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Abstract: Estimation based on probability-weighted moments is a well-established method and an
excellent alternative to the classic method of moments or the maximum likelihood method, especially
for small sample sizes. In this research, we developed a new class of estimators for the parameters of
the Pareto type I distribution. A generalization of the probability-weighted moments approach is the
foundation for this new class of estimators. It has the advantage of being valid in the entire parameter
space of the Pareto distribution. We established the asymptotic normality of the new estimators and
applied them to simulated and real datasets in order to illustrate their finite sample behavior. The
results of comparisons with the most used estimation methods were also analyzed.

Keywords: asymptotic distribution; Pareto distribution; parameter estimation; probability-weighted
moment
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1. Introduction

The Pareto distribution has resulted from the work of the economist Vilfredo Pareto [1].
Pareto observed that the number of taxpayers with an income greater than x could be ap-
proximated by b x−a, where a and b are positive parameters. This fact led to the introduction
of several variants of the Pareto distribution, with a survival function proportional to x−a.
The most common Pareto distribution, often referred to as Pareto type I, will be investigated
in this work. Given a random variable X with a Pareto type I distribution, the distribution
function (d.f.) is as follows:

F(x|a, c) = 1−
( x

c

)−a
, x > c, a > 0, c > 0, (1)

where a and c are the shape and scale parameters, respectively. The corresponding proba-
bility density function is

f (x|a, c) =
aca

xa+1 , x > c, a > 0, c > 0. (2)

The parameter c corresponds to the lower bound for the support of the random variable,
whereas the parameter a quantifies the heaviness of the right tail and is also referred to
as the tail or Pareto index [2,3]. As a decreases, the tail becomes heavier. The d.f. in (1) is
inverted to produce the associated quantile function of X, which is represented by

Q(p|a, c) = c(1− p)−1/a, 0 < p < 1, a > 0, c > 0, (3)

where the lower tail probability is denoted by p. Despite the simple analytic expressions
in Equations (1)–(3), this model has been successfully applied in a large number of differ-
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ent fields, such as bibliometrics, demography, economy, geology, insurance and finance,
among others. An alternative form of the Pareto model results from the change in lo-
cation X − c. This alternative form is known as the Pareto type II or the Lomax ([4,5])
distribution. Another related model is the generalized Pareto distribution [6]. Under a
semiparametric framework, the Pareto type I distribution is often used in the analysis of
extreme events. Under such a framework, we use Equation (1) as an upper tail model and
work with the reciprocal parameter ξ = 1/a, the so-called extreme value index. Detailed
discussions and reviews of ξ estimation for Pareto-tailed models can be found in works by
Beirlant et al. [7–9], Gomes and Guillou [10] and Peng and Qi [11], among others.

The estimation of the shape and scale parameters a and c is an important and popular
research topic. Although maximum likelihood estimators have optimal properties, such
properties are only guaranteed asymptotically. Thus, different estimation methods, which
performed better than the maximum likelihood method for small or moderate sample
sizes, have been proposed in the literature by many authors. Quandt [12] compared the
performance of the maximum likelihood estimator with that of the moments estimator,
a least squares estimator and four quantile estimators. Different least squares estimators
were examined by Lu and Tau [13], Caeiro et al. [14], Kantar [15] and Kim et al. [16].
Robust estimators of the shape parameter were introduced by Brazauskas and Serfling [17]
and Vandewalle et al. [18]. Bayesian estimators can be found in Arnold and Press [19],
Rasheed and Al-Gazi [20] and Han [21]. Singh and Guo [22], Caeiro and Gomes [23,24] and
Munir et al. [25] considered probability-weighted moment estimators. Bhatti et al. [26,27]
proposed modified maximum likelihood estimators and Chen et al. [28] dealt with the
estimation of the Pareto parameters with a modification of ranked set sampling.

The purpose of this article is to examine a new method for estimating the shape
and scale parameters of a Pareto model. The remainder of the paper is structured as
follows. In Section 2, we review the most common estimators for the parameters of the
Pareto distribution and introduce the new class of estimators. These estimators, called
log-generalized probability-weighted moment estimators, are derived from a modification
of the classic probability-weighted moments method. In Section 3, we study the asymptotic
results for the new class of estimators. A Monte Carlo simulation study and two real data
applications are provided in Section 4 to illustrate the performance of the estimators. Some
concluding remarks are given in Section 5.

2. Traditional and New Techniques for Estimating the Parameters of the
Pareto Distribution

This section covers some common estimation methods for the shape and scale parame-
ters from the Pareto distribution in (1) and introduces a new estimation procedure. Assume
that X1, X2, · · · , Xn is a sample of independent and identically distributed (i.i.d.) random
variables, from a Pareto distribution, as defined in (1), with both parameters, a and c,
unknown. The sample of non-decreasing order statistics is denoted as X1:n, X2:n, · · · , Xn:n.

2.1. Maximum Likelihood Estimators

The maximum likelihood (ML) estimators are found by maximizing the log-likelihood
function and have the closed-form expressions

âML =

(
1
n

n

∑
i=1

ln Xi − ln X1:n

)−1

, ĉML = X1:n. (4)

2.2. Moment Estimators

It is well known that the non-central moments of order k for the Pareto model are
expressed as follows:

E(Xk) =
ack

a− k
, if a > k.
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In applications, the approach of moments based on the two first moments is unpopular
because the second moment only exists for a > 2, and other moment-based estimators
have emerged in the literature. To extend the domain of validity of the estimators based on
moments, Quandt [12] considered the first non-central moment of X, E(X), and the first
moment of the sample minimum, E(X1:n). The sample minimum of a Pareto distribution
has a Pareto distribution whose scale and shape parameters are c and an, respectively.
Quandt obtained the moment (M) estimators by equating two aforementioned theoretical
moments to the corresponding sample moments and solving the system of equations
following the parameters of the distribution. The estimators obtained are consistent for
a > 1 and given by

âM =
nX− X1:n

n(X− X1:n)
, ĉM =

(
1− 1

nâM

)
X1:n, (5)

where X denotes the arithmetic sample mean.

