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Abstract: The space cable-driven continuous manipulator (SCCM) has a slender structure, ultra-
high degrees of freedom, and a low mass, which make it suitable for equipment inspection and
maintenance operations in an unstructured and limited space environment. In this paper, the
SCCM including the cable network and plenty of joint links was deeply modeled. Firstly, the
mapping relationship between the cable-driving space, joint space, and task space of the SCCM
was studied, and the complete kinematic relationship of the SCCM was established. Secondly,
the stiffness components of the SCCM are discussed, and the stiffness modeling method of each
part is given. Finally, the Cartesian space equivalent stiffness model of the end was established.
Then, a dynamic co-modeling method of Matlab + Adams is proposed, which greatly improved
the modeling efficiency while ensuring the modeling accuracy. Finally, based on the stiffness
model, the end stiffness characteristics of a specific configuration were analyzed, and the influ-
ence of the cable tension on the stiffness and frequency of the manipulator was analyzed. Based
on the dynamic co-modeling, the task trajectory dynamics’ simulation analysis and space slit cross-
ing experiment were carried out, which verified that the designed SCCM can meet the needs of
slit crossing.

Keywords: space manipulator; cable-driven manipulator; kinematics; stiffness; dynamics

MSC: 70E60

1. Introduction

The continuous manipulator is inspired by the structures of organisms, such as the
elephant trunk, in nature [1]. The continuous manipulator is generally composed of
elastic objects such as springs and flexible rods as the support skeleton [2–5] or a large
number of modular links and joints in series [6]. Therefore, the continuous manipulator
has ultra-high redundancy and even theoretically infinite degrees of freedom (DOFs). The
cable-driven continuous manipulator (CCM) adopts a cable to transmit the driving force,
which is convenient for the rear motor and the transmission part, reduces the volume and
mass of the manipulator, and can give full play to the dexterity, dynamics, and flexibility
of the continuous manipulator. It shows great application prospects in unstructured
constrained environments. In a gravity-free environment, the cable-driven continuous
manipulator’s advantages such as the long arm span, small diameter, and multiple DOFs
can be highlighted, and it can carry out in-space inspection [7–9], on-orbit servicing [10],
and spacecraft repair [11,12].

At present, scholars have proposed many kinds of CCMs, but the stiffness and load
capacity of the CCM based on an elastic skeleton are weak. The rigid–flexible hybrid CCM
with full-drive mode also faces the problem of low stiffness, and a large number of drive
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motors are needed to ensure dexterity. In view of this, Liu et al. [13–15] proposed a new
hybrid active–passive cable-driven segmented continuous manipulator (APCSCM), as
shown in Figure 1. A cable-constrained synchronous rotation mechanism (CCSRM) was
designed to couple the same DOFs in each manipulator segment to achieve an approximate
constant curvature, and the motion control of the segments is driven by three active
cables. The APCSCM can have high stiffness and load capacity without sacrificing the
dexterity and end accuracy. Liu et al. proposed an improved mechanism design of the
new manipulator. Based on the structural characteristics, the kinematics equation of the
active segment–joint angle was derived, and the kinematics, differential kinematics, and
configuration planning were simplified. Peng et al. [12] applied the manipulator to the
maintenance task of a space solar panel and proposed a synchronous planning method of
the end pose and manipulator shape through the space slit based on the extended Jacobian
matrix redundancy decomposition.

Figure 1. Structure diagram of the APCSCM.

However, since the APCSCM with linkage cables is formed by a complex cable net-
work, the complexity of the manipulator system is significantly increased. Liu et al. only
discussed the structural design, kinematic model and motion planning of the APCSCM,
and the stiffness modeling analysis of the APCSCM was lacking. Stiffness is very important
for the study of the APCSCM, because it affects the motion accuracy, dynamic stability,
and load-bearing capacity of the end. Wang et al. [16] proposed an eight-DOF variable
stiffness CCM, derived the stiffness model of the manipulator from the Jacobin matrix, and
used an optimization algorithm similar to the conjugate gradient method to calculate the
stiffness. Oliver-Butler et al. [17] derived the analytical equation of the load deflection
of the CCM by using the Bernoulli-Euler beam equation to analyze the influence of cable
tension, skeleton compression, and cable position on the overall stiffness and pointed
out that a non-parallel cable layout can significantly increase the stiffness of the CCM.
Gu et al. [18] proposed a stiffness model and active stiffness control scheme of a two-DOF
cable-driven redundant mechanism and verified the theory by simulation and experiment.
Zhang et al. [19] proposed a CCM with a flexible skeleton, established the end stiffness
model of the manipulator, and analyzed the factors affecting the end stiffness. Yuan et al. [20]
proposed a stiffness modeling framework for a CCM composed of multiple series universal
joints. The kinematic and static stiffness models of the manipulator were derived by analyt-
ical and numerical methods, and the two modeling methods were compared by simulation.
Since the APCSCM contains a complex cable network composed of active driven cables
and passive linkage cables, the stiffness model driven by the cable network is complex. At
present, there is a lack of research on stiffness modeling and characteristic analysis of the
related mechanisms.

