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1. Introduction

The applications of Sturm–Liouville equations in mathematical physics, science, and
engineering are numerous and expanding all the time. The majority of second-order differ-
ential equations eventually rewrite as Sturm–Liouville type equations. The eigenvalues and
eigenvectors are arranged according to the Sturm–Liouville theory, and they cover an or-
thogonal basis. The best way for us to gain insight into the spectrum of a dynamical system
has been advantageously demonstrated [1]. As a substitute strategy, differential equations
of fractional order models are currently overly used since the data from exploratory and
area of measurement studies cannot be strictly characterized by differential equations of
integer order. In recent times, it has been discovered that the fractional Sturm–Liouville
types offer more accurate system solutions than the traditional type [2,3].

The fractional Sturm–Liouville operator is widely used in quantum mechanics, as
well as in applied mathematics, physics, science, and engineering, for example [2]. As an
extension of the common Sturm–Liouville operator, Klimek and Agrawal [3] developed the
fractional Sturm–Liouville operator for the first time. Since then, many versions have been
introduced using the same style but with somewhat different formatting [4–6]. They looked
at the eigenvalues and eigenfunctions characteristics of the fractional Sturm–Liouville
operators and addressed variational qualities. Many authors have expressed interest in it
(see [7,8] and the references therein).

On the other hand, the infinite systems of differential equations take an extremely
important role in describing physical phenomena such as the branching process, neural
nets and dissociation of polymers [9]. Solving of PDEs by numerical methods very often
instructs an investigation of infinite systems of ODEs. Additionally, there is another
example related to using semidiscretization to solve several challenging problems for
parabolic PDEs [10]. Due to this, other writers became interested in studying some of its
principles and qualities, Refs. [11–14]. This research used a measure of noncompactness
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approach as their foundation. A mapping from a set of all nonempty and bounded subsets
to a particular Banach space that is realized with the condition that it is equal to zero for
relatively compact subsets is the measure of noncompactness. It has significant applications
in several forms of nonlinear analysis, optimization, the differential, integral, and integro-
differential equations, among other areas, and plays a very important role in fixed point
theory [15,16].

Many mathematicians and physicians have focused their attention on thoroughly
investigating the boundary value problems presented based on such equations due to
the high visibility of fractional differential equations and their outstanding importance
and verity applications, particularly the investigation of the existence and uniqueness of
solutions in Banach spaces (see [17–19]).

To demonstrate our problem in abstract form, we assume y = (y1, y2, . . . ), cDα
a+y =

(cDα
a+y1, cDα

a+y2, . . . ) and f = ( f1, f2, . . . ) are sequences of real functions, where cDα
a+ is

the left Caputo fractional derivative of order 0 < α ≤ 1. The main objective of the current
work is to discuss the existence of solutions to the following infinite system related to the
fractional Sturm–Liouville operator

( cDν
b−(p(t) cDµ

a+yi(t)))(t) = fi(t, y(t), ( cDα
a+y)(t)) t ∈ [a, b], i ∈ N, (1)

where p : [a, b] → R+ is an absolutely continuous function, f : [a, b] × c × c → c with
fi : [a, b] × c × c → R are supposed functions for all i ∈ N under certain assumptions,
which will be mentioned later, and cDµ

a+ and cDν
b− are the left and right Caputo fractional

derivatives of orders µ ∈ (1, 2) and ν ∈ (0, 1], respectively. Here, c is a sequence space of
all convergent sequence of real functions. The problem subjects to the conditions

yi(a) = Ai, y′i(a) = Bi yi(b) = Ci, i ∈ N, (2)

where Ai, Bi and Ci are constants for all i ∈ N.
Because the Sturm–Liouville operator and infinite system play such a significant role

in the theory of differential equations, we dedicate this contribution to a discussion of the
boundary value problems (1) and (2). Our research relies on using the measure of noncom-
pactness technique in a sequence space connected to the space c (the space of all convergent
sequences) with the assistance of the Darbo and Meir–Keeler fixed point theorems.

Several contributors have attempted to apply the well-known Banach contraction
principle in their publications. Darbo’s fixed point theorem is a well-known generalization
of the Banach contraction principle. There are many generalizations of the Meir–Keeler
condensing operator that use the measure of non-compactness to verify several new fixed
point theorems and to analyze the solvability of a system of Volterra type functional integral
equations. In addition, there are many expansions of Darbo’s fixed point theorem, as well
as some conclusions on the existence of coupled fixed points for a specific class of operators
in a Banach space which can be used to investigate the existence of a solution for a system
of nonlinear functional integral and differential equations as applications [20–22]. Due
to the main role of these fixed point theorems, we choose them to be the basic tools with
which to investigate our problem.

2. Basic Definitions and Lemmas

In this part, we present some fundamental concepts and identities for fractional
integrals and derivatives that are covered in the book’s first and second chapters [23–25].
Additionally, we provide helpful lemmas related to our topic.

Definition 1. Let [a, b] (−∞ < a < b < ∞) be a finite interval and AC([a, b]) be the space
of all absolutely continuous functions. Then, h ∈ AC([a, b]) if and only if the exist a function
ψ ∈ L(a, b) (the space of primitives of Lebesgue summable functions) and a constant Q such that

h(t) = Q +
∫ t

a
ψ(s)ds, t ∈ [a, b].
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Remark 1. The previous definition implies that the absolutely continuous function h(t) has a
summable derivative h′(t) = ψ(t) a.e. on the interval [a, b] and h(a) = Q. Therefore, we can
denote by ACn([a, b]); n ∈ N to the space of complex-valued functions h(t) which have continuous
derivatives up to order n− 1 on [a, b] such that h(n−1) ∈ AC[a, b] with AC1[a, b] = AC[a, b].
According to Lemma 1.1 in [23], the function h ∈ ACn([a, b]) for all n ∈ N if and only if there
exists ψ ∈ L(a, b) such that

h(t) =
n−1

∑
i=0

Qi(t− a)i +
1
n!

∫ t

a
(t− s)n−1ψ(s)ds, t ∈ [a, b],

where Qi; i = 1, 2, . . . , n− 1 are constants.