2.3. Probability Weighted Moment Estimators

The probability-weighted moment (PWM) method (Greenwood et al. [29]) is currently
a well-established estimation procedure in the field of hydrology. Studies using Monte
Carlo simulations demonstrated that, for small sample sizes, PWM estimators outperform
other estimation techniques (Hosking et al. [30]). The PWMs of a random variable X,
with d.f. F, are defined as

Mk,r,s = E(Xk(F(X))r(1− F(X))s) (6)

where k, r and s are real numbers. If the mean value M1,0,0 exists, then M1,r,s exists for any
real positive values r and s. The PWM method generalizes the classic method of moments:
when r = s = 0, Mk,0,0 are the non-central moments of order k. For models that have a
closed-form quantile function, Q, it may be more convenient to compute the PWMs as

Mk,r,s =
∫ 1

0
(Q(u))kur(1− u)s du.

More recently, this method was modified for models without an analytic d.f. and
quantile function (see Jing et al. [31]). The PWM estimators are derived by equating Mk,r,s
with their respective sample moments and then solving those equations following the
parameters of the distribution. Greenwood et al. [29] and Hosking et al. [30] recommend
using M1,r,s, since the relations between parameters and moments are usually much simpler.
The empirical estimate of M1,r,s is usually less sensitive to outliers and has good properties
when the sample size is small. For convenience, several authors chose to use k = 1 and
non-negative integer values for r and s. This approach will be referred to as the classic
PWM method. In addition, when r and s are non-negative integers, it is more convenient to
work with the PWMs

αr = M1,0,r = E(X(1− F(X))r), r = 0, 1, · · · , (7)

or
βr = M1,r,0 = E(X(F(X))r), r = 0, 1, · · · . (8)

It should be noted that F(X)r(1− F(X))s can be represented as a linear combination
of powers of F(X) or 1− F(X) for non-negative integers r and s. As a result, we may use
the following equations to relate αr and βr:

αr =
r

∑
j=0

(−1)j
(

r
j

)
β j and βr =

r

∑
j=0

(−1)j
(

r
j

)
αj,



Mathematics 2023, 11, 1076 4 of 17

where (r
j) denotes the binomial coefficient. Using αr or βr is equivalent as long as the values

for r are non-negative integers that are as small as possible. For non-negative integer values
of r, the unbiased estimators of the PWMs αr and βr, defined in (7) and (8), are, respectively
(Landwehr et al., [32]),

α̂r =
1
n

n−r

∑
i=1

(n−i
r )

(n−1
r )

Xi:n and β̂r =
1
n

n

∑
i=r+1

(i−1
r )

(n−1
r )

Xi:n. (9)

Instead of the unbiased estimators, one may prefer to use the biased estimators

α̃r =
1
n

n

∑
i=1

(1− pi:n)
rXi:n and β̃r =

1
n

n

∑
i=1

pr
i:nXi:n, (10)

where r can be a real number and pi:n are the plotting positions; that is, empirical estimates
of F(Xi:n). The options that are most frequently used for plotting positions are

pi:n =
i− b

n
, 0 ≤ b ≤ 1

or

pi:n =
i− b

n + 1− 2b
, −0.5 ≤ b ≤ 0.5

where b is a continuity correction factor. Landwehr et al. [33] concluded empirically that
moderated biased estimators of the PWMs could produce more accurate estimates of
upper quantiles.

For the Pareto distribution in (1), the PWMs in (6) are given by

Mk,r,s = ck B
(

s + 1− k
a

, r + 1
)

, s− k/a > −1, r > −1,

where B stands for the complete beta function. By setting the exponents (k, r) = (1, 0), we
obtain the classical PWMs for the Pareto distribution, valid for a > (1 + s)−1 and given by

αs = M1,0,s =
c

(s + 1− 1/a)
, s >

1
a
− 1.

Singh and Guo [22], Caeiro and Gomes [23,34], Munir et al. [25] and Caeiro et al. [35]
took the PWMs α0 and α1 into account and deduced the associated PWM estimators for the
shape and scale parameters of the Pareto distribution. Those estimators are

âPWM =
α̂0 − α̂1

α̂0 − 2α̂1
and ĉPWM = α̂0

(
α̂1

α̂0 − α̂1

)
, (11)

with α̂0 and α̂1 given in (9). As stated earlier, the PWM estimators in (11) are only defined
for a Pareto model with finite mean value (a > 1).

2.4. Extended Class of PWM Estimators

The theoretical PWMs defined in (6) can have any real values for the exponents
k, r and s; however, early applications only considered non-negative integer exponents.
Rasmussen [36] explored PWMs with real exponents and referred to this method as gen-
eralized PWM (GPWM) to distinguish it from the classic PWM approach. He found that,
in most cases, the GPWM method outperforms the classic PWM method. To simplify the
GPWM method, it is recommended to limit the class of GPWMs by setting (k, r) = (1, 0) or
(k, s) = (1, 0). This restriction leads to the use of simpler analytical formulas for GPWMs.
The GPWM estimators are the ones in (10) for any real value of r. Another version of the
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PWM method was introduced by Caeiro and Prata Gomes [37]. The authors worked in the
context of Pareto-type tails and considered a different type of PWM, specified by

M∗g,r,s = E(g(X)(F(X))r(1− F(X))s) (12)

with g(x) = ln(x), r = 0, s = 0, 1. Such a class of PWMs was named log PWM (LPWM)
and has the advantage of extending the domain of validity of the estimators to the complete
parameter space for the Pareto model. Caeiro and Mateus [38] considered the LPWMs
in (12) with r = 0 and studied the corresponding LPWMs for the Pareto model.

ls = M∗ln,0,s =
ln(c)
1 + s

+
1

a(1 + s)2 , s > −1. (13)

If we take into consideration the LPWMs l0 and l1, the respective LPWM estimators of
the shape and scale parameters of the Pareto distribution in (1) are, respectively,

âLPWM =
1

2l̂0 − 4l̂1
and ĉLPWM = exp(4l̂1 − l̂0) (14)

where l̂s, s = 0, 1 are the unbiased empirical estimator of ls given by

l̂s =
1
n

n−s

∑
i=1

(n−i
s )

(n−1
s )

ln Xi:n. (15)

Recently, Chen [39] introduced an extended class of GPWMs by evaluating the PWMs
in (12) with g a suitable continuous function and r and s any real values. Mateus and
Caeiro [40] considered the extended class of GPWMs with g(x) = ln(x) for a rescaled
sample of the Pareto model. This approach, called log-generalized probability-weighted
(LGPWM), uses one theoretical moment and only provides an estimator for the shape
parameter of the Pareto distribution. For the estimation of the scale parameter, Mateus and
Caeiro [40] used an estimator similar to the moment estimator, ĉM.