The dynamic model is very important for the control and application of the CCM.
Xu et al. [21] took the fully actuated CCM as the research object and established the dynamic
equation considering the cable tension, friction force, and interaction force between adjacent
links by the Newton–Euler iteration method. Ma et al. [22] established the dynamic model
of the manipulator based on the work of [14] and divided the model into two parts: the links’
model and the cable network model. The multi-body dynamics of the links was established
by the recursive method, and the driving cables were modeled as serial linear springs, while
the linkage cables were modeled as individual linear torsion springs to reduce the difficulty
of modeling. Zhou et al. [23] established a two-dimensional segmented manipulator
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system dynamics model considering cable friction and deformation by using the first
kind of Lagrange equation and Baumgarte’s stability method. The arbitrary Lagrangian–
Eulerian method was used to model the driving cable, and the LuGre model was used to
describe the friction between the cable and manipulator. Li et al. [24] studied the statics
and dynamics of the CCSRM in detail and proposed a CCSRM model considering cable
friction and elastic deformation. The improved LuGre friction model was used to solve
the linear contact friction of the cable pulley, and the dynamic model of the CCSRM was
established. However, the APCSCM is long and has a large number of joints. Using
multi-body dynamics methods such as the Newton–Euler method, the Lagrange method,
the Kane equation [25], and the recursive method [26] to establish multi-joint link system
dynamics has low computational efficiency and a high time complexity. In addition, there
are a large number of elastic cables and through-hole frictions in the system. Establishing an
accurate model of the cable based on the finite-element method requires much data space
and calculation work. The establishment of the overall dynamic model of the manipulator
is complicated; the calculation workload is large; the modeling efficiency is low.

In addition, the current research results are mainly for CCMs for ground applications.
Different from the ground manipulator, the SCCM applied in the space microgravity
environment has a longer arm span, and in order to improve the flexibility of motion, a
multi-segment design is adopted with more DOFs. The mechanical model of this cable-
driven multi-segment slender manipulator is extremely complex; the dynamic coupling is
serious; the elastic vibration is more obvious; these bring great challenges to the modeling
and control of such manipulators. In addition, the current research on the modeling and
control of CCMs mainly focuses on relatively simplified situations, such as a single-segment
manipulator or only plane motion, and most of the research focuses on the kinematics
and configuration planning. For the stiffness, dynamics, and control of CCMs, especially
considering the weightless environment, multiple segments, and the long manipulator,
systematic and in-depth research results have not been obtained, and the relevant theories
and methods still need to be improved.

The scientific contributions of this work are summarized as follows. This paper
studies the space application of the APCSCM and gives the stiffness modeling method
of the manipulator with an active–passive cable network and the simplified dynamic
modeling scheme based on Matlab + Adams co-modeling. Specifically, first, the source
of the stiffness of the SCCM was studied, that is the equivalent stiffness generated by
the linkage cable and the driving cable. Finally, the Cartesian space equivalent stiffness
model of the end was established. Based on this model, the end stiffness characteristics
under specific configuration were analyzed. Second, the dynamic modeling and simulation
analysis of the SCCM were carried out. The system was divided into the cable network
model and the link model. The cable network model was established in Matlab, and the
rigid link model was established in the Adams dynamic software. The system model
established by Matlab + Adams can not only ensure the accuracy of the modeling, but also
greatly improve the efficiency of the modeling. Finally, the dynamic simulation analysis
was carried out by using the dynamic model of the SCCM, and the slit crossing experiment
was completed.

The rest of this paper is organized as follows. In Section 2, the kinematic mapping
relationship between the driving space, joint space, and task space is established. In Section 3,
the equivalent stiffness model of the linkage cable and the driving cable is analyzed, and the
equivalent stiffness of the Cartesian space at the end of the manipulator is derived. Section 4
gives the dynamic model of the cable part and the co-modeling method of Matlab + Adams
of the manipulator system. In Section 5, the simulation experiment is carried out to analyze
the influence of the cable tension on the end Cartesian space stiffness and the manipulator
frequency. The dynamic simulation analysis of the manipulator and the slit crossing exper-
iment are carried out to verify the correctness of the co-modeling method. The last section
summarizes the whole paper and gives the conclusions.

The hypotheses of this paper were as follows:
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(1) The cable was equivalently simplified as a spring model, ignoring the mass and
damping effects;

(2) We ignored the hysteresis phenomenon in the movement of the manipulator;
(3) Only the friction between the cable and the perforated disc was considered, and other

frictions were ignored.

2. Kinematics Model

In this section, first of all, we introduce the research object. Then, the kinematics model
of the single cross-axis joint angle to the cable length, the manipulator joint angle to the
cable length, and the joint space to the end task space is established for the mechanism,
which lays the foundation for the subsequent stiffness modeling.

2.1. Description of the SCCM

In this paper, the APCSCM was used as the research object of the SCCM. The manip-
ulator configuration adopted the hybrid active–passive drive form of the discrete rigid
link + synchronous rotation mechanism + cable. Specifically, the SCCM was composed
of S manipulator segments. The sth segment was composed of ns(s = 1, . . ., S) links and
cross-axis joints in series, and the DOFs in the same direction in each segment were coupled
together by linkage cables, while the motion was controlled by 3 outer driving cables. As
shown in Figure 2, the adjacent cross-axis joints in the segment were coupled by the short
linkage cables and the long linkage cables to ensure that the rotation angles between the
sub-joints in the segment were approximately equal, and the equal curvature bending of
the segment was realized. This configuration can reduce the number of drive motors and
effectively improve the stiffness and end positioning accuracy of the manipulator.