Definition 2. Let h ∈ ACn([a, b]), n ∈ N and n− 1 < ρ ≤ n. Then, the left and right fractional
derivatives in the Caputo sense, respectively, are given by

cDρ
a+h(t) =

1
Γ(n− ρ)

∫ t

a
(t− s)n−ρ−1h(n)(s)ds = (In−ρ

a+ Dnh)(t),

cDρ
b−h(t) =

(−1)n

Γ(n− ρ)

∫ b

t
(s− t)n−ρ−1h(n)(s)ds = (−1)n(In−ρ

b−
Dnh)(t),

where Iγ
a+ and Iγ

b−
are the left and right fractional integrals rendered by

Iγ
a+h(t) =

1
Γ(γ)

∫ t

a
(t− s)γ−1h(s)ds, γ > 0,

Iγ
b−h(t) =

1
Γ(γ)

∫ b

t
(s− t)γ−1h(s)ds, γ > 0.

Lemma 1. Let h ∈ ACn([a, b]) and n, m ∈ N such that n− 1 < ρ ≤ n, m− 1 < γ ≤ m and
ρ ≤ γ. Then, we have

Iρ
a+ Iγ

a+h(t) = Iρ+γ
a+ h(t), Iρ

b− Iγ
b−h(t) = Iρ+γ

b− h(t)
cDρ

a+ Iρ
a+h(t) = h(t), cDρ

b− Iρ
b−h(t) = h(t)

cDρ
a+ Iγ

a+h(t) = Iγ−ρ
a+ h(t), cDρ

b− Iγ
b−h(t) = Iγ−ρ

b− h(t)

Iρ
a+

cDρ
a+h(t) = h(t)−

n−1

∑
k=0

Kk(t− a)k, Iρ
b−

cDρ
b−h(t) = h(t)−

n−1

∑
k=0

K′k(b− t)k,

where Kk = h(k)(a)/k! and K′k = h(k)(b)/k! are constants for all k = 0, 1, . . . , n− 1.

Lemma 2. Let n− 1 < ρ ≤ n such that n ∈ N and δ > −1. Then, we have

Iρ
a+(t− a)δ =

Γ(δ + 1)
Γ(δ + ρ + 1)

(t− a)δ+ρ

Iρ
b−(b− t)δ =

Γ(δ + 1)
Γ(δ + ρ + 1)

(b− t)δ+ρ

and if δ 6= 0, 1, 2, . . . , n− 1, we have

cDρ
a+(t− a)δ =

Γ(δ + 1)
Γ(δ− ρ + 1)

(t− a)δ−ρ

cDρ
b−(b− t)δ =

Γ(δ + 1)
Γ(δ− ρ + 1)

(b− t)δ−ρ.

For δ = 0, 1, 2, . . . , n− 1, we have cDρ
a+(t− a)δ = cDρ

b−(b− t)δ = 0.
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Lemma 3. Let n ∈ N and n− 1 < γ < n. Then,

(1) Iγ
a+h ∈ ACn([a, b]) if h ∈ L(a, b) or h ∈ ACm([a, t]) where m = 1, 2 . . .;

(2) cDγ
a+h ∈ AC([a, b]) if h ∈ ACn+m([a, b]) where m = 0, 1, 2 . . ..

Proof. By helping Definition 1 and Remark 1, we can introduce the proofs as follows.

(1) Let h ∈ L(a, b). Then,

Iγ
a+h(t) =

1
Γ(γ)

∫ t

a
(t− s)γ−1h(s)ds =

1
Γ(γ)

∫ t

a
(t− s)n−1(t− s)γ−nh(s)ds.

It is obvious that −1 < γ− n < 0, which implies that the function t 7→ (t− s)γ−n ∈
L(a, t) ⊂ L(a, b), and so by virtue of the last integral in Remark 1, and noting that
the product of two Lebesgue integrable functions is also Lebesgue integrable, we get
Iγ
a+h ∈ ACn([a, b]).

Now, let h ∈ ACm([a, b]), there exists ψ ∈ L(a, b) such that

h(t) =
m−1

∑
i=0

Qi(t− a)i + Im
a+ψ(t),

and so

Iγ
a+h(t) =

m−1

∑
i=0

i!
Γ(i + γ + 1)

Qi(t− a)i+γ + Im+γ
a+ ψ(t).

Plainly, the (i + 1)th term belongs ACn+i([a, b]) for i = 0, 1, . . . , m, then Iγ
a+h ∈

ACn([a, b]).

(2) Since h ∈ ACn+m([a, b]) for m = 0, 1, 2 . . ., then h(n) ∈ ACm([a, b]) and so by the first
statement and the fact 0 < n− γ < 1, we get

cDγ
a+h = In−γ

a+ h(n) ∈ AC([a, b]).

These lead to the desired results.

Lemma 4. Let h ∈ AC([a, b]), y ∈ AC2([a, b]), 0 < ν ≤ 1, 1 < µ < 2 and p : [a, b] → R+ be
an absolutely continuous function. Then, the linear fractional Sturm–Liouville equation,

( cDν
b−(p(t) cDµ

a+y(t)))(t) = h(t), t ∈ [a, b], (3)

subjected to the conditions

y(a) = A, y′(a) = B, y(b) = C, (4)

has the unique solution

y(t) =
1

Γ(µ)

∫ t

a
p−1(s)(t− s)µ−1

(
1

Γ(ν)

∫ b

s
(u− s)ν−1h(u)du

)
ds (5)

− ∆(t)
∆(b)Γ(µ)

∫ b

a
p−1(s)(b− s)µ−1

(
1

Γ(ν)

∫ b

s
(u− s)ν−1h(u)du

)
ds

+
C− A− B(b− a)

∆(b)
∆(t) + A + B(t− a),

where

∆(t) = Iµ
a+ p−1(t) =

1
Γ(µ)

∫ t

a
(t− s)µ−1 p−1(s)ds,
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such that ∆(b) 6= 0.

