hand, it is important to obtain
limt→∞ ω(t) = 0n from ω(t) ∈ L2. This, together with input–to–state stability (ISS), ensures
the asymptotic stability of the reduced-order system (17) (i.e., limt→∞ z(t) = 0n−1). Based
on (10), we directly develop that the system (4) can accomplish the bipartite consensus
objective (5).

Step 2. We explore how to ensure the desired performance ||Tzω(s)||2−2 < γ under
the condition (22). For the matrix inequality (22), we can select a parameter 0 < δ < 1 to
guarantee the following matrix inequality:

−FT LTET P− PELF +
1

γ2(1− δ)
PEET P + In−1 < 0. (25)

Using Schur’s complement formula with (25) yields[
In−1
0T

][
In−1 0

]
+

[
−FT LTET P− PELF PE

ET P − γ2(1− δ)In

]
< 0 (26)

where 0 is zero matrix whose all elements are zero and its dimension is (n− 1)× n. For (26),

left multiplying by
[

zT(t) ωT(t)
]

and right multiplying by
[

z(t)
ω(t)

]
leads to

zT(t)z(t) + zT(t)P[−ELFz(t) + Eω(t)] + [−ELFz(t) + Eω(t)]T Pz(t)

− γ2(1− δ)ωT(t)ω(t) < 0.
(27)

A Lyapunov function candidate is designed as follows:

V(z) = zT(t)Pz(t).

Taking the derivation of V(z) along (17) causes

V̇(z) = żT(t)Pz(t) + zT(t)Pż(t)

= [−ELFz(t) + Eω(t)]T Pz(t) + zT(t)P[−ELFz(t) + Eω(t)].

With (27), we can further deduce

V̇(z) + zT(t)z(t) < γ2(1− δ)ωT(t)ω(t). (28)

We integrate (28) on a time interval [0, T1], T1 > 0, which leads to

zT(T1)Pz(T1) +
∫ T1

0
zT(t)z(t)dt < γ2(1− δ)

∫ T1

0
ωT(t)ω(t)dt (29)
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where we insert the zero-valued initial condition z(0) = 0n−1. Now let T1 → ∞, and we
can develop limt→∞ z(t) = 0n−1 because of limt→∞ ω(t) = 0n and the Hurwitz stability of
−ELF. Therefore, we can rewrite (29) as

||z(t)||22 < γ2(1− δ)||ω(t)||22 (30)

when T1 goes towards infinity (i.e., T1 → ∞). From (30), we must derive ||z(t)||2 <
γ||ω(t)||2 and ||Tzω(s)||2−2 < γ. Therefore, the bipartite consensus objective (5) is with
||Tzω(s)||2−2 < γ when G is structurally balanced.

Necessity: Since the matrix −ELF is Hurwitz stable and ||Tzω(s)||2−2 < γ holds, we
can obtain

γ2 In−1 − ET(−sIn−1 + FT LTET)−1(sIn−1 + ELF)−1E > 0. (31)

From (31), there must exist a sufficiently small real number ε > 0 such that

γ2 In−1 − ET(−sIn−1 − FT LTET)−1MT
ε Mε(sIn−1 − ELF)−1E > 0 (32)

where MT
ε =

[
In−1

√
εIn−1

]
. From (32), it follows that ||Mε(sIn−1 + ELF)−1E||2−2 < γ.

As a consequence, by Corollary 1 of Chapter 3 in [33], we know that there exists a solution
P ≥ 0 such that

−FT LTET P− PELF +
1

γ2 PEET P + In−1 + εIn−1 = 0. (33)

Next, we try to explain the solution P is positive definite. If we denote MT
a =

[
1
γ PE MT

ε

]T
,

then Equation (33) can be rewritten as

−FT LTET P− PELF = −MT
a Ma. (34)

Due to rank
([

MT
a − (ELF)T MT

a · · · (−ELF)n−2T MT
a

]T)
= n− 1, we can deduce that

the pair (−ELF, Ma) is observable. This, together with the Hurwitz stability of −ELF,
guarantees that a positive definite matrix P > 0 exists such that (33) holds from [34]. With
εIn−1 > 0, we can derive that the Riccati inequality (22) has a unique positive solution
P > 0. The proof of necessity is complete.