2.5. New Class of LGPWM Estimators

We now introduce a new LGPWM class of estimators for the Pareto distribution that
provides shape and scale estimators and generalizes the LPWM estimators in (14). The new
LGPWM estimators are built using the moments ls in (13) for any real value of s > −1.
Then, for each real s, the corresponding empirical (biased) estimator is provided by

l̃s =
1
n

n

∑
i=1

(1− pi:n)
s ln Xi:n. (16)

where pi:n are the plotting positions. To estimate the two parameters of the Pareto distribu-
tion, we shall consider the theoretical moments ls1 and ls2 in (13) with s1 < s2. Equating the
moments ls1 and ls2 to the corresponding empirical estimate in (16) and solving the system
of equations in the order of the parameters a and c, we obtain the following estimators:

âLGPWM =
s2 − s1

(1 + s1)(1 + s2)[(1 + s1)l̃s1 − (1 + s2)l̃s2 ]
, (17)

and

ĉLGPWM = exp

(
(1 + s1)

2 l̃s1 − (1 + s2)
2 l̃s2

s2 − s1

)
(18)

where s1 < s2. The tuning parameters s1 and s2 should be chosen carefully in order to
obtain a good fit of the sample data. A possible selection of s1 and s2 will be presented in
Section 4.
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3. Distributional Behavior of the LGPWM Estimators

To better understand the behavior of the estimators under consideration, and in
order to compare their relative performance with other established estimators from the
literature, it is important to study their sampling distribution. Unfortunately, for the
estimators depending on a weighted average of the complete set of order statistics, the exact
distribution cannot be derived analytically. As a compromise, we will study the asymptotic
sampling distribution of the estimators considered here. Such asymptotic distributions
can be used as an approximation to the exact distribution for large values of n and usually
provide a good approximation for samples of sizes larger than 50.

In the following, d−→ and d
= stand, respectively, for convergence and equality in

distribution. Next, we present, without proof, in Proposition 1 and Proposition 2, the non-
degenerated asymptotic distribution of the commonly known estimators from the literature
given in (4), (5) and (11).

Proposition 1 (Mateus and Caeiro [40,41]). Suppose that (X1, X2, . . . , Xn) is an i.i.d. sample
from the Pareto population with d.f. in (1). Then,

√
n
(

âML − a
)

d−→
n→∞

N
(

0, a2
)

, (19)

√
n
(

âM − a
)

d−→
n→∞

N
(

0,
a(a− 1)2

a− 2

)
, if a > 2, (20)

and
√

n
(

âPWM − a
)

d−→
n→∞

N
(

0,
a(a− 1)(2a− 1)2

(a− 2)(3a− 2)

)
, if a > 2, (21)

where N(µ, σ2) represents a normal random variable with mean value µ and variance σ2.

Proposition 2. Under the conditions of Proposition 1, we have

((1− n−1)−1/a − 1)
(

ĉML

c
− 1
)

d−→
n→∞

Exp(1), (22)

((1− n−1)−1/a − 1)
(

ĉM

c
− 1
)

d−→
n→∞

Exp(1), if a > 2, (23)

and
√

n
(

ĉPWM

c
− 1
)

d−→
n→∞

N
(

0,
a− 1

a(3a− 2)(a− 2)

)
, if a > 2, (24)

where Exp(1) refers to a standard exponential random variable with d.f.

FE(x) = 1− e−x, x > 0. (25)

The following lemma and proposition are required to state the non-degenerate asymp-
totic limit behavior of the LGPWM estimators.

Lemma 1. Let X be a Pareto random variable with d.f. given in (1) and E a standard exponential
random variable with d.f. given in Equation (25). Then, ln X has a shifted and re-scaled standard
exponential distribution (Arnold [42]):

ln X d
= ln c +

1
a

E.

Moreover, since the previous relation between the Pareto and exponential distributions is
strictly increasing,it follows that, for a sample of size n,
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ln Xi:n
d
= ln c +

1
a

Ei:n.

where E1:n ≤ E2:n ≤ · · · ≤ En:n are the non-decreasing order statistics from n mutually indepen-
dent and identically distributed standard exponentially random variables.

Proposition 3. Consider a sample of size n from a Pareto population and define

Ds1,s2(ω) =
1
n

n

∑
i=1

[
(1 + s1)

ω

(
1− i

n

)s1

− (1 + s2)
ω

(
1− i

n

)s2
]

ln Xi:n, (26)

with −0.5 < s1 < s2 and any real ω. The asymptotic limit distribution

√
n
(

Ds1,s2(ω)− µD(ω)

)
d−→

n→∞
N
(

0, σ2
D(ω)

)
(27)

holds true, with

µD(ω) = ln(c)[(1 + s1)
ω−1 − (1 + s2)

ω−1] +
(1 + s1)

ω−2 − (1 + s2)
ω−2

a
,

and

σ2
D(ω) =

1
a2

[
(1 + s1)

2(ω−1)

1 + 2s1
+

(1 + s2)
2(ω−1)

1 + 2s2
− 2(1 + s1)

ω−1(1 + s2)
ω−1

1 + s1 + s2

]
.

Proof of Proposition 3. Using Lemma 1 we can write

Ds1,s2(ω) = ln(c)T0 +
1
a

Tn,

with

T0 =
1
n

n

∑
i=1

J(i/n), Tn =
1
n

n

∑
i=1

J(i/n)Ei:n,

and

J
(

i
n

)
= (1 + s1)

ω

(
1− i

n

)s1

− (1 + s2)
ω

(
1− i

n

)s2

.