Proof. Let y ∈ AC2([a, b]), p ∈ AC([a, b]) and h ∈ AC([a, b]) satisfy the fractional differ-
ential Equation (3) and its boundary conditions (4). According to the last statement of
Lemma 1 with operating Iν

b− on both sides of (3), we get

p(t)(cDµ
a+y)(t) = K + Iν

b−h(t),

where K is a constant. It is obvious that the fraction integral is well-defined due to
h ∈ AC([a, b]). Since the function p has values in R+, its reciprocal is defined and ab-
solutely continuous. Hence, we have

(cDµ
a+y)(t) = p−1(t)(K + Iν

b−h(t)).

According to the penultimate statement of Lemma 1 with operating Iµ
a+ on both sides,

we get

y(t) = Iµ
a+ p−1(t)(K + Iν

b−h(t)) + y(0) + y′(0)(t− a) = Iµ
a+ p−1(t)(K + Iν

b−h(t)) + A + B(t− a).

The boundary condition y(b) = C leads to

K =
C− A− B(b− a)

∆(b)
− 1

Γ(µ)∆(b)

∫ b

a
p−1(s)(b− s)µ−1

(
1

Γ(ν)

∫ b

s
(u− s)ν−1 f (u)du

)
ds

which implies that the relation (5) is realized.
Conversely, assume that (5) is verified and the function p, h ∈ AC([a, b]). It is easy

to see that the solution (5) satisfies the initial and boundary conditions y(a) = A and
y(b) = C.

It is known that if p ∈ AC([a, b]) and its values in R+, then p−1 ∈ AC([a, b]). Now,
the function ∆ can be rewritten as ∆(t) = Iµ

a+ p−1(t), (1 < µ < 2) which, in view of the first
statement of Lemma 3, we find that ∆ ∈ AC2([a, b]). Additionally, we have h ∈ AC([a, b]),
which implies Iν

b−h ∈ AC([a, b]). In the same way, we get Iµ
a+(p−1(t)Iν

b−h) ∈ AC2([a, b])
which concludes that y ∈ AC2([a, b]) and (cDµ

a+y)(t) is well-defined over the interval [a, b].
Now, we have y ∈ AC2([a, b]), which implies that y′ ∈ AC([a, b]). Since 1 < µ < 2, then
(Iµ

a+)
′ = Iµ−1

a+ , so it is not difficult to see that the (5) satisfies the initial condition y′(a) = B.
By using some results of Lemmas 1 and 2 operating by cDµ

a+ on both sides of (5), we get

(cDµ
a+y)(t) = p−1(t)Iν

b−h(t)− p−1(t)
∆(b)Γ(µ)

∫ b

a
p−1(s)(b− s)µ−1

(
1

Γ(ν)

∫ b

s
(u− s)ν−1h(u)du

)
ds

+
C− A− B(b− a)

∆(b)
p−1(t),

which can be rewritten as

p(t)(cDµ
a+y)(t) = Iν

b−h(t) + Constant.

Again, Remark 1 tells us that p(cDµ
a+y) ∈ AC([a, b]), which implies that (cDµ

a+y) ∈
AC([a, b]). Thus, (cDν

b− p(t)c(Dµ
a+y(t)))(t) is well-defined over the interval [a, b]. Operating

by cDν
b− on both sides of the last equation using some results of Lemmas 1 and 2, we get

the Equation (3). This completes the proof.

In the sequel, we need the following lemma,
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Lemma 5. Let α > −1 and β > 0; then, we have

∫ b

a
sα(c− s)β−1ds = cα+β

[
B b

c
(α + 1, β)− B a

c
(α + 1, β)

]
,

where Bx(m, n) is the incomplete beta function defined by

Bx(m, n) =
∫ x

0
sm−1(1− s)n−1ds, m, n > 0.

In particular, B1(m, n) = B(m, n) where B(m, n) is the beta function.

3. Measure of Noncompactness

Consider that (B, ‖ · ‖) is a Banach space, HB is the nonempty and bounded subset
and LB is the subset of all relatively compact.

Definition 3 ([9]). A mapping β : HB → R+ is said to be a measure of noncompactness in B
if for all Ω, Ωn ∈ HB for all n ∈ N. Then, the following assertions hold:

(1) The set ker β = {Ω ∈ HB|β(Ω) = 0} 6= φ and ker β ⊂ LB;

(2) if Ω1 ⊂ Ω2, then β(Ω1) ≤ β(Ω2);

(3) β(Ω) = β(Ω) = β(ConvΩ);

(4) for λ ∈ [0, 1], we have β(λΩ1 + (1− λ)Ω2) ≤ λ1β(Ω1) + (1− λ)β(Ω2);

(5) if (Ωn) is a sequence of closed subsets ofHB with Ωn+1 ⊂ Ωn, n ∈ N and lim
n→∞

β(Ωn) = 0,

then ∩∞
n=1Ωn 6= φ.

Definition 4 ([9]). The measure of noncompactness β is called sublinear if it verifies

(i) for all Ω ∈ HB and λ ∈ R, β(λΩ) ≤ |λ|β(Ω), (homogeneous measure);

(ii) for all Ω1, Ω2 ∈ HB, β(Ω1 + Ω2) ≤ β(Ω1) + β(Ω2), (subadditive measure).

Definition 5 ([9]). The measure of noncompactness β is called regular if it is sublinear and verifies

(iii) for all Ω1, Ω2 ∈ HB, β(Ω1 ∪Ω2) = max{β(Ω1), β(Ω2)}, (maximum property);

(iv) ker β = LB, (full measure).

Theorem 1 (Darbo’s Theorem [15]). Let Ω be a nonempty, bounded, closed and convex subset of
a Banach space B. Suppose that P : Ω→ Ω is a continuous map, such that there exists a constant
k ∈ [0, 1) with the property β(PΩ) ≤ kβ(Ω), then P has a fixed point in Ω.

Definition 6 ([26]). Consider K is a nonempty subset of a Banach space B and β is a measure of
noncompactness on B. Then the operator P : K → K is called a Meir–Keeler condensing operator
if, for all ε > 0, there exists δ > 0 such that for all bounded subset Ω ∈ K , we have

ε < β(Ω) < ε + δ⇒ β(PΩ) < ε.