Figure 2. Short linkage, long linkage, and linkage segment. (a) Short linkage. (b) Long linkage.
(c) Overall active and passive linkage segment.

2.2. Single Cross-Axis Joint Angle to Cable Length

According to the structural design of the manipulator, only the cable length at the
cross-axis joint will change during the movement. In order to establish the mapping
relationship between the cable length and joint angle, it was necessary to establish the
relationship between the single cross-axis joint angle and cable length. The first cross-axis
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joint and the first group of driving cables in the s-segment were modeled as examples. As
shown in Figure 3, P represents the center of the cross-axis joint. O1 and O2 represent the
center of two disk surfaces before and after the joint, respectively. The definition of the
single joint coordinate system is shown in Figure 3.

Figure 3. The kinematics relationship between the first cross-axis joint and the first group of cables.

The length of the cable between the two discs before and after the cross-axis is ex-
pressed by the corresponding two joint angles. Taking the first cable in the first group of
cables as an example, the length expression formula is as follows:

‖a1b1‖ =

∣∣∣∣∣∣∣∣∣
dssθ1

1
+ rcsθ1

1
cs β1 − rcs β1

rcs β1 ssθ1
1
ssθ1

2
+ rcsθ1

2
ss β1 − dcsθ1

1
ssθ1

2
− rss β1

rssθ1
2
ss β1 − rcs β1 csθ1

2
ssθ1

1
+ dcsθ1

1
csθ1

2
+ d

0

∣∣∣∣∣∣∣∣∣ =
(

a2
1 + b2

1 + c2
1

) 1
2 , (1)


a1 = dssθ1

1
+ rcsθ1

1
cs β1 − rcs β1

b1 = rcs β1 ssθ1
1
sθ2 + rcsθ1

2
ss β1 − dcsθ1

1
ssθ1

2
− rss β1

c1 = rssθ1
2
ss β1 − rcs β1 csθ1

2
ssθ1

1
+ dcsθ1

1
csθ1

2
+ d

(2)

where d represents the distance between two discs, r is the distance from the center of cable
hole to the center of the disc, and sβ1 is the distribution angle of the cable on the disc. sθ1

1
and sθ1

2 represent the rotation angles of the two rotation axes of the first cross-axis of the
s-segment, respectively.

The calculation formula of the other cable lengths in the first group of cables is the
same as Equation (1), and sβ1 needs to be changed according to the cable distribution angle.
Since there were three cables in each group, that is ws = 3 (ws represents the number of
motors and driving cables in the s-segment), they were evenly distributed on the disc at
an interval of 120◦. sβ1 was replaced by sβ1 + 2π/3 and sβ1 + 4π/3, respectively, when
calculating the length of other two cables. By differentiating Equation (1), the velocity-level
kinematic equations of single-joint drive space and joint space can be obtained:

s l̇ j
i =

sg j
i
sθ̇j(i = 1, 2, . . ., s; j = 1, 2, . . ., ns) (3)

where sl j
i is the length of the i-group cables corresponding to the j-cross-axis joint in the

s-segment, sθj is the rotation angle corresponding to the j-cross-axis joint in the s-segment,
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and sθj =
[

sθ
j
1

sθ
j
2

]T
. sg j

i ∈ Rws×2 is the mapping matrix between the joint angular

velocity sθ̇j and the cable length velocity s l̇ j
i . The specific expression is as follows:

sg j
i =
‖a1b1‖−

1
2

(
a1

∂a1

∂sθ
j
1

+ b1
∂b1

∂sθ
j
1

+ c1
∂c1

∂sθ
j
1

)
‖a1b1‖−

1
2

(
a1

∂a1

∂sθ
j
2

+ b1
∂b1

∂sθ
j
2
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∂c1

∂sθ
j
2

)
...

...

‖aws bws‖
− 1

2

(
aws

∂aws

∂sθ
j
1

+ bws
∂bws

∂sθ
j
1

+ cws
∂cws

∂sθ
j
1

)
‖aws bws‖

− 1
2

(
aws

∂aws

∂sθ
j
2

+ bws
∂bws

∂sθ
j
2

+ cws
∂cws

∂sθ
j
2

)
.

(4)

2.3. Manipulator Joint Angle to Cable Length

In the previous subsection, we established the kinematics equation of a single joint.
The velocity-level relationship between the joint angle of the s-segment and cable length is
as follows:

s l̇ = sGθ
sθ̇, (5)

sGθ =


sg1

1
sg2

1 · · · sgns
1

sg1
2

sg2
2 · · · sgns

2
...

...
. . .

...
sg1

s
sg2

s · · · sgns
s

 ∈ RWs×2ns

where sGθ denotes the mapping matrix from the joint angular velocity to the variation
of all cable lengths of the s-segment. Ws represents the number of all driving cables and
corresponding motors passing through the s-segment, and sθ represents the matrix of the
joint variables of all joints in the s-segment, sθ =

[ sθ1 sθ2 · · · sθns
]T ∈ R2ns×1.