Hence, note that T0 converges toward
∫ 1

0 J(x) dx = (1 + s1)
ω−1 − (1 + s2)

ω−1. By
utilizing the asymptotic result in the study by Arnold et al. [43] (p.229), for linear functions
of order statistics, we obtain

√
n (Tn − µTn)

d−→
n→∞

N
(

0, σ2
Tn

)
, −0.5 < s1 < s2 (28)

with

µTn =
∫ 1

0
xJ(1− e−x)e−x dx = (1 + s1)

ω−2 − (1 + s2)
ω−2

and

σ2
Tn

= 2
∫ ∞

0
J(1− e−x)(1− e−x)

(∫ ∞

x
xJ(1− e−y)e−y dy

)
dx

=
(1 + s1)

2(ω−1)

1 + 2s1
+

(1 + s2)
2(ω−1)

1 + 2s2
− 2(1 + s1)

ω−1(1 + s2)
ω−1

1 + s1 + s2
.

Combining the asymptotic results for T0 and Tn, the limit distribution in (27) follows
straightforwardly.
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Next, we establish the non-degenerate asymptotic behavior of the LGPWM estimators
in (17) and (18).

Proposition 4. Let us consider the conditions of Proposition 3. Then,

√
n
(

âLGPWM − a
)

d−→
n→∞

N
(

0,
2a2(1 + s1)

2(1 + s2)
2

(1 + 2s1)(1 + 2s2)(1 + s1 + s2)

)
, (29)

and

√
n(ĉLGPWM − c) d−→

n→∞
N
(

0,
c2

a2(s2 − s1)2

(
(1 + s1)

2

1 + 2s1
+

(1 + s2)
2

1 + 2s2
− 2(1 + s1)(1 + s2)

1 + s1 + s2

))
, (30)

with −0.5 < s1 < s2.

Proof. First, notice that we can write the LGPWM estimators in (17) and (18) as

âLGPWM =
s2 − s1

(1 + s1)(1 + s2)Ds1,s2(1)
(31)

and

ĉLGPWM = exp
{−Ds1,s2(2)

s2 − s1

}
, (32)

with Ds1,s2(ω) in (26).
Let ξn = (1+s1)(1+s2)

s2−s1
Ds1,s2(1). Then, invoking Proposition 3 with ω = 1, we obtain

√
n
(

ξ̂n −
1
a

)
d−→

n→∞
N
(

0,
2(1 + s1)

2(1 + s2)
2

a2(1 + 2s1)(1 + 2s2)(1 + s1 + s2)

)
.

Noticing that âLGPWM = 1/ξ̂n and applying the delta method, the asymptotic result in (29)

is established. Then, defining γ̂n =
−Ds1,s2 (2)

s2−s1
and using the result from Proposition 3 again,

with ω = 2, we obtain

√
n(γ̂n − ln(c)) d−→

n→∞
N

0,
(1+s1)

2

1+2s1
+ (1+s2)

2

1+2s2
− 2(1+s1)(1+s2)

1+s1+s2

a2(s2 − s1)2

.

Applying the delta method to
√

n(exp(γ̂n)− c), we obtain the limit distribution
in (30).

Remark 1. Since l̂s and l̃s defined in (15) and (16), respectively, are asymptotic equivalent, straight-
forward computations to the result of Proposition 2 allow us to obtain the following asymptotic limit
distribution for the LPWM estimators in (14):

√
n
(

âLPWM − a
)

d−→
n→∞

N
(

0,
4a2

3

)
and

√
n(ĉLPWM − c) d−→

n→∞
N
(

0,
c2

3a2

)
.

4. Numerical Results

In this section, we analyze simulated and real datasets to assess the performance of the
estimation procedures discussed in Section 2. For the LGPWM estimators in (17) and (18),
we used the empirical values of (16) with plotting positions pi:n = (i − 0.35)/n, where
1 ≤ i ≤ n. Since the LGPWM estimation method requires two tuning parameters, we first
present a data-driven algorithm to determine these parameters.
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4.1. Data-Driven Tuning Parameter Selection for the LGPWM Estimator

Consider the LGPWM estimators â and ĉ with tuning parameters s1 and s2 taking
values in (−0.5, 4], with s1 < s2, discretized in small steps of length 0.1. For each pair
of values (s1, s2), we analyze the fit of the Pareto model by comparing the empirical
cumulative distribution function, Fn(x), with the fitted cumulative distribution function,
F̂(x) = F(x|â, ĉ), as defined in (1), using an appropriate goodness-of-fit statistic. Lastly, we
select the set of parameters that provides the best fit. To measure the agreement between the
observations and the model, the following goodness-of-fit statistic tests were considered:

• Kolmogorov–Smirnov (KS) statistic:

Dn = sup
x
|Fn(x)− F(x)| = max

{
D+

n , D−n
}

(33)

with

D+
n = max

1≤i≤n

(∣∣∣∣ i
n
− F(Xi:n|â, ĉ)

∣∣∣∣),

and

D−n = max
1≤i≤n

(∣∣∣∣ i− 1
n
− F(Xi:n|â, ĉ)

∣∣∣∣).

• Cramér–von Mises (CvM) statistic:

W2
n =

n

∑
i=1

(
2i− 1

2n
− F(Xi:n|â, ĉ)

)2
+

1
12n

. (34)

• Modified Anderson–Darling (MAD) statistic (Ahmad et al. [44]):

AU2
n =

n
2
−

n

∑
i=1

(
2− 2i− 1

n

)
log(1− F(Xi:n|â, ĉ))− 2

n

∑
i=1

F(Xi:n|â, ĉ). (35)

Relative to the usual Anderson–Darling statistic, the AU2
n statistic in (35) gives more

weight to the data in the upper tail. Smaller values of the statistics in (33)–(35) correspond
to a better fit of the Pareto model. For a statistical power comparison between some of the
aforementioned statistical tests, see Razali and Wah [45] or Singla et al. [46].

4.2. Simulation Study

In this subsection, we conduct a Monte Carlo simulation experiment to illustrate the
performance of the aforementioned estimation methods for the shape and scale parameters of the
Pareto model. We refer to the LGPWM estimators as LGPWM-KS, LGPWM-CvM and LGPWM-
MAD when the tuning parameters s1 and s2 are selected using the data-driven method described
in Section 4.1 based on the statistics in (33), (34) and (35), respectively. All computation was
performed in software R. We simulated r = 200 samples of sizes n = 15, 20, 30, 40, 50, 75, 100,
150 and 200 from the Pareto distribution, taking the following combination of shape and scale
parameters: (a, c) = (0.1, 0.25), (0.25, 0.5), (0.75, 0.5) and (1, 1). To evaluate the accuracy and
efficiency of the various estimators, we computed the simulated bias and the root mean squared
error (RMSE) for each sample size, each set of parameters and the estimator under study.