Next, we explore the terminal value calculation for the dynamic system (4). The
solution of dynamic system (4) can be calculated by

x(t) = e−Ltx(0) +
∫ t

0
e−L(t−τ)ω(τ)dτ. (35)

With the structural balance and strong connectivity of G, it follows from Proposition 1 that

lim
t→∞

e−Ltx(0) = νx(0)Dn1n (36)

where Dn1n and ν are the right and left eigenvectors of L associated with the zero eigenvalue
and they satisfy νT Dn1n = 1. Next, we calculate limt→∞

∫ t
0 e−L(t−τ)ω(τ)dτ. There exists

an invertible matrix P such that J = P−1LP, where J is the Jordan canonical form of L. We
thus can obtain

lim
t→∞

∫ t

0
e−L(t−τ)ω(τ)dτ = lim

t→∞

∫ t

0
e−PJP−1(t−τ)ω(τ)dτ

= P lim
t→∞

∫ t

0
e−J(t−τ)P−1ω(τ)dτ.

(37)

The Jordan canonical form J can be written as J = diag{0, J2, J3, · · · , Jk} with



Mathematics 2023, 11, 4828 11 of 16

Ji =


λi 1 0 · · · 0
0 λi 1 · · · 0
...

...
... · · ·

...
0 0 0 λi 1
0 0 0 0 λi


ri×ri

= Ni + λi Iri , i ∈ {2, 3, · · · , n}

where ri is the algebraic multiplicity of λi and Iri ∈ Rri×ri is the unit matrix with dimension
ri. It is obvious that r2 + r3 + · · ·+ rk = n− 1 holds. We can further deduce

e−J(t−τ) =


1 0 · · · 0
0 e−J2(t−τ) · · · 0

. . .
0 0 · · · e−Jk(t−τ)


n×n

.

For e−Ji(t−τ), ∀i ∈ {2, 3, · · · , n}, we have

e−Ji(t−τ) = e−(λi Iri+Ni)(t−τ)

= e−λi Iri (t−τ) × e−Ni(t−τ)
(38)

in which we employ Iri Ni = Ni Iri to develop the second equality. With (38), we can obtain

e−Ji(t−τ) = e−λi(t−τ) ×



1 −(t− τ) (t−τ)2

2 · · · [−(t−τ)]ri−1

(r−1)!

0 1 −(t− τ) · · · [−(t−τ)]ri−2

(r−2)!
...

...
...

...
...

0 0 0 · · · −(t− τ)
0 0 0 · · · 1


ri×ri

.

Let us denote P = [p1 p2 · · · pn] and P−1 = [q1 q2 · · · qn]T , where the vectors p1 and
q1 are the right and left eigenvector for the zero eigenvalue of L, respectively. Thus, the
Equation (37) can be written as

limt→∞
∫ t

0 e−L(t−τ)ω(τ)dτ =
[

p1 p2 · · · pn
]

× limt→∞
∫ t

0


1

e−J2(t−τ)

. . .
e−Jk(t−τ)




qT
1

qT
2
...

qT
n

ω(τ)dτ.
(39)

Denote ηi(τ) = qT
i ω(τ) ∈ R, ∀i ∈ In and η(τ) =

[
η1(τ) η2(τ) · · · ηn(τ)

]
∈ Rn.

We introduce a list of vectors ξ1(τ) = η1(τ), ξ2(τ) = [ η2(τ) η3(τ) · · · ηr2(τ)]
T ∈ Rr2 ,

ξ3(τ) = [ ηr2+1(τ) ηr2+2(τ) · · · ηr3(τ)]
T ∈ Rr3 , · · · , ξk(τ) = [ ηrk−1+1(τ) ηrk−1+2(τ) · · ·

ηn(τ)]T ∈ Rrk . We denote ξ1(τ), ξ2(τ), · · · , and ξk(τ) as a compact form ξ(τ) = [ ξT
1 (τ),

ξT
2 (τ), · · · , ξT

k (τ)]
T ∈ Rn that satisfies ξ(τ) = η(τ). Thus, the Equation (39) is turned into

lim
t→∞

∫ t

0
e−L(t−τ)ω(τ)dτ =

[
p1 p2 · · · pn

]
× lim

t→∞

∫ t

0


ξ1(τ)

e−J2(t−τ)ξ2(τ)
...

e−Jk(t−τ)ξk(τ)

dτ.