After obtaining the kinematic relationship of all manipulator segments, we can as-
semble the kinematic relationship between the joint space and the driving space of the
entire manipulator:

L̇ = GθΘ̇, (6)

Gθ =


1Gθ 0 · · · 0 0
1Gθ

2Gθ · · · 0 0
...

...
...

...
...

1Gθ
2Gθ · · · S−1Gθ 0

1Gθ
2Gθ · · · S−1Gθ

SGθ

 ∈ RW×2N

where Gθ is the Jacobian matrix from the joint space to the driving space. W represents

the total number of system motors and driving cables, W =
S
∑

s=1
ws. N represents the total

number of system links and cross-axis joints, N =
S
∑

s=1
ns. Θ represents the vector composed

of joint angles of all segments of the manipulator, Θ =
[ 1θ 2θ · · · Sθ

]T ∈ R2N×1.

2.4. Joint Space to Task Space

In order to obtain the kinematics relationship between the joint space and the task
space, the D-H coordinate system shown in Figure 4 was established for the s-segment.
Then, the s-segment position-level kinematic relationship can be obtained by the homoge-
neous transformation matrix multiplication:

Ts =
1Ts,2

2Ts,3 · · · (2ns−3)Ts,(2ns−2)
(2ns−2)Ts,(2ns−1) (7)
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where iTs,i+1 is the homogeneous transformation matrix of the adjacent D-H coordinate
system in the s-segment, which can be written as

iTi+1 =


csθ

j
i
−csαi ssθ

j
i

ssαi ssθ
j
i

saicsθ
j
i

ssθ
j
i

csαi csθ
j
i
−ssαi csθ

j
i

saissθ
j
i

0 ssαi csαi
sdi

0 0 0 1

. (8)

The specific values of the D-H parameters are shown in Table 1. The kinematic equation
of the overall position-level of the manipulator can be obtained by the homogeneous matrix
multiplication of all segments:

Te =
S
Π

s=1
Ts. (9)

The velocity-level kinematics relationship between the joint of the manipulator and
the end pose is

Ṗe = JθΘ̇ (10)

where Jθ = ∂Te
/

∂Θ ∈ R6×2N is the Jacobian matrix from the joint space to the end
Cartesian space.

Figure 4. Definition of the joint coordinate system.

Table 1. DH parameter table of the s-segment.

Link i sai(mm) sαi(
◦) sdi(mm) sθ

j
i(

◦)

1 0 −90 0
sθ1

1

2 a1 0 0
sθ1

2

3 0 90 0
sθ2

1

4 a2 0 0
sθ2

2

...
...

...
...

...

ns−1 0 90 0
sθns

1

ns ans 0 0
sθns

2

3. Stiffness Model

In this section, based on the kinematics model, the equivalent stiffness of the linkage
cable and the driving cable is modeled, respectively, and then, the stiffness of the two cables
is combined to establish a complete manipulator stiffness model.
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3.1. Equivalent Stiffness Modeling of Linkage Cable

The length of a short linkage cable between two adjacent joints is lc1; the cross-sectional
area is Ac1; Young’s modulus is Ec1. The length of a long linkage cable is lc2; the cross-
sectional area is Ac2; Young’s modulus is Ec2. The joint rotation radius of the short linkage
cable is rθ , and the radius of the long linkage cable is rϕ.

When there is a non-zero relative rotation angle between two adjacent joints, the
difference between the strains of the two short linkage cables between the two adjacent
joints is

∆ε = 2r
θ
∆θ/lc1 . (11)

The inconsistency of these two cable strains will produce a non-zero resultant moment
on the corresponding joint:

∆Z = r
θ
Ec1 Ac1 ∆ε. (12)

From Equations (11) and (12), the equivalent stiffness of the two short linkage cables
between the adjacent joints at the corresponding joints can be obtained as follows:

kc1
θ = 2Ec1 Ac1r2

θ
/lc1 = 2kc1r2

θ . (13)

Similarly, the equivalent stiffness of the two long linkage cables between the two
adjacent joints at the corresponding joints is

kc2
ϕ = 2Ec2 Ac2r2

ϕ/lc2 = 2kc2r2
ϕ. (14)

kc1 and kc2 represent the tensile stiffness of the short linkage and long linkage cables,
respectively. For any s-segment of the manipulator, the joint equivalent stiffness matrix
corresponding to the linkage cables is

sKc
θ =



sK1
θ 0 0 0 0 0 0

sK2
θ 0 0 0 0 0 0

sK3
θ 0 0 0 0 0 0

sK4
θ 0 0 0 0 0 0

0 0 sK3
θ 0 0 0 0

0 0 sK4
θ 0 0 0 0

0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0
0 0 0 0 0 0 sK3

θ
0 0 0 0 0 0 sK4

θ
0 0 0 0 0 0 −sK2

θ
0 0 0 0 0 0 −sK1

θ



∈ R2ns×2ns (15)

where sK1
θ =

[
kc1

θ 0 0 −kc1
θ 0 0

]
, sK2

θ =
[

0 kc2
ϕ −kc2

ϕ 0 0 0
]
, sK3

θ =[
0 −kc2

ϕ kc1
θ + kc2

ϕ 0 0 −kc1
θ

]
, and sK4

θ =
[
−kc1

θ 0 0 kc1
θ + kc2

ϕ −kc2
ϕ 0

]
.