Theorem 2 (Meir–Keeler Theorem [26]). Consider that K is a nonempty, bounded, closed and
convex subset of a Banach space B and β is a measure of noncompactness on B. If P : K → K is
a continuous and Meir–Keeler condensing operator, then the operator P has at least one fixed point
and the set of all fixed points of P : K → K in B is compact.

4. Main Results

Let S be a sequence space of all real sequences x = (xi)i∈N, the space of all convergent
sequences c is defined as [9]

c =
{

x ∈ S : there exists L ∈ R such that lim
i→∞

xi = L
}
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equipped with the norm
‖x‖c = sup

i∈N
|xi|.

It is known that (c, ‖ · ‖c) is a Banach space. According to Theorem 3.1 in [27], for all
Ω ∈ Hc, the quantity

βc(Ω) = lim
n→∞

{
sup

(xk)∈Ω
{sup |xi − xj| : i, j > n}

}
(6)

is a regular measure of noncompactness in the sequence space (c, ‖ · ‖).
Define the space ACn([a, b], c), n ∈ N as

ACn([a, b], c) = {y ∈ c : yi ∈ ACn([a, b]), i ∈ N}

with AC([a, b], c) = AC1([a, b], c) where y(t) = (yi(t))i∈N. Consider the space

B =
{

y : y ∈ AC2([a, b], c) and cDα
a+y(t) ∈ AC([a, b], c)

}
,

equipped with the norm
‖y‖ = ‖y‖c + ‖ cDα

a+y‖c.

The following lemma shows that the space (B, ‖ · ‖) is a Banach space.

Lemma 6. The space (B, ‖ · ‖) is a Banach space.

Proof. Let (yn)n∈N be a Cauchy sequence in B, which means that yn = (yn
i )i∈N ∈ c for all

n ∈ N and yn
i ∈ AC

2([a, b]) for all i ∈ N. It is known that (c, ‖ · ‖c) is a Banach space [9] and
so there is u = (ui)i∈N ∈ c such that yn → u as n→ ∞. According to the second statement
of Lemma 3, we get cDα

a+yn
i ∈ AC([a, b]) for all i, n ∈ N. From the Definition 2 of the

Caputo derivative and Lebesgue’s dominated convergence theorem, we can easily deduce
that lim

i→∞
cDα

a+yn
i (t) exists for all n ∈ N and t ∈ [a, b], which implies that the sequence

( cDα
a+yn)n∈N ∈ c. We claim that ( cDα

a+yn)n∈N is a Cauchy sequence in the space c, which
means that there is v = (vi)i∈N ∈ c such that cDα

a+yn → v as n → ∞. To prove that, let
n, m, N ∈ N such n, m > N. Then,

‖( cDα
a+yn)(t)− ( cDα

a+ym)(t)‖c ≤
1

Γ(1− α)

∫ t

a
(t− s)−α

∥∥(yn(s))′ − (ym(s))′
∥∥

cds

=
1

Γ(1− α)

∫ t

a
(t− s)−α sup

i∈N

∣∣(yn
i (s))

′ − (ym
i (s))

′∣∣ds

≤ 1
Γ(1− α)

∫ t

a
(t− s)−α sup

i∈N

(
|(yn

i (s))
′|+ |(ym

i (s))
′|
)
ds.

By virtue of yn
i ∈ AC

2([a, b]) for all i, n ∈ N, we get (yn
i )
′ ∈ AC([a, b]) for all

i, n ∈ N, which means that (yn
i )
′ ∈ AC([a, b]) are continuous for all i, n ∈ N and at-

tain their maximum in the interval [a, b]. Thus, there exist positive constants δn < ∞ such
that supi∈N |(yn

i (t))
′| ≤ δn for all t ∈ [a, b] and n ∈ N. Therefore,

‖( cDα
a+yn)(t)− ( cDα

a+ym)(t)‖c ≤
1

Γ(1− α)

∫ t

a
(t− s)−α(δn + δm)ds

≤ (b− a)1−α

Γ(2− α)
(δn + δm) < ε, n, m > N,

which implies that our claim is true.
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Since yn
i ∈ AC

2([a, b]) for all i ∈ N, according to Remark 1, there are ψn
i ∈ L(a, b)

such that

yn
i (t) = Q1 + Q2(t− a) +

∫ t

a
(t− s)ψn

i (s)ds, t ∈ [a, b].

By Lebesgue’s dominated convergence theorem, we can deduce that

ui(t) = Q1 + Q2(t− a) +
∫ t

a
(t− s)ψi(s)ds, t ∈ [a, b],

where ψn
i → ψi ∈ L(a, b) as n→ ∞, which means that ui ∈ AC2([a, b]) for all i ∈ N and so

u ∈ AC2([a, b], c). In the same way, v ∈ AC([a, b], c).
It suffices to prove that v(t) = cDα

a+u(t). To do this, by using Lemma 1, we have

∥∥Iα
a+

cDα
a+yn(t)− Iα

a+v(t)
∥∥

c ≤
1

Γ(α)

∫ t

a
(t− s)α−1 sup

i∈N

∣∣ cDα
a+yn

i (s)− vi(s)
∣∣ds

≤ (b− a)α

Γ(α + 1)

∥∥ cDα
a+yn(t)− v(t)

∥∥
c.

Since cDα
a+yn(t) → v(t) as n → ∞ uniformly on [a, b], then we find that

Iα
a+

cDα
a+yn(t) → Iα

a+v(t) as n → ∞ uniformly on [a, b]. Hence, by using Lemma 1, we
find that yn(t)− yn(0)→ Iα

a+v(t) as n→ ∞, which leads to u(t)− k = Iα
a+v(t) where k is a

constant. Operating by cDα
a+ on both sides we obtain cDα

a+u(t) = v(t). These conclude for
any ε > 0 that there exists an n0 ∈ N such that ‖yn − u‖c < ε/2 and ‖cDα

a+yn − v‖c < ε/2
for n > n0. Therefore,

‖yn − u‖ = ‖yn − u‖c + ‖cDα
a+(y

n − u)‖c

= ‖yn − u‖c + ‖cDα
a+yn − v)‖c

<
ε

2
+

ε

2
= ε, n > n0.

This ends the proof.