Since the matrix Ji, i ∈ {2, 3, · · · , k} is Hurwitz stable, it follows from [34] that there
exist two positive constants αi and βi such that

‖e−Ji(t−τ)‖ ≤ αie−βi(t−τ). (40)

With (40), we can obtain



Mathematics 2023, 11, 4828 12 of 16

∥∥∥∥∫ t

0
e−Ji(t−τ)ξi(τ)dτ

∥∥∥∥ ≤ ∫ t

0
‖e−Ji(t−τ)ξi(τ)‖dτ

≤
∫ t

0
αie−βi(t−τ)‖ξi(τ)‖dτ

=
αi
∫ t

0 eβiτ‖ξi(τ)‖dτ

eβit

Benefitting from L’Hospital’s Rule, we can induce

lim
t→∞

αi
∫ t

0 eβiτ‖ξi(τ)‖dτ

eβit
= lim

t→∞

αieβit‖ξi(t)‖
βieβit

= lim
t→∞

αi
βi
‖ξi(t)‖ = 0

which implies

lim
t→∞

∫ t

0
e−Ji(t−τ)ξi(τ)dτ = 0ri , i ∈ {2, 3, · · · , k}.

Hence, we can develop

lim
t→∞

∫ t

0
e−L(t−τ)ω(τ)dτ = [p1, p2, · · · , pn]× lim

t→∞

∫ t

0
e−J(t−τ)


qT

1
qT

2
...

qT
n

ω(τ)dτ

= [p1, p2, · · · , pn]× lim
t→∞

∫ t

0


ξ1(τ)

e−J2(t−τ)ξ2(τ)
...

e−Jk(t−τ)ξk(τ)

dτ

= [p1, p2, · · · , pn]


∫ t

0 qT
1 ω(t)dτ
0r2
...

0rk

 = p1qT
1 y.

(41)

Without loss of generality, we select the vectors p1 and q1 as p1 = Dn1n and q1 = ν. The
substitution p1 = Dn1n and q1 = ν into (41) provides

lim
t→∞

∫ t

0
e−L(t−τ)ω(τ)dτ = νTyDn1n.

From (35) and (36), we can immediately develop the mathematical expression (23) for the
terminal state of the system (4).

(2) All eigenvalues of L have positive real parts and limt→∞ e−Ltx(0) = 0n holds.
Following the proof of structurally balanced case, we can obtain

lim
t→∞

∫ t

0
e−L(t−τ)ω(τ)dτ = 0n.

Hence, the system (4) can achieve the state stability when G is structurally unbalanced. We
complete this proof.

Remark 2. Motivated by Theorem 1, we can see that the robust distributed control problems can
be figured out for signed networks under strongly connected communication topologies, with the
existing results of unsigned networks [3] to signed networks. A method is provided to identify
whether signed networks can accomplish the bipartite consensus (and, respectively, state stability)
objective with the desired performance under structurally balanced (and, respectively, unbalanced)
signed digraphs, which is different from the proposed method in [9]. Furthermore, when the
existing external disturbances satisfy Assumption 1, we can provide a mathematical expression for
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calculating the terminal states of all agents. We can further observe that when the signed digraph G
is structurally balanced, the external disturbance can affect the terminal value of all agents. However,
when the signed digraph G is structurally unbalanced, the external disturbance has no influence
on the terminal value of agents. It generalizes the existing bipartite consensus results of signed
networks [15,16].

5. Simulation Example

In this section, we introduce two simulation examples to illustrate the validity of the
theoretical results. The first example gives the simulation results of signed networks under
a structurally balanced case and the second example provides the simulation results of
signed networks under a structurally unbalanced case. We consider the system (4) with
four nodes labeled from 1 to 4 and their interactions can be described by Figure 1. Moreover,
we suppose ω(t) existing in the system (4) satisfies

ω(t) =
[

5
20t2+1 cos(πt) 5

20t2+1 cos(2πt) 5
20t2+1 cos(3πt) 5

20t2+1 cos(4πt)
]T

.