The overall joint equivalent stiffness Kc
θ of the manipulator generated by the linkage

cables is

Kc
θ =


1Kc

θ
2Kc

θ
. . .

SKc
θ

 ∈ R2N×2N (16)

where 1Kc
θ , 2Kc

θ , . . . , SKc
θ represents the joint equivalent stiffness matrix corresponding to

the linkage cable of the 1st, 2nd, . . . , and Sth segments of the manipulator, respectively.
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3.2. Equivalent Stiffness Modeling of Driving Cable

According to the principle of virtual work, the work performed by the cable tension is
equal to the work performed by the joint torque, that is

L̇TFl = Θ̇Tτd. (17)

where Fl ∈ RW×1 represents the cable tension and τd ∈ R2N×1 is the joint torque. According
to Equations (6) and (17), we can obtain

τd = GT
θ Fl . (18)

According to the variational principle, the variation on both sides of Equation (18) can
be obtained:

δτd = δGT
θ Fl + GT

θ δFl . (19)

Similarly, for the driving cable, we have

δFl = KlδL, (20)

Kl =


k1

k2
. . .

kW

 ∈ RW×W

where Kl is the matrix composed of the tensile stiffness of the driving cable and ky(y = 1, 2, · · · , W)
is the tensile stiffness of the yth cable.

According to the variational principle, when the joint torque of the manipulator
changes slightly δτ, the joint produces a group of corresponding small movements δΘ, and
the joint equivalent stiffness Kd

θ generated by the driving cables is

Kd
θ =

δτ

δΘ
= HFl + GT

θ Kl
δL
δΘ

= HFl + GT
θ KlGθ (21)

where H =
δGT

θ
δΘ ∈ RW×2N×W is the partial derivative of the force Jacobian matrix from

the joint space to the driving space relative to the joint variable, which is defined as a
three-dimensional Hessian matrix.

The joint equivalent stiffness of the whole manipulator is generated by the linkage
cable and driving cable. Therefore, the joint equivalent stiffness Kθ of the manipulator is
calculated by the following formula:

Kθ = Kd
θ + Kc

θ = HFl +
(

GT
θ KlGθ + Kc

θ

)
. (22)

The joint equivalent stiffness given in Equation (22) consists of two parts. The first
part HFl is related to the driving cable tension Fl , which is called the joint active stiffness.
The second part (GT

θ KlGθ + Kc
θ) is related to the tensile stiffness of the driving cables and

linkage cables, which is called the joint passive stiffness.

3.3. The Cartesian Space Equivalent Stiffness of the End

According to the principle of virtual work, the work performed by the joint torque is
equal to the work performed by the external force at the end, that is

Θ̇Tτ = ṖT
e Fe. (23)
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where Fe ∈ R6×1 is the external force at the end of the manipulator. According
to Equations (10) and (23), we can obtain

τ = JT
θ Fe. (24)

According to Equation (24), there can be Fe = J−T
θ τ, and the variation on both sides

is obtained:
δFe = δJ−T

q τ + J−T
q δτ. (25)

According to the variational principle, when the force at the end of the manipulator
changes slightly δFe, it generates a set of corresponding micro-motions δPe at the end.
Then, the equivalent stiffness Kθ of the joint is equivalent to the stiffness Ke ∈ R6×6 in the
Cartesian space of the end:

Ke =
δFe

δPe
=

δJ−T
θ

δPe
τ + J−T

θ Kθ
δΘ

δPe
= J−T

θ Kθ J−1
θ . (26)

According to Equations (22) and (26), we can obtain

Ke = J−T
θ

(
HFl +

(
GT

θ KlGθ + Kc
θ

))
J−1

θ = J−T
θ HFl J−1

θ + J−T
θ

(
GT

θ KlGθ + Kc
θ

)
J−1

θ . (27)

Similar to the joint space equivalent stiffness, the Cartesian space equivalent stiffness
at the end of the manipulator is also composed of two parts. The first part J−T

θ HFl J−1
θ is

related to the driving cable tension Fl , which is called the end active stiffness. The second
part J−T

θ

(
GT

θ KlGθ + Kc
θ

)
J−1

θ is related to the tensile stiffness of the driving cables and the
linkage cables, which is called the end passive stiffness.

4. Dynamics Modeling and Simulation

In this section, the modeling methods of the rigid manipulator and cable are given,
respectively, and then, a co-modeling architecture is proposed, which lays the foundation
for the simulation analysis in the next section.