Let us introduce the following quantity,

βB(Ω) = β1(Ω) + β2(Ω), (7)

for all nonempty bounded subsets Ω ∈ HB, where

β1(Ω) = lim
n→∞

{
sup
y∈Ω

{
sup
i,j>n

{
max
t∈[a,b]

|yi(t)− yj(t)|
}}}

,

β2(Ω) = lim
n→∞

{
sup
y∈Ω

{
sup
i,j>n

{
max
t∈[a,b]

| cDα
a+yi(t)− cDα

a+yj(t)|
}}}

.

Lemma 7. The quantity βB(Ω) is a sublinear and full measure of noncompactness in the space B.

Proof. Since y ∈ Ω ∈ HB, then we have y ∈ AC2([a, b], c) and cDαy ∈ AC([a, b], c), which
mean, according to the regular measure of noncompactness (6), that the quantities β1(Ω)
and β2(Ω) are regular measures of noncompactness on the space AC([a, b], c). This means
that both β1 and β2 satisfy all identities mentioned in Definitions 3–5. It is clear that
ker β = ker β1 ∩ ker β2. From the identities (1) in Definition 3 and (iv) in Definition 5, we
get ker β = ker β1 = ker β2 = LB 6= φ, which means that the identity (1) in Definition 3
and identity (iv) in Definition 5 hold. It is not difficult to verify the identities (2)–(5) in
Definition 3 and the identities (i) and (ii) in Definition 4, which imply that β is a sublinear
measure of noncompactness.
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Remark 2. Let Ω1, Ω2 ∈ HB with β1(Ω1) = 2, β1(Ω2) = 2.5, β2(Ω1) = 3 and β2(Ω2) = 1.4,
then we have

β(Ω1 ∪Ω2) = β1(Ω1 ∪Ω2) + β2(Ω1 ∪Ω2)

= max{β1(Ω1), β1(Ω2)}+ max{β2(Ω1), β2(Ω2)} = 5.5

6= max{β(Ω1), β(Ω2)} = 5,

which means that β has no maximum property in general. Indeed, we have

β(Ω1 ∪Ω2) ≥ β1(Ω1) + β2(Ω1) = β(Ω1)

or β(Ω1 ∪Ω2) ≥ β1(Ω2) + β2(Ω2) = β(Ω2),

which conclude that

β(Ω1 ∪Ω2) ≥ max{β(Ω1), β(Ω2)}.

The discussion of the existence results for the infinite system (1) and (2) will be studied
under the following suppositions:

(P1) The functions fi : [a, b]× c× c→ R are absolutely continuous functions for all i ∈ N
and t ∈ [a, b];

(P2) There exists a nonnegative sequence of functions w(t) = (wi(t))i∈N such wi : [a, b]→
R+ ∪ 0 satisfies the inequality.

| fi(t, y, z)− fi(t, y′, z′)| ≤ wi(t) sup
j∈N

(|yj − y′j|+ |zj − z′j|)

for all i ∈ N, where y, y′ ∈ AC2([a, b], c) and z, z′ ∈ AC([a, b], c) are real sequences of
yj, y′j and zj, z′j for all j ∈ N, respectively.

(P3) Let i, j ∈ N be large enough, then we get

| fi(t, y, z)− f j(t, y, z)| ≤ sup
m,n≥min{i,j}

|Fm(t)− Fn(t)|

+ sup
k∈N

wk(t) sup
m,n≥min{i,j}

(|ym − yn|+ |zm − zn|),

where Fi(t) = | fi(t, 0, 0)| for all i ∈ N, y = (yi)i∈N and z = (zi)i∈N.

(P4) There are positive constants

E(v; µ, ν) = sup
i∈N

max
t∈[a,b]

E(vi; µ, ν)(t),

Eb(v; µ, ν) = sup
i∈N

E(vi; µ, ν)(b),

where

E(vi; µ, ν)(t) =
1

Γ(µ)

∫ t

a
p−1(s)(t− s)µ−1(Iν

b−vi(s)
)
ds, i ∈ N.

Remark 3. It is obvious that the function t 7→ ∆(t; µ) is increasing on [a, b] due to the positivity
of the function p(t), which implies that ∆(t; µ) ≤ ∆(b; µ) for all t ∈ [a, b]. Additionally, for all
µ > 0, we have

E(1; µ, 0)(t) = ∆(t; µ).
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In particular, if µ ≥ 1, we have

Eb(v; µ, ν) =max
t∈I

E(v; µ, ν)(t),

∆(b; µ) =max
t∈I

E(1; µ, 0)(t).

To simplify the calculations, we provide

QF = E(F; µ− α, ν) +

(
2 +

E(1; µ− α, 0)
Eb(1; µ, 0)

)
Eb(F; µ, ν), (8)

Qw = 2Eb(w; µ, ν) + E(w; µ− α, ν) +
E(1; µ− α, 0)Eb(w; µ, ν)

Eb(1; µ, 0)
(9)

Q = N1 +
N2

Eb(1; µ, 0)
Eb(1; µ− α, 0) + N3, (10)

where

N1 = max
i∈N
{|Ci − Ai − Bi(b− a)|+ |Ai + Bi(b− a)|},

N2 = max
i∈N
{|Ci − Ai − Bi(b− a)|+ |Ai + Bi(b− a)|},

N3 = max
i∈N
{|Bi|}

(b− a)1−α

Γ(2− α)
.

We say that the sequence y(t) = (yi(t))i∈N is a solution of the initial value
problems (1) and (2) if yi(t) satisfies Equation (1) and boundary conditions (2) for all i ∈ N.
From Lemma 4, yi has a unique representation,

yi(t) =
1

Γ(µ)

∫ t

a
p−1(s)(t− s)µ−1

(
1

Γ(ν)

∫ b

s
(u− s)ν−1 fi(u, y(u), cDα

a+y(u))du
)

ds

− ∆(t; µ)

∆(b; µ)Γ(µ)

∫ b

a
p−1(s)(b− s)µ−1

(
1

Γ(ν)

∫ b

s
(u− s)ν−1 fi(u, y(u), cDα

a+y(u))du
)

ds,

where

∆(t; µ) =
1

Γ(µ)

∫ t

a
(t− s)µ−1 p−1(s)ds = Iµ

a+ p−1(t).