(a) (b)

Figure 1. (a) Signed digraph G1; (b) Signed digraph G2, where the symbols “+” and “−” represent
the positive and negative weight of edges, respectively.

It can be easily validated that the external disturbance ω(t) is energy bounded (i.e.,
ω(t) ∈ L2) and

∫ ∞
0 ω(τ)dτ = [0.8673 0.4298 0.2129 0.1055]T , which satisfies Assumption 1.

Example 1. We consider the system (4) under a signed digraph G1 in Figure 1. It can easily
verify that Figure 1 G1 is both strongly connected and structurally balanced. All nodes can be
divided into two groups V1 = {v1, v2} and V2 = {v3, v4}. The states of v1, v2, v3 and v4 can be
denoted by x1, x2, x3 and x4, respectively. Moreover, we can choose the initial state of agents as
x(0) =

[
−2 −2 2 2

]T . Without loss of generality, we assume that the desired performance
index γ is γ = 1. Note that the desired performance index γ meets if and only if (22) holds. Letting
P = 2× diag{1, 1, 1} and solving the linear matrix inequality (22), we can observ that the weights
of edges (v4, v1), (v1, v2), (v2, v3), (v3, v4) and (v1, v3) are −5.8226, 15.7971, −11.9896, 8.6914
and −2.7722, respectively. Since ω(t) satisfies Assumption 1, it follows from Theorem 1 that the
terminal state of the system (4) is given by

x(∞) = [−1.6434,−1.6434, 1.6434, 1.6434]T . (42)

We plot the state evolution of the system (4) and the energy trajectories of z(t) and ω(t) in Figure 2a
and Figure 2b, respectively.
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Figure 2. (a) State evolution of the system (4) under the signed digraph G1; (b) Energy trajectories of
the output z(t) and the external disturbance ω(t).

It is obvious from Figure 2a that all nodes can accomplish the bipartite consensus
objective (5) whose convergency values satisfy (42). From Figure 2b, it can be found that the
consensus performance ||Tzω(s)||2−2 < 1. Obviously, the simulation results of Figure 2a,b
are in accordance with Theorem 1.

Example 2. Consider the communication topology for system (4) described by a signed digraph G2
in Figure 1. Clearly, the signed digraph G2 is both strongly connected and structurally unbalanced,
which is different from the signed digraph G1. We pick up the initial state x(0) =

[
0 0 0 0

]T ,
the performance index γ = 1 and the positive matrix P = 2× diag{1, 1, 1, 1}. We can calcu-
late that the weights of edges (v4, v1), (v1, v2), (v2, v3), (v3, v4) and (v1, v3) are −136.3727,
98.2783, −79.2281, 141.3727 and 118.6463, respectively, by taking advantage of the linear matrix
inequality (24).

For this case, the simulation of the dynamic behaviors of the system (4) and the stability
performance are shown in Figure 3. This figure obviously depicts that the states of nodes
converge to zero and the stability performance satisfies ||Tzω(s)||2−2 < 1. We can easily see
that the simulation results in Figure 3 are in accordance with Theorem 1.
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Figure 3. (a) State evolution of the system (4) under the signed digraph G2; (b) Energy trajectories of
the output z(t) and the external disturbance ω(t).

6. Conclusions

In this paper, we have investigated the distributed robust control problems of directed
signed networks in the presence of external disturbances. We have proposed a class of
nonsingular transformation for signed networks via introducing an output variable, with
which the consensus problems can be equivalently converted into the output stability
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problems. By employing the tools of robust H∞, we have provided the necessary and
sufficient conditions for the bipartite consensus (and, respectively, state stability) of signed
networks with the desired disturbance rejection performance under structurally balanced
(and, respectively, unbalanced) signed digraphs. Moreover, we have given an alternative
approach to calculating the terminal value of signed networks. In addition, two simulation
examples have been presented to demonstrate the effectiveness of our derived results.
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