4.1. Dynamics Equation

Because the mass of the driving cable and the linkage cable is very small, the influence
of the cable mass characteristics on the dynamics can be ignored. Therefore, the overall
dynamics equation of the SCCM can be expressed as follows:

M(Θ)Θ̈ + c(Θ, Θ̇)Θ̇ = τc + τd. (28)

In the above equation, M is only related to the quality characteristic parameters,
geometric parameters, and joint angle of the link. c is the Coriolis force and centripetal
force term, which is related to the quality characteristic parameters, geometric parameters,
joint angle, and angular velocity. τd is the equivalent joint torque generated by the driving
cable, as shown in Equation (18). τc is the equivalent joint torque generated by the linkage
cable, and its calculation formula is as follows:

τc = − Kc
θ∆Θ− Cc

θ∆Θ̇. (29)

where Cc
θ ∈ R2N×2N is the matrix composed of the damping coefficient of the linkage

cable and ∆Θ ∈ R2N×1 is the vector composed of the angle difference of the adjacent
rotating joints.

When the friction between the cable and the perforated disc cannot be ignored, the
friction model shown in Figure 5 can be used for modeling. The size relationship of
Fj

i−1, f ront, Fj
i−1,back is

Fj
i−1,back = Fj

i−1, f ronte
−κµηi−1 (30)
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where κ represents the direction of the friction force, which is 1 or −1, depending on
the direction of the cable movement. µ depends on the material properties, and the test
calibration µ = 0.309. η is the relative angle between the two ends of the cable direction.

Figure 5. Cable hole friction model. (a) Cable and hole contact diagram. (b) Force and motion diagram.

The expression of the tension Fi of the i-th driving cable is

Fi = ki∆li (31)

where ∆li is the total deformation of the ith driving cable. Its calculation expression is

∆li = li(Θ)− li0 − lim. (32)

where li(Θ) is the length of the ith driving cable at the current moment, li0 is the length at
the initial moment, and lim is the length driven by the motor, which is calculated by the
motor motion.

4.2. Dynamics Co-Modeling Method

In order to reduce the workload of the dynamic development and facilitate the expan-
sion to any multi-manipulator dynamic system (including a multi-flexible manipulator
system or a multi-rigid and flexible manipulator hybrid system), this paper proposes a
co-modeling method for cable-driven space manipulators. The key is to use the characteris-
tics of the cable and link model being able to be modeled independently in the dynamic
equation given in Equation (28). The cable model can be equivalent to the joint driving
torque of the link model. At the same time, considering that the Adams and other dynamic
commercial software cannot deal with the cable dynamics problem with a large amount of
friction, we propose a co-modeling method of the cable-driven space manipulator based on
Matlab + Adams. In Matlab, we established the cable dynamics model in the form of an
algorithm (including the driving cable and linkage cable) and the link model in the Adams
commercial software, as shown in Figure 6.
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Figure 6. Co-modeling schematic.

5. Simulation Analysis

The configuration of the SCCM used for the simulation example is shown in Figure 7.
It included five manipulator segments, each segment containing six links, and the adjacent
links were connected by cross-axis joints. The six links achieved synchronous rotation
in two orthogonal directions through the linkage cables, and each segment was driven
by three driving cables. Therefore, the manipulator configuration contained a total of
15 driving cables. The parameters of linkage cable were as follows: The elastic modulus was
E = 2.06e11 Pa, and the cross-sectional area of the cable was A = 5.03e−7 m2. The length of
short linkage cable was lc1 = 0.085 m, and the joint rotation radius was rθ = 6.5 mm. The
length of long linkage cable was lc2 = 0.1 m, and joint rotation radius was rϕ = 12.3 mm.
The parameters of driving cable were as follows: the elastic modulus was E = 2.06e11 Pa,
and the cross-sectional area was A = 1.13e−6 m2.

The first three segments of the manipulator, a total of 18 links, used the same spec-
ification of the link structure. The latter two segments, a total of 12 links, used another
specification of the link. The detailed parameters of the two link structures are shown in
Table 2.

Table 2. Structure parameters of the links.

Structural Parameter Link of the First Three Segments Link of the Latter Two Segments

Mass (mm) 95 70
Length (mm) 85 100

Diameter (mm) 40 35
Center of mass (mm) 33.7 49

Moment–inertia (kg·mm2)
 65.73 0 0

0 62.05 0
0 0 19.08

  54.15 0 0
0 52.66 0
0 0 7.08


Diameter of cable hole circle (mm) 42 32
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(a) SCCM stiffness analysis configuration. (b) XY-plane stiffness distribution.

(c) XZ-plane stiffness distribution. (d) YZ-plane stiffness distribution.

Figure 7. Stiffness simulation.

5.1. End Cartesian Space Stiffness

The joint angles of the manipulator in Figure 7 are as follows:

Θ =
[
−6.5 −7.8 −13.5 −2.0 15.0 9.6 15 8.0 −12.2 0.7

]
rad. (33)

The ten joint angles in Equation (33) are composed of two DOFs in five segments. The
rotation angle of the cross-axis joint in each segment is the value in Equation (33) divided
by six (synchronous rotation design so that the rotation angle of each cross-axis is the same).
The driving cable tension for the stiffness calculation is given as follows:

Fl =
[

3 3 3 3 3 3 3 3 3 4 4 4 5 5 5
]
× 102N. (34)
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According to the above content, the Cartesian space equivalent stiffness of the end
is calculated:

Ke =



304.3 110.5 0 25.1 0 39.3
110.5 257.7 0 60.3 0 0

0 0 145.7 0 53.2 19.7
25.1 60.3 0 17.8 0 0

0 0 53.2 0 44.1 9.7
39.3 0 19.7 0 9.7 62.2

Nm/rad. (35)

Figure 7b to Figure 7d are the end Cartesian space stiffness distribution figures ob-
tained by using Matlab to simulate the manipulator model shown in Figure 7a, which are
the stiffness distributions of the end Cartesian space projected onto the XY, XZ, and YZ
planes, respectively.