According to Lemma 4, yi ∈ AC2([a, b]) and cDα
a+yi ∈ AC([a, b]) for all i ∈ N. In

view of the assumption (P1) and Lebesgue’s dominated convergence theorem, we get that
limi→∞ yi(t) exists for all t ∈ [a, b] which implies that y ∈ c.

Let (Tiyi)(t) = yi(t) be operators defined, for all i ∈ N and t ∈ [a, b], by

Tiyi(t) =
1

Γ(µ)

∫ t

a
p−1(s)(t− s)µ−1(Iν

b− fi(s, y(s), cDα
a+y(s))

)
ds

− ∆(t; µ)

∆(b; µ)Γ(µ)

∫ b

a
p−1(s)(b− s)µ−1(Iν

b− fi(s, y(s), cDα
a+y(s))

)
ds

+
C− A− B(b− a)

∆(b; µ)
∆(t; µ) + A + B(t− a) (11)
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and its fractional derivatives of orders 0 < α ≤ 1 for all i ∈ N, using the third statement in
Lemma 1, which can be evaluated as

( cDα
a+Tiyi)(t) =

1
Γ(µ− α)

∫ t

a
p−1(s)(t− s)µ−α−1(Iν

b− fi(s, y(s), cDα
a+y(s))

)
ds

− ∆(t; µ− α)

∆(b; µ)Γ(µ)

∫ b

a
p−1(s)(b− s)µ−1(Iν

b− fi(s, y(s), cDα
a+y(s))

)
ds

+
C− A− B(b− a)

∆(b; µ)
∆(t; µ− α) +

B(t− a)1−α

Γ(2− α)
. (12)

As above, it is clear that Ti ∈ AC2([a, b]) and cDα
a+Ti ∈ AC([a, b]) for all i ∈ N. In

view of the assumption (P1) and Lebesgue’s dominated convergence theorem, we get that

lim
i→∞

(Tiyi)(t) and lim
i→∞

( cDα
a+Tiyi)(t)

exist for all t ∈ [a, b], which allows us to define the sequence operator T : B → B where
(T y)(t) = ((Tiyi)(t))i∈N.

Lemma 8. Under the hypotheses (P1)–(P4), the operator T : B→ B is bounded and continuous
on the closed ball.

Br = {y ∈ B : ‖y‖ ≤ r, yi satisfies the boundary conditions (2)} (13)

with fixed radius r satisfying the inequality r ≥ (QF + Q)/(1−Qw) provided that Qw < 1 where
QF, Qw and Q are given in (8)–(10), respectively.

Proof. It is easy using the hypothesis (P2) to show that

| fi(t, y, z)| ≤ | fi(t, y, z)− fi(t, 0, 0)|+ | fi(t, 0, 0)|
≤ wi(t)(‖y‖c + ‖z‖c) + Fi(t).

For all y ∈ Br, in view of Remark 3, we get

|Tiyi(t)| ≤
2

Γ(µ)

∫ b

a
p−1(s)(b− s)µ−1(Iν

b− | fi(s, y(s), cDα
a+y(s))|

)
ds + N1

≤ 2
Γ(µ)

∫ b

a
p−1(s)(b− s)µ−1(Iν

b−(wi(s)(|y(s)|+ | cDα
a+y(s)|) + Fi(s))

)
ds + N1

=2(Eb(Fi; µ, ν) + Eb(wi; µ, ν)(‖y‖c + ‖ cDα
a+y‖c)) + N1.

Hence, we have

‖T y‖c ≤ 2 sup
i∈N

(Eb(Fi; µ, ν) + Eb(wi; µ, ν)‖y‖) + N1

≤ 2(Eb(F; µ, ν) + Eb(w; µ, ν)‖y‖) + N1.

Similarly, we have

‖ cDαT y‖c ≤ E(F; µ− α, ν) + E(w; µ− α, ν)‖y‖)

+
E(1; µ− α, 0)

Eb(1; µ, 0)
(Eb(F; µ, ν) + Eb(w; µ, ν)‖y‖) + N2

Eb(1; µ, 0)
Eb(1; µ− α, 0) + N3.

According to the definition of the norm in the space B, we find that

‖T y‖ = ‖T y‖c + ‖ cDαT y‖c ≤ QF + Q‖y‖ ≤ QF + Qwr + Q ≤ r.
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Therefore, the operator T is bounded and T Br ⊆ Br.
In order to prove the continuity on Br, let δ > 0 exist for all ε > 0 and y, z ∈ Br such

that ‖y− z‖ < δ and δ < ε/Q. Then,

|Tiyi(t)− Tizi(t)| ≤
2

Γ(µ)

∫ b

a
p−1(s)(b− s)µ−1(Iν

b− | fi(s, y(s), cDα
a+y(s))− fi(s, z(s), cDα

a+z(s))|
)
ds

≤ 2
Γ(µ)

∫ b

a
p−1(s)(b− s)µ−1(Iν

b−(wi(s)(|y(s)− z(s)|+ | cDα
a+(y(s)− z(s))|))

)
ds

= 2Eb(wi; µ, ν)(‖y− z‖c + ‖ cDα
a+(y− z)‖c)

= 2Eb(wi; µ, ν)‖y− z‖,

which implies that

|T y− T z‖c = sup
i∈N
|Tiyi(t)− Tizi(t)| ≤ 2Eb(w; µ, ν)‖y− z‖.

In the same way, we can deduce that

‖ cDαT y− cDαT z)‖c ≤ E(w; µ− α, ν)‖y− z‖+ E(1; µ− α, 0)
Eb(1; µ, 0)

Eb(w; µ, ν)‖y− z‖.

Hence, we have

‖T y− T z‖ ≤ Q‖y− z‖ < ε.

This ends the proof.

Lemma 9. Under the hypotheses (P1)–(P4), the operator T : B → B is equicontinuous on the
interval [a, b].