The simulated results are summarized in Tables 1 and 2. As can be seen from these
tables, the estimated biases and root mean squared errors generally tend toward zero for all
estimation methods as the sample size increases, except for the M and PWM. This can be
explained by the fact that the M estimator of a and both PWM estimators are not consistent
if a ≤ 1. Moreover, most of the estimators usually overestimate the target parameter.
Regarding the LGPWM estimator, the optimal selection of tuning parameters is obtained
through the data-driven method outlined in Section 4.1 using the MAD statistic.

For the estimation of the shape parameter a, the LGPWM-MAD estimator always has
the smallest absolute bias and the smallest RMSE if the sample size is small. For larger



Mathematics 2023, 11, 1076 10 of 17

sample sizes, the ML estimators have the lowest RMSE. In addition, the performance of
the ML estimator is always quite close to the LGPWM-MAD estimator. Comparing the
performance of all of the estimators for the scale parameter c, it is observed that the M
estimator usually has the smallest RMSE. The LGPWM-MAD provides generally good
results in terms of absolute bias.

Table 1. Bias and RMSE of the estimators of the shape parameter a for the Pareto distribution.

ML M PWM LGPWM-KS LGPWM-CvM LGPWM-MAD
Bias/RMSE Bias/RMSE Bias/RMSE Bias/RMSE Bias/RMSE Bias/RMSE

Pareto model with a = 0.1 and c = 0.25
15 0.016 /0.037 0.900 /0.900 0.906 /0.906 0.014 /0.042 0.015 /0.041 0.008 /0.036
20 0.012 /0.030 0.900 /0.900 0.904 /0.904 0.010 /0.030 0.010 /0.032 0.006 /0.029
30 0.007 /0.020 0.900 /0.900 0.903 /0.903 0.006 /0.023 0.005 /0.022 0.003 /0.021
40 0.006 /0.019 0.900 /0.900 0.902 /0.902 0.006 /0.022 0.005 /0.022 0.003 /0.020
50 0.004 /0.014 0.900 /0.900 0.902 /0.902 0.004 /0.016 0.004 /0.016 0.002 /0.015
75 0.003 /0.011 0.900 /0.900 0.901 /0.901 0.003 /0.013 0.002 /0.013 0.001 /0.012

100 0.002 /0.010 0.900 /0.900 0.901 /0.901 0.003 /0.011 0.002 /0.012 0.001 /0.011
150 0.001 /0.008 0.900 /0.900 0.901 /0.901 0.002 /0.009 0.001 /0.009 0.000 /0.009
200 0.001 /0.007 0.900 /0.900 0.900 /0.900 0.001 /0.008 0.001 /0.008 0.000 /0.008

Pareto model with a = 0.25 and c = 0.5
15 0.040 /0.093 0.753 /0.753 0.776 /0.778 0.036 /0.106 0.037 /0.103 0.020 /0.089
20 0.029 /0.074 0.751 /0.751 0.770 /0.770 0.025 /0.076 0.026 /0.081 0.016 /0.072
30 0.017 /0.050 0.750 /0.750 0.763 /0.764 0.015 /0.058 0.012 /0.055 0.008 /0.051
40 0.015 /0.047 0.750 /0.750 0.759 /0.759 0.014 /0.054 0.013 /0.054 0.009 /0.049
50 0.011 /0.036 0.750 /0.750 0.757 /0.757 0.011 /0.041 0.010 /0.041 0.006 /0.038
75 0.007 /0.027 0.750 /0.750 0.754 /0.754 0.008 /0.032 0.006 /0.033 0.003 /0.030

100 0.006 /0.025 0.750 /0.750 0.753 /0.753 0.006 /0.029 0.005 /0.029 0.002 /0.027
150 0.003 /0.020 0.750 /0.750 0.752 /0.752 0.004 /0.023 0.003 /0.023 0.001 /0.022
200 0.002 /0.017 0.750 /0.750 0.752 /0.752 0.003 /0.020 0.002 /0.020 0.000 /0.020

Pareto model with a = 0.75 and c = 0.5
15 0.120 /0.280 0.429 /0.467 0.524 /0.577 0.118 /0.318 0.115 /0.309 0.069 /0.277
20 0.088 /0.223 0.397 /0.422 0.479 /0.524 0.089 /0.238 0.086 /0.252 0.052 /0.219
30 0.052 /0.151 0.363 /0.375 0.435 /0.463 0.051 /0.180 0.040 /0.166 0.025 /0.155
40 0.046 /0.141 0.346 /0.357 0.401 /0.421 0.048 /0.167 0.042 /0.163 0.027 /0.146
50 0.033 /0.107 0.330 /0.338 0.379 /0.398 0.036 /0.122 0.033 /0.124 0.019 /0.114
75 0.021 /0.080 0.315 /0.319 0.354 /0.364 0.026 /0.099 0.020 /0.098 0.009 /0.090

100 0.018 /0.075 0.310 /0.314 0.347 /0.355 0.021 /0.087 0.015 /0.087 0.008 /0.081
150 0.010 /0.059 0.301 /0.304 0.333 /0.340 0.014 /0.071 0.008 /0.069 0.003 /0.067
200 0.007 /0.052 0.297 /0.300 0.327 /0.332 0.010 /0.060 0.006 /0.060 0.001 /0.059

Pareto model with a = 1 and c = 1
15 0.160 /0.373 0.363 /0.462 0.475 /0.593 0.138 /0.410 0.143 /0.410 0.077 /0.354
20 0.118 /0.298 0.318 /0.393 0.416 /0.519 0.097 /0.299 0.098 /0.318 0.063 /0.289
30 0.069 /0.202 0.269 /0.316 0.356 /0.429 0.054 /0.227 0.047 /0.218 0.029 /0.206
40 0.061 /0.188 0.244 /0.291 0.309 /0.370 0.054 /0.216 0.052 /0.216 0.034 /0.195
50 0.044 /0.143 0.217 /0.256 0.276 /0.335 0.041 /0.160 0.041 /0.164 0.024 /0.152
75 0.028 /0.107 0.195 /0.221 0.244 /0.282 0.029 /0.129 0.025 /0.130 0.011 /0.119

100 0.024 /0.100 0.190 /0.213 0.236 /0.270 0.024 /0.115 0.019 /0.116 0.010 /0.108
150 0.013 /0.078 0.173 /0.193 0.214 /0.245 0.016 /0.092 0.011 /0.094 0.004 /0.090
200 0.009 /0.069 0.167 /0.186 0.205 /0.232 0.011 /0.079 0.008 /0.080 0.001 /0.080

Table 2. Bias and RMSE of the estimators of the scale parameter c for the Pareto distribution.