5.2. The Influence of Cable Tension on the End Cartesian Space Stiffness

Firstly, the eigenvalue product σ =
6
Π

i=1
σi of the stiffness matrix Ke is defined as the

stiffness factor, that is σ is called the end Cartesian stiffness factor. The variation of the
stiffness factor with the tension of the driving cable is shown in Figure 8, and the ratio of
the stiffness factor under different tensions is shown in Table 3. It can be seen from the
table that the stiffness factor of 100 N was more than 1.8-times higher than that of 0 N, the
stiffness factor of 500 N was more than 22-times higher than that of 0 N, and the stiffness
factor of 1000 N was more than 100-times higher than that of 0 N.

Table 3. Stiffness factor ratio under different tensions.

Different Tension
Stiffness Factor

Ratios
σF = 100 N /σF = 0 N σF = 500 N /σF = 0 N σF = 1000 N /σF = 0 N

Stiffness factor ratio 2.825 23.088 101.498

Figure 8. The influence of the driving cable tension on the stiffness.

5.3. The Influence of Cable Tension on Manipulator Frequency

The system frequency calculation formula is as follows:

f =
1

2π

√
Kθ

M
. (36)
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where M is the generalized mass matrix of the manipulator system. Equation (36) can
obtain the frequencies of different orders of the system, among which the first-order
fundamental frequency is the lowest, which often has a greater impact on system control
and characteristics. The change of the driving cable tension will affect the change of Kθ ,
which will affect the system frequency. Figure 9 shows the 1∼10-order frequencies of
the system when the cable drive tension is 100 N, 500 N, and 1000 N, respectively. The
first-order frequencies were 0.057 Hz, 0.124 Hz and 0.172 Hz, respectively. It can be seen
that when the tension was larger, the fundamental frequency of the system would also
increase, but the increase in the fundamental frequency would not be as obvious as the
stiffness factor.

Figure 9. The 1∼10-order frequencies of the manipulator system under different tensions.

5.4. Dynamics Simulation

In this section, we carry out the dynamic simulation analysis of the manipulator, and
the simulation flowchart is shown in Figure 10. Firstly, the joint angle and the change
of the cable length at each moment were obtained by the kinematics planning algorithm.
The cable length variation was used as the input of the main program, and the joint angle
and angular velocity were initialized. Then, we calculated the response of two types of
cables and converted them into the joint torque input to the dynamic equation to solve
the joint angle and the angular velocity at the next moment. Using the Matlab + Adams
co-simulation, the simulation interface is shown in Figure 11.

The length change curve of the driving cable solved according to the end task trajectory
is shown in Figure 12. One segment was controlled by three cables (the curve represented
by the same color in the Figure 12). It can be seen from the planning curve that the change
of the cable length will not appear in the same segment of the three driving cables in the
same direction, which is consistent with the actual work. It can be seen from the figure
that the length change of the cable during the whole movement of the manipulator was
less than 100 mm, and the closer to the base, the smaller the length change of the driving
cable was.

The dynamic simulation results are shown in Figures 13–21. Figures 13–15 show the
comparison between the joint angle simulation and the planning curve in the alpha and
beta direction (These two directions represent the two orthogonal deflection directions
of the manipulator respectively.) in the 1st, 3rd, and 5th segments of the manipulator.
Each figure contains a planning curve and the alpha or beta angle simulation curve of
the six cross-axis joints in the segment. It can be seen from the diagram that the linkage
cable dynamics’ constraint simulated the joint synchronous rotation effect well. When the
manipulator took
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Figure 10. Dynamic simulation flowchart.

Figure 11. Simulation interfaces.

Figure 12. Cable length change curve.



Mathematics 2023, 11, 1874 17 of 23

About 10 s to lift, the joint showed a certain degree of jitter, which was caused by the
700 g tool installed at the end of the manipulator.

Figure 13. The comparison between the planning curve and the simulation curve of the six cross-axis
joints of the 1st segment. (a) Alpha direction. (b) Beta direction.

Figure 14. The comparison between the planning curve and the simulation curve of the six cross-axis
joints of the 3rd segment. (a) Alpha direction. (b) Beta direction.
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Figure 15. The comparison between the planning curve and the simulation curve of the six cross-axis
joints of the 5th segment. (a) Alpha direction. (b) Beta direction.

Figure 16. Tension curve of three driving cables in the 1st segment.

Figure 17. Tension curve of three driving cables in the 3rd segment.
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Figure 18. Tension curve of three driving cables in the 5th segment.

Figures 16–18 show the tension curve of each group of driving cables (three cables in
each group) corresponding to the 1st, 3rd, and 5th segments, respectively. It can be seen
from the results that the maximum cable tension was about 70 N during the whole dynamic
motion, and in most cases, it was lower than 50 N. The tension of each cable basically
increased suddenly at about 10 s, which was related to the obvious jitter of joint angle at
10 s. This indicated that the excessive tension of driving cable will cause the system to be
unstable, and the tension and mutation of the driving cable should be controlled as much
as possible in the planning and control process.