Proof. Let a ≤ t1 < t2 ≤ b. Then, we see that

|∆(t2, µ)− ∆(t1, µ)| =
∣∣∣∣ 1
Γ(µ)

∫ t2

a
p−1(s)(t2 − s)µ−1ds− 1

Γ(µ)

∫ t1

a
p−1(s)(t1 − s)µ−1ds

∣∣∣∣
≤ 1

Γ(µ)

∫ t1

a
|p−1(s)|

(
(t2 − s)µ−1 − (t1 − s)µ−1

)
ds +

1
Γ(µ)

∫ t2

t1

|p−1(s)|(t2 − s)µ−1ds.

Since p : [a, b] → R+ is an absolutely continuous function, then p−1(t) is
also absolutely continuous on [a, b] and there exists a positive constant P such that
P = maxt∈[a,b] p−1(t). This implies that

|∆(t2, µ)− ∆(t1, µ)| ≤ P
Γ(µ)

[∫ t1

a

(
(t2 − s)µ−1 − (t1 − s)µ−1

)
ds +

∫ t2

t1

(t2 − s)µ−1ds
]

=
P

Γ(µ + 1)
[(t2 − a)µ − (t1 − a)µ],

which uniformly tends to zero as t1 → t2. Since 1 < µ < 2 and 0 < α < 1, then
0 < µ− α < 2 and so we have three cases:
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Case I. If 0 < µ− α < 1, then we obtain

|∆(t2, µ− α)− ∆(t1, µ− α)|

≤ P
Γ(µ− α)

[∫ t1

a

(
(t1 − s)µ−α−1 − (t2 − s)µ−α−1

)
ds +

∫ t2

t1

(t2 − s)µ−α−1ds
]

=
P

Γ(µ− α + 1)
[
2(t2 − t1)

µ−α + (t1 − a)µ−α − (t2 − a)µ−α
]

≤ 2P
Γ(µ− α + 1)

(t2 − t1)
µ−α → 0 as t1 → t2;

Case II. If µ− α = 1, then we obtain

|∆(t2, 1)− ∆(t1, 1)| ≤ P
Γ(µ− α)

∫ t2

t1

ds = P(t2 − t1)→ 0 as t1 → t2;

Case III. If 1 < µ− α < 2, then we obtain

|∆(t2, µ− α)− ∆(t1, µ− α)|

≤ P
Γ(µ− α)

[∫ t1

a

(
(t2 − s)µ−α−1 − (t1 − s)µ−α−1

)
ds +

∫ t2

t1

(t2 − s)µ−α−1ds
]

=
P

Γ(µ− α + 1)
[
(t2 − a)µ−α − (t1 − a)µ−α

]
→ 0 as t1 → t2.

These can be used by applying the same technique and the results in Lemma 5 to
show that

|Tiyi(t2)− Tiyi(t1)|

≤ 1
Γ(µ)

∫ t1

a
p−1(s)|(t2 − s)µ−1 − (t1 − s)µ−1|

(
Iν
b− | fi(s, y(s), cDα

a+y(s))|
)
ds

+
1

Γ(µ)

∫ tt

t1

p−1(s)(t2 − s)µ−1(Iν
b− | fi(s, y(s), cDα

a+y(s))|
)
ds

+
∆(t2, µ)− ∆(t1, µ)

∆(b, µ)Γ(µ)

∫ b

a
p−1(s)(b− s)µ−1(Iν

b−(| fi(s, y(s), cDα
a+y(s))|)

)
ds

+
N3

∆(b; µ)
(∆(t2, µ)− ∆(t1, µ)) + |Bi|(t2 − t1)

≤ A(E(Fi; µ, ν) + E(wi; µ, ν)‖y‖)
Γ(µ)Γ(ν + 1)

(∫ t2

a
sν(t2 − s)µ−1ds−

∫ t1

a
sν(t1 − s)µ−1ds

)
+

∆(t2, µ)− ∆(t1, µ)

∆(b, µ)Γ(µ)

∫ b

a
p−1(s)(b− s)µ−1(Iν

b−(| fi(s, y(s), cDα
a+y(s))|)

)
ds

+
N3

∆(b; µ)
(∆(t2, µ)− ∆(t1, µ)) + |Bi|(t2 − t1),

which uniformly tends to zero as t1 → t2. Similarly, it can be proven that

|( cDα
a+Tiyi)(t2)− ( cDα

a+Tiyi)(t1)| → 0 as t1 → t2,

which concludes that the operator T is equicontinuous on the interval [a, b].

Theorem 3. Under the hypotheses (P1)–(P4), the infinite systems (1) and (2) have at least one
solution in the closed ball Br defined in (13) provided that Qw < 1 where Qw is given in (9).
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Proof. Based on the results obtained in the previous two Lemmas, it is sufficient to calculate
the measure of noncompactness βB(T Br) given in (7). In order to do this: Let i, j ∈ N be
large enough; by using the hypotheses (P3) and (P4), we get

|Tiyi(t)− Tiyj(t)| ≤
2

Γ(µ)

∫ b

a
p−1(s)(t− s)µ−1(Iν

b− | fi(s, y(s), cDα
a+y(s))− f j(s, y(s), cDα

a+y(s))|
)
ds

≤ 2
Γ(µ)

∫ b

a
p−1(s)(t− s)µ−1

(
Iν
b−

(
sup

m,n≥min{i,j}
|Fm(s)− Fn(s)|

+ sup
k∈N

wk(s) sup
m,n≥min{i,j}

(|ym(s)− yn(s)|+ | cDα
a+ym(s)− cDα

a+yn(s)|)
))

ds.

We first compute the quantity β1(T Br) as follows:

β1(T Br) = lim
`→∞

{
sup
y∈Br

{
sup
i,j>`

{
max
t∈[a,b]

|Tiyi(t)− Tiyj(t)|
}}}

≤ 2E(1; µ, ν) lim
`→∞

sup
m,n≥min{i,j}>`

max
t∈[a,b]

|Fm(t)− Fn(t)|

+ 2E(w; µ, ν) lim
`→∞

sup
m,n≥min{i,j}>`

max
t∈[a,b]

(|ym(t)− yn(t)|+ | cDα
a+ym(t)− cDα

a+yn(t)|)

≤ 2Eb(w; µ, ν)βB(Br).