ML M PWM LGPWM-KS LGPWM-CvM LGPWM-MAD
Bias/RMSE Bias/RMSE Bias/RMSE Bias/RMSE Bias/RMSE Bias/RMSE

Pareto model with a = 0.1 and c = 0.25
15 0.517 /2.489 0.466 /2.319 * /* 0.428 /1.439 0.525 /1.852 0.366 /1.248
20 0.199 /0.350 0.176 /0.326 * /* 0.345 /1.376 0.328 /1.362 0.294 /1.193
30 0.111 /0.200 0.099 /0.189 * /* 0.097 /0.302 0.112 /0.470 0.100 /0.384
40 0.077 /0.131 0.069 /0.124 * /* 0.064 /0.221 0.066 /0.262 0.066 /0.279
50 0.059 /0.087 0.053 /0.082 * /* 0.058 /0.204 0.060 /0.219 0.051 /0.216
75 0.036 /0.052 0.032 /0.050 * /* 0.025 /0.113 0.022 /0.127 0.025 /0.217

100 0.025 /0.035 0.022 /0.033 * /* 0.018 /0.088 0.013 /0.089 0.011 /0.117
150 0.016 /0.021 0.014 /0.020 * /* 0.012 /0.069 0.009 /0.084 0.008 /0.103
200 0.012 /0.016 0.010 /0.015 * /* 0.009 /0.062 0.004 /0.061 0.001 /0.079
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Table 2. Cont.

ML M PWM LGPWM-KS LGPWM-CvM LGPWM-MAD
Bias/RMSE Bias/RMSE Bias/RMSE Bias/RMSE Bias/RMSE Bias/RMSE

Pareto model with a = 0.25 and c = 0.5
15 0.179 /0.335 0.134 /0.296 * /* 0.122 /0.345 0.133 /0.381 0.086 /0.332
20 0.112 /0.168 0.081 /0.144 * /* 0.095 /0.303 0.093 /0.299 0.071 /0.301
30 0.070 /0.108 0.051 /0.094 * /* 0.043 /0.149 0.039 /0.173 0.028 /0.180
40 0.052 /0.078 0.039 /0.068 * /* 0.029 /0.119 0.026 /0.128 0.019 /0.147
50 0.042 /0.059 0.031 /0.051 * /* 0.025 /0.114 0.025 /0.121 0.013 /0.133
75 0.026 /0.037 0.019 /0.032 * /* 0.011 /0.078 0.007 /0.083 0.001 /0.111

100 0.019 /0.026 0.014 /0.022 * /* 0.009 /0.063 0.004 /0.065 −0.001 /0.081
150 0.012 /0.016 0.009 /0.014 * /* 0.007 /0.052 0.003 /0.057 −0.001 /0.071
200 0.009 /0.013 0.007 /0.011 * /* 0.004 /0.046 0.000 /0.047 −0.005 /0.060

Pareto model with a = 0.75 and c = 0.5
15 0.048 /0.073 0.016 /0.054 0.514 /2.059 0.034 /0.084 0.034 /0.084 0.018 /0.090
20 0.033 /0.046 0.009 /0.033 0.356 /0.720 0.028 /0.072 0.026 /0.074 0.014 /0.078
30 0.021 /0.031 0.006 /0.023 0.370 /0.682 0.015 /0.045 0.012 /0.046 0.006 /0.054
40 0.016 /0.023 0.004 /0.017 0.321 /0.456 0.011 /0.037 0.008 /0.038 0.003 /0.045
50 0.013 /0.018 0.004 /0.013 0.316 /0.409 0.009 /0.036 0.007 /0.036 0.002 /0.043
75 0.009 /0.012 0.002 /0.008 0.302 /0.346 0.004 /0.026 0.002 /0.027 −0.001 /0.034

100 0.006 /0.008 0.001 /0.006 0.306 /0.349 0.004 /0.021 0.002 /0.021 −0.001 /0.026
150 0.004 /0.005 0.001 /0.004 0.299 /0.321 0.002 /0.017 0.001 /0.017 −0.001 /0.023
200 0.003 /0.004 0.001 /0.003 0.308 /0.329 0.002 /0.015 −0.000 /0.016 −0.002 /0.020

Pareto model with a = 1 and c = 1
15 0.070 /0.105 0.015 /0.075 0.293 /0.625 0.033 /0.120 0.035 /0.122 0.011 /0.131
20 0.048 /0.068 0.010 /0.047 0.238 /0.343 0.026 /0.102 0.024 /0.103 0.009 /0.114
30 0.032 /0.046 0.004 /0.032 0.233 /0.328 0.012 /0.063 0.009 /0.068 0.002 /0.080
40 0.024 /0.034 0.003 /0.024 0.198 /0.262 0.008 /0.053 0.007 /0.056 0.001 /0.067
50 0.020 /0.027 0.003 /0.018 0.183 /0.239 0.007 /0.052 0.007 /0.054 −0.000 /0.064
75 0.013 /0.018 0.001 /0.012 0.173 /0.215 0.002 /0.037 0.000 /0.040 −0.004 /0.052

100 0.009 /0.012 0.001 /0.008 0.173 /0.209 0.002 /0.030 0.000 /0.031 −0.003 /0.040
150 0.006 /0.008 0.000 /0.005 0.165 /0.193 0.001 /0.025 −0.000 /0.027 −0.003 /0.034
200 0.005 /0.006 0.000 /0.004 0.163 /0.184 0.001 /0.023 −0.001 /0.024 −0.004 /0.030
* value greater than 10.

4.3. Real Data Analysis

We now analyze the fit of a Pareto model to two real datasets: the population of
the 150 largest metropolitan areas in the world and the estimated number of deaths from
major earthquakes.