Figure 19. Tension curve of five linkage cables in the 1st segment. (a) Alpha direction. (b) Beta direction.

Figures 19–21 show the tension curve of the linkage cable corresponding to the 1st, 3rd,
and 5th segments, respectively. The tension of the linkage cable was also divided into alpha
and beta direction. For the linkage cable of the same segment, the curve of five linkage
cables in the same direction is drawn in the same figure. It can be seen from the results that
the maximum tension of the cable did not exceed 80 N in the whole motion path.



Mathematics 2023, 11, 1874 20 of 23

Figure 20. Tension curve of five linkage cables in the 3rd segment. (a) Alpha direction. (b) Beta direction.

Figure 21. Tension curve of five linkage cables in the 5th segment. (a) Alpha direction. (b) Beta direction.

5.5. Slit Crossing Experiment

The typical working environment of the cable-driven manipulator is a narrow space.
In this paper, the dynamic simulation of the satellite sailboard slit crossing scene was
carried out for the cable-driven manipulator. The height of the end tool and the maximum
outer diameter of link were both 35 mm, and the minimum slit height of the sailboard was
47 mm. Therefore, the manipulator had only a±6 mm tolerance in the vertical slit direction.
After the end of the manipulator entered the slit, the vibration caused by the flexibility of
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the manipulator itself (caused by the synchronous rotating cable and driving cable) caused
a certain oscillation at the end. Therefore, it was necessary to analyze whether the end
would interfere with the upper and lower surfaces of the slit after entering the slit.

The schematic diagram of the drilling slit is shown in Figure 22. Figure 23 shows the
end trajectory after entering the slit and the safety line. The Y direction represents the
height relative to the lower surface of the slit; the X direction represents the coordinates
pointing to the target direction along the slit surface; the blue solid line represents the
trajectory of the center of the end; the blue dotted line represents the trajectory of the
upper and lower surfaces of the end; the red line represents the safety line of motion
(width of 47 mm).

As shown in the figure, during the movement of the manipulator, the maximum
oscillation amplitude at the end was 3.8 mm, less than 6 mm, so it theoretically met the task
requirements. However, the current trajectory was not in the center of the slit, so some of
the movement was beyond the red safety line.

Figure 22. Slit crossing schematic diagram.

Figure 23. End slit crossing trajectory.

6. Conclusions

The SCCM has important application value in many fields such as on-orbit service
and deep space exploration. It is especially suitable for solving the operational problems
faced by the unstructured narrow environment of space. The stiffness of the SCCM comes
from two parts: linkage cables and driving cables. The stiffness of the driving cables is
not only related to the physical parameters of the cable itself, but also related to the cable
tension. Therefore, the manipulator can change its stiffness characteristics by adjusting the
tension of the driving cable, which can be used for the stiffness control of the manipulator.
In addition, the dynamic modeling method was also studied. This paper proposed a
co-modeling method combining a dynamic algorithm and software. The cable and friction
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model were expressed by the algorithm, and the rigid body model of link was established
by the Adams software. The dynamic simulation analysis of the task trajectory was carried
out by using the established dynamic model. The simulation results showed that the
designed SCCM can meet the needs of slit crossing. The main results of this paper are
summarized as follows:

• We established the complete stiffness model of the SCCM and analyzed the stiffness
characteristics of the end under a specific configuration based on the stiffness model.
The stiffness of the manipulator came from two parts: linkage cables and driving cables.
The stiffness of the driving cable was not only related to the physical parameters of the
cable itself, but also related to the tension of the cable. Based on the stiffness model,
the influence of the active tension of cable on the stiffness of the robot was discussed,
which provided the basis for the next stiffness control.

• A co-modeling and co-simulation method of the SCCM’s dynamics was proposed,
which not only ensured the accuracy of the simulation, but also greatly improved
the modeling efficiency. The manipulator not only had many DOFs, but also had a
large number of cable units. The dynamic modeling was carried out by combining
the algorithm with commercial software, which can give full play to the advantages
of the rigid model calculation of the dynamic commercial software and ensure the
efficiency of the cable friction calculation. This method is suitable for model expansion
for large-scale system co-simulation, which greatly reduces the simulation workload.

There are many technical problems involved in the SCCM, and many problems need
to be further studied. For example, the joint synchronous rotation mechanism of the cable
constraint involves many factors such as cable elasticity and friction force. The friction force
will affect the tension distribution of the constraint cable and cause the motion hysteresis of
the manipulator in the opposite direction. Therefore, this part needs to be finely processed
to obtain a more accurate dynamic model of the SCCM. In addition, due to the use of
the cable drive mode and the measuring device being located in the rear drive box, the
vibration information of the elastic link of the flexible manipulator cannot be directly
obtained. In addition, the implementation of vibration control also needs to be carried
out through the drive cable. Therefore, the vibration control of the cable-driven slender
elastic manipulator is a difficult problem. It is necessary to fully analyze the vibration
characteristics of the system and use the existing drive motor and cable tension sensor for
vibration control implementation.
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