Similarly,

β2(
cDα

a+T Br) = lim
`→∞

{
sup
y∈Br

{
sup
i,j>`

{
max
t∈[a,b]

| cDα
a+Tiyi(t)− cDα

a+Tiyj(t)|
}}}

≤
(

Eb(w; µ− α, ν) +
E(1; µ− α, 0)
Eb(1; µ− α, 0)

Eb(w; µ− α, ν)

)
βB(Br),

which concludes that

βB(T Br) ≤ QβB(Br).

We complete the proof using two different theorems as follows:

Darbo’s Theorem: In view of Darbo’s Theorem 1 and the assumption Qw < 1, the infinite
system of the fractional Sturm–Liouville operators (1) and (2) has at least one solution
in Br.

Meir–Keeler Theorem: Suppose that for all ε > 0, there exists δ > such that δ < ε
(1−Qw)/Qw and ε < βB(Br) < ε + δ⇒ βB(T Br) < ε. In view of the Meir–Keeler
Theorem 2 and the assumption Qw < 1, the infinite system of fractional Sturm–
Liouville operators (1) and (2) has at least one solution in Br.

The proof is done.

5. Illustrative Example

Let us introduce the following example:

( cD
1
2
π−(p(t) cD

3
2
0+yi(t)))(t) = fi(t, y(t), ( cDα

a+y)(t) t ∈ [0, π], i ∈ N (14)

with the boundary conditions

yi(0) = yi(π) =

(
1
2

)i
y′i(0) = 0, i ∈ N. (15)
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ν = 1/2, a = 0, b = π, p(t) = 1/
√

π + t, µ = 3/2, α = 1/2. Additionally, we take

fi(t, y, z) =
i

∑
n=1

e−nt cos2(nt)
(t + 1)nn!

+
te−it

3(2π − t)3(t + i)3

i

∑
n=1

sin2n(nπt)
(n + t)4 (yn+1 − yn + cos(yn))

+
te−it

2(2π − t)3(t + i)3

∞

∑
n=i+1

cos2n(nπt)
(n + t)4 (zn−i+1 − zn−i).

It is obvious that the partial derivatives of fi with respect to t are continuous and so
fi : [0, π]× c× c→ R are absolutely continuous functions for all i ∈ N and t ∈ [0, π], which
is fully compatible with the assumption (P1). In order to verify the assumption (P2), let
y, y′, z, z′ ∈ B, noting that

| cos x− cos y| = 2
∣∣∣∣sin

x + y
2

sin
x− y

2

∣∣∣∣ ≤ |x− y|.

Then, we have

| fi(t, y, z)− fi(t, y′, z′)| ≤ te−it

3(2π − t)3(t + i)3

i

∑
n=1

1
n4 (|yn+1 − y′n+1|+ 2|yn − y′n|)

+
te−it

2(2π − t)3(t + i)3

∞

∑
n=i+1

1
n4 (|zn−i+1 − z′n−i+1|+ |zn−i − z′n−i)

≤ wi(t) sup
j∈N
{|yj − y′j|+ |zj − z′j|},

where

wi(t) =
te−it

(2π − t)3(t + i)3 ζ(4) =
π4te−it

90(2π − t)3(t + i)3

and ζ(·) is the Riemann zeta function.
Now, let i, j ∈ N be large enough and `1 = min{i, j}, `2 = max{i, j}, then we can

find that

| fi(t, y, z)− f j(t, y, z)| ≤ |Fi(t)− Fj(t)|+ wk(t)
`2

∑
n=`1+1

1
n4 (|yn+1 − yn|+ |zn−j+1 − zn−j|),

where wk(t) = max{wi(t), wj(t)} and

Fi(t) = fi(t, 0, 0) =
i

∑
n=1

e−nt cos2(nt)
(t + 1)nn!

+
te−it

3(2π − t)3(t + i)3

i

∑
n=1

sin2n(nπt)
(n + t)4 ,

which is fully coincident with the assumption (P3).
It is easy to see that

w(t) = sup
i∈N

wi(t) =
π4t

90(2π − t)3(t + 1)3 and w = max
t∈[0,π]

w(t) =
π2

90(π + 1)3 = w(π).

Additionally, we have

F(t) = sup
i∈N

Fi(t) =
∞

∑
n=1

e−nt cos2(nt)
(t + 1)nn!

+
t

3(2π − t)3(t + 1)3

∞

∑
n=1

1
(n + t)4

=
1
2

exp
[

e−t

1 + t

]
+

1
4

exp
[

e−t cos(2t)
1 + t

]
cos
[

e−t sin(2t)
1 + t

]
− 1 +

1
3

w(t)



Mathematics 2023, 11, 1444 16 of 17

and
F = max

t∈[0,π]
F(t) =

3
4

e− 1 +
1
3

w(π) ∼ 1.03923.

By carrying out of simple calculations in Mathematica 11, we can estimate the following:

E(1; µ− α, 0) = max
t∈[0,π]

E(1; 1, 0)(t) = max
t∈[0,π]

∫ t

0

√
π + sds

= max
t∈[0,π]

2
3

[
(π + t)

3
2 − π

3
2

]
=

2π
√

π

3
(2
√

2− 1) ∼ 6.78752,

Eπ(1; µ, 0) =
1
2

π2√π ∼ 8.74671,

Eπ(w; µ, ν) =
1

Γ(µ)

∫ π

0
p−1(s)(π − s)µ−1(Iν

b−w(s)
)
ds ∼ 0.0133265,

Eπ(F; µ, ν) =
1

Γ(µ)

∫ π

0
p−1(s)(π − s)µ−1(Iν

b−F(s)
)
ds ∼ 22.0125,

E(w; µ− α, ν) =
1

Γ(µ− α)

∫ π

0
p−1(s)(π − s)µ−α−1(Iν

b−w(s)
)
ds ∼ 0.0135021,

E(F; µ− α, ν) =
1

Γ(µ− α)

∫ π

0
p−1(s)(π − s)µ−α−1(Iν

b−w(s)
)
ds ∼ 15.0293.

These lead to Qw∼0.0683993 < 1, which satisfies all assumptions of the theorem.
Therefore, the infinite system of (1) and (2) has at least one solution in [0, π].
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