4.3.1. Population of the Largest Metropolitan Areas in the World

This dataset has the 150 largest cities in the world, by population, and was retrieved
from the worldatlas website [47]. Since the webpage with the dataset is no longer available,
data can be retrieved using the Wayback Machine website (https://web.archive.org/
(accessed on 15 May 2021)) or in Appendix A. Values were converted to millions (×10−6).
In Table 3 we provide the descriptive statistics obtained with the function summary in
R software.

Table 3. Summary statistics for the population data.

Min. 1st Quart. Median Mean 3rd Quart. Max.

2.916 3.571 4.907 7.082 8.744 38.001

If data come from a Pareto distribution, high-order moments might not exist. Therefore,
to assess the skewness, we computed the Bowley [48] coefficient of skewness,

Sb =
q3 + q1 − 2q2

q3 − q1
= 0.483,

where q1, q2 and q3 are the first, second and third empirical quartiles, respectively. This
measure of skewness is robust against extreme values. For other robust measures of

https://web.archive.org/
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skewness, see, among others, Horn [49], Kim and White [50] and Brys et al. [51]. Since
Sb > 0 and the median is smaller than the mean, we conclude that the underlying model
is positively skewed. The histogram and the boxplot of these observations, in Figure 1,
confirm the skewness of the data.

Histogram of the 150 largest cities in the world
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Figure 1. Histogram and boxplot for the population data.

Figure 2 suggests a Paretian behavior of the data. For more details regarding the
construction of the Pareto Q-Q plot, see refs. [7,52].
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Figure 2. Pareto Q-Q Plot for the population data.

The parameter estimates for the fitted Pareto distribution, provided by the ML, L,
PWM and LGPWM estimators, and the values of Dn, W2

n and AU2
n test statistics in (33),

(34) and (35), respectively, are shown in Table 4. The smallest value of each test statistic is
presented in bold. We took all possible combinations of values (s1, s2) and chose the three
combinations that provided the smallest values for each of the aforementioned test statistics.
The values of the test statistics show that the new LGPWM estimators are relatively better
than any other considered estimators. The choice of parameters s1 = 0.9 and s2 = 1.0 for the
LGPWM estimators provides the smallest or second smallest value of the test statistics Dn,
W2

n and AU2
n. Note that not all methods perform well: the ĉPWM estimator produced an

inadequate estimate (ĉPWM > x1:150).
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Table 4. Parameter estimates and goodness-of-fit statistics for the population data.

â ĉ Dn W2
n AU2

n

ML 1.4599 2.9162 0.0595 0.0979 0.4462
M 1.6953 2.9047 0.1167 0.5929 2.1937
PWM 1.8835 3.3222 0.1800 0.9749 2.1406
LGPWM (s1 = 0.7, s2 = 1.1) 1.3933 2.9129 0.0437 0.0529 0.3408
LGPWM (s1 = 1.4, s2 = 1.5) 1.3325 2.8694 0.0502 0.0408 0.3686
LGPWM (s1 = 0.9, s2 = 1.0) 1.3824 2.9056 0.0447 0.0488 0.3398

4.3.2. Estimated Number of Deaths in Major Earthquakes

The second data set is available in Clark [53] and contains the estimated number of
deaths in international earthquakes (from 1900 to 2011). The values of the data are as
follows: 316,000, 242,769, 227,898, 200,000, 142,800, 110,000, 87,587, 86,000, 72,000, 70,000,
50,000, 40,900, 32,700, 32,610, 31,000, 30,000, 28,000, 25,000, 23,000, 20,896, 20,085. Values
were converted to thousands (×10−3). Table 5 shows the descriptive statistics of the data.

Table 5. Summary statistics for the estimated number of deaths.

Min. 1st Quart. Median Mean 3rd Quart. Max.

20.09 30.00 50.00 89.96 110.00 316.00

The Bowley coefficient of skewness is 0.5. Figure 3 shows the histogram and the
boxplot, which are clearly right skewed.
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Figure 3. Histogram and boxplot for the estimated number of deaths.

The Q-Q plot in Figure 4 suggests a Paretian behavior of the data.
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Figure 4. Pareto Q-Q Plot for the estimated number of deaths.
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The parameter estimates of the Pareto model and the empirical value of the Kolmo-
gorov–Smirnov, Cramér–von Mises and modified Anderson–Darling criteria are shown
in Table 6. Overall, the LGPWM method provides a good fit. From Table 6, it is seen
that there is no significant difference between using the Cramér–von Mises or modified
Anderson–Darling criteria. In addition, notice that the scale PWM estimate is again invalid,
since it is greater than the sample minimum.

Table 6. Parameter estimates and goodness-of-fit statistics for estimated number of deaths.

â ĉ Dn W2
n AU2

n

ML 0.9034 20.0850 0.1525 0.0615 0.2479
M 1.2737 19.3341 0.2820 0.4347 1.7498
PWM 1.5046 30.1704 0.3145 0.5197 1.1743
LGPWM (s1 = 0.9, s2 = 1.5) 0.7536 18.0595 0.1159 0.0520 0.2421
LGPWM (s1 = 0.7, s2 = 0.8) 0.8149 19.0483 0.1300 0.0467 0.2179
LGPWM (s1 = 0.6, s2 = 0.7) 0.8323 19.3380 0.1334 0.0468 0.2161

5. Conclusions

In this research, we propose a new class of estimators for the shape and scale param-
eters of a Pareto distribution, named the log-generalized probability-weighted moment.
This new class can be viewed as a generalization of the well-known probability-weighted
moments and offers the advantage of extending the domain of the validity of the estimators
to the complete parameter space of the Pareto distribution. Additionally, the asymptotic
sampling distribution of the estimators provided by this method can be used as an approxi-
mation of the exact distribution for large sample sizes. The usefulness of the new estimation
method was illustrated through a simulation study and two real data applications. It is
concluded that, with appropriate choices of the tuning parameters s1 and s2, the proposed
LGPWM estimators are capable of competing with the most commonly used estimation
methods. As future research, we plan to examine the utilization of other goodness-of-fit
statistics in the data-driven method for selecting the tuning parameters.
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Appendix A

Table A1. Population of the largest metropolitan areas in the world.

Rank City Country Population Rank City Country Population
1 Tokyo Japan 38,001,000 76 Abidjan Cote d’Ivoire 4,859,798
2 Delhi India 25,703,168 77 Guadalajara Mexico 4,843,241
3 Shanghai China 23,740,778 78 Yangon Myanmar 4,801,930
4 São Paulo Brazil 21,066,245 79 Alexandria Egypt 4,777,677
5 Mumbai India 21,042,538 80 Ankara Turkey 4,749,968
6 Mexico City Mexico 20,998,543 81 Kabul Afghanistan 4,634,875
7 Beijing China 20,383,994 82 Qingdao China 4,565,549
8 Osaka Japan 20,237,645 83 Chittagong Bangladesh 4,539,393
9 Cairo Egypt 18,771,769 84 Monterrey Mexico 4,512,572

10 New York United States 18,593,220 85 Sydney Australia 4,505,341
11 Dhaka Bangladesh 17,598,228 86 Dalian China 4,489,380
12 Karachi Pakistan 16,617,644 87 Xiamen China 4,430,081
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Table A1. Cont.

Rank City Country Population Rank City Country Population
13 Buenos Aires Argentina 15,180,176 88 Zhengzhou China 4,387,118
14 Kolkata India 14,864,919 89 Boston United States 4,249,036
15 Istanbul Turkey 14,163,989 90 Melbourne Australia 4,203,416
16 Chongqing China 13,331,579 91 Brasília Brazil 4,155,476
17 Lagos Nigeria 13,122,829 92 Jiddah Saudi Arabia 4,075,803
18 Manila Philippines 12,946,263 93 Phoenix United States 4,062,605
19 Rio de Janeiro Brazil 12,902,306 94 Ji’nan China 4,032,150
20 Guangzhou China 12,458,130 95 Montréal Canada 3,980,708
21 Los Angeles United States 12,309,530 96 Shantou China 3,948,813
22 Moscow Russia 12,165,704 97 Nairobi Kenya 3,914,791
23 Kinshasa D. Rep. Congo 11,586,914 98 Medellín Colombia 3,910,989
24 Tianjin China 11,210,329 99 Fortaleza Brazil 3,880,202
25 Paris France 10,843,285 100 Kunming China 3,779,558
26 Shenzhen China 10,749,473 101 Changchun China 3,762,390
27 Jakarta Indonesia 10,323,142 102 Changsha China 3,761,018
28 London United Kingdom 10,313,307 103 Recife Brazil 3,738,526
29 Bangalore India 10,087,132 104 Rome Italy 3,717,956
30 Lima Peru 9,897,033 105 Zhongshan China 3,691,360
31 Chennai India 9,890,427 106 Cape Town South Africa 3,660,447
32 Seoul South Korea 9,773,746 107 Detroit United States 3,639,050
33 Bogotá Colombia 9,764,769 108 Hanoi Vietnam 3,629,493
34 Nagoya Japan 9,406,264 109 Tel Aviv Israel 3,608,265
35 Johannesburg South Africa 9,398,698 110 Porto Alegre Brazil 3,602,526
36 Bangkok Thailand 9,269,823 111 Kano Nigeria 3,587,049
37 Hyderabad India 8,943,523 112 Salvador Brazil 3,582,967
38 Chicago United States 8,744,835 113 Faisalabad Pakistan 3,566,952
39 Lahore Pakistan 8,741,365 114 Berlin Germany 3,563,194
40 Tehran Iran 8,432,196 115 Aleppo Syria 3,561,796
41 Wuhan China 7,905,572 116 Dakar Senegal 3,520,215
42 Chengdu China 7,555,705 117 Casablanca Morocco 3,514,958
43 Dongguan China 7,434,935 118 Urumqi China 3,498,591
44 Nanjing China 7,369,157 119 Taiyuan China 3,481,810
45 Ahmadabad India 7,342,850 120 Curitiba Brazil 3,473,681
46 Hong Kong Hong Kong 7,313,557 121 Jaipur India 3,460,701
47 Ho Chi Minh City Vietnam 7,297,780 122 Shizuoka Japan 3,368,988
48 Foshan Foshan 7,035,945 123 Hefei China 3,34,7591
49 Kuala Lumpur Malaysia 6,836,911 124 San Francisco United States 3,300,075
50 Baghdad Iraq 6,642,848 125 Fuzhou China 3,282,932
51 Santiago Chile 6,507,400 126 Shijiazhuang China 3,264,498
52 Hangzhou China 6,390,637 127 Seattle United States 3,248,724
53 Riyadh Saudi Arabia 6,369,710 128 Addis Ababa Ethiopia 3,237,525
54 Shenyang China 6,315,470 129 Nanning China 3,234,379
55 Madrid Spain 6,199,254 130 Lucknow India 3,221,817
56 Xi’an China 6,043,700 131 Busan South Korea 3,216,298
57 Toronto Canada 5,99,2739 132 Wenzhou China 3,207,846
58 Miami United States 5,817,221 133 Ibadan Nigeria 3,160,190
59 Pune India 5,727,530 134 Ningbo China 3,131,921
60 Belo Horizonte Brazil 5,716,422 135 San Diego United States 3,10,7034
61 Dallas United States 5,702,641 136 Milan Italy 3,098,974
62 Surat India 5,650,011 137 Yaounde Cameroon 3,065,692
63 Houston United States 5,638,045 138 Athens Greece 3,051,899
64 Singapore Singapore 5,618,866 139 Wuxi China 3,049,042
65 Philadelphia United States 5,585,211 140 Campinas Brazil 3,047,102
66 Kitakyushu Japan 5,510,478 141 Izmir Turkey 3,040,416
67 Luanda Angola 5,506,000 142 Kanpur India 3,020,795
68 Suzhou China 5,472,033 143 Mashhad Iran 3,014,424
69 Haerbin China 5,457,414 144 Puebla Mexico 2,984,048
70 Barcelona Spain 5,258,319 145 Sana’a Yemen 2,961,934
71 Atlanta United States 5,142,140 146 Santo Domingo Domican Rep. 2,945,353
72 Khartoum Sudan 5,129,358 147 Douala Cameroon 2,943,318
73 Dar es Salaam Tanzania 5,115,670 148 Kiev Ukraine 2,941,884
74 Saint Petersburg Russia 4,992,991 149 Guatemala City Guatemala 2,918,337
75 Washington D.C. United States 4,955,139 150 Caracas Venezuela 2,916,183
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