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Abstract: With the rapid development of artificial intelligence technology, data-driven advanced
models have provided new ideas and means for airfoil aerodynamic optimization. As the advanced
models update and iterate, many useful explorations and attempts have been made by researchers on
the integrated application of artificial intelligence and airfoil aerodynamic optimization. In this paper,
many critical aerodynamic optimization steps where data-driven advanced models are employed are
reviewed. These steps include geometric parameterization, aerodynamic solving and performance
evaluation, and model optimization. In this way, the improvements in the airfoil aerodynamic
optimization area led by data-driven advanced models are introduced. These improvements involve
more accurate global description of airfoil, faster prediction of aerodynamic performance, and more
intelligent optimization modeling. Finally, the challenges and prospect of applying data-driven
advanced models to aerodynamic optimization are discussed.
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MSC: 76-10

1. Introduction

Aerodynamic optimization is the basis of commercial aircraft design, which is essen-
tial for reducing cost and environmental impact [1]. As a key component of commercial
airplanes, an excellent aerodynamic configuration of the airfoil plays a crucial role in saving
fuel consumption, reducing pollution emissions and improving performance. Over the
years, aerodynamicists have accumulated a wealth of experience in aerodynamic optimiza-
tion, and aerodynamic optimization methods for airfoils have continued to develop.

In the early stage, aerodynamic design was limited to “cut-and-try”, which resulted
in low design efficiency [2]. In the 1980s, with the development of computational tech-
nology, aerodynamic design methods based on Computational Fluid Dynamics (CFD)
began to develop [3]. CFD, wind tunnel testing, and theoretical analysis have gradually
become the main approaches for aerodynamic design, which advance the progress of airfoil
aerodynamic optimization. However, in actual engineering design, wind tunnel tests are
expensive and theoretical analysis is less applicable when dealing with complex engineer-
ing problems, so CFD has gradually become the main method for aerodynamic analysis.
With powerful high-performance computing (HPC) resources, CFD-based aerodynamic
design advances the airfoil geometry optimization [4], greatly shortens the airfoil design
cycle, and improves the aerodynamic performance of airfoil.

The basic element of airfoil aerodynamic optimization mainly includes design ob-
ject, design objective, design constraints, and design method [5]. Design object refers to
the aerodynamic geometric configuration. Design objective refers to the expected aero-
dynamic performance, flow field characteristics, etc. Design constraints illustrate the
interdependence and constraints between the design variables of the design object, and
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design methods provide the strategies and means for achieving the design objective. The
previous aerodynamic optimization is mainly based on the gradient algorithm. Jameson [6]
integrates the control theory into the optimization process, which reduces the computa-
tional effort of the gradient calculation. However, the gradient algorithm has weak global
optimization ability and is not applicable to the optimization of complex problems. There-
fore, modern optimization algorithms based on group intelligence have been applied in
aerodynamic design. The representative algorithms include Genetic Algorithm (GA) [7],
Particle Swarm Algorithm (PSO) [8], Simulated Annealing Algorithm (SAA) [9], etc. These
algorithms are highly adaptive to optimization and have better global optimization capabil-
ity. With the improvement of aerodynamic design requirements, aerodynamic optimization
has evolved from the conventional single-variable optimization to multi-variable joint
optimization. Multi-objective optimization algorithms, such as Nondominated Sorting
Genetic Algorithm-II (NSGA-II) [10] and Pareto Archived Evolution Strategy (PAES) [11],
have begun to develop rapidly. Subsequently, Genichi Taguchi [12] introduced the concept
of robust design, and researchers have developed robust design methods by applying
uncertainty analysis methods to aerodynamic optimization [13–17]. The appropriate uti-
lization of optimization strategies is beneficial to increase the efficiency, robustness, etc. of
airfoil aerodynamic optimization.

The airfoil aerodynamic optimization includes many disciplines, and its design ef-
ficiency is widely constrained by the development level of parameterization, numerical
methods, nonlinear mapping, optimization methods, etc. Aerodynamicists have gradually
integrated artificial intelligence algorithms into aerodynamic optimization, greatly improv-
ing design accuracy and efficiency. The goal of artificial intelligence is to complete the
simulation of human intelligence, and the realization relies on multidisciplinary coopera-
tion including computers, mathematics, statistics, and data analysis, etc. In 2006, Hinton
et al. [18] proposed the deep learning algorithm, the integration of artificial intelligence
technology and big data guided a promising direction of machine learning. Advanced
models based on artificial intelligence have been developed as tools for solving physical
problems by learning from data [19], not simply by mechanical memorization but from a
deep understanding of knowledge and mind construction.

Data is the foundation for constructing advanced models. If sufficient data are pro-
vided, well-trained advanced models can accurately predict and describe underlying
physical phenomena without solving complex physical governing equations [19]. In recent
years, aerodynamicists have integrated data-driven methods with artificial intelligence
techniques, thus contributing to the rapid development of the “fourth paradigm” in cur-
rent aerodynamic research [20]. In the process of airfoil aerodynamic optimization, data-
driven advanced models have been widely employed, including rapid prediction of flow
field [21–30], super-resolution reconstruction [31–41], differential equation solution [42–49],
and grid generation based on artificial intelligence model [50–55]. Sufficient data acquisi-
tion and advanced model construction are highly essential in the optimal design, having a
significant impact on the accuracy and efficiency of airfoil aerodynamic optimization.

A review of the main applications of data-driven advanced models in the critical
steps of airfoil aerodynamic optimization is presented. Figure 1 illustrates the critical
steps of aerodynamic optimization using advanced models introduced in this paper. The
main content is divided into three sections, including geometric parameterization of airfoil,
aerodynamic solving and performance mapping, and optimization model. Finally, the
application of data-driven advanced models in aerodynamic design is summarized, and an
outlook for future research is presented.
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this paper.

2. Data-Driven Advanced Model in Critical Steps of Airfoil Aerodynamic Optimization

In recent years, with the increasing application of artificial intelligence (AI) technology
in airfoil aerodynamic optimization, data-driven advanced models play a crucial role in
various processes of optimization. The shape of the configuration is described by geometric
parameterization. The appropriate design variables are determined, and smooth geomet-
rical curves or surfaces are presented as a function. Geometric parameterization is the
basis for the airfoil aerodynamic optimization [56]. Aerodynamic solving and performance
mapping is applied to evaluate the aerodynamic performance of configuration, and the
efficiency is greatly improved by constructing surrogate models [57]. The optimization
model is the core of airfoil aerodynamic optimization, and its efficiency and capability of
optimization search play a key role in the optimization system [58]. In this section, the ap-
plication of data-driven advanced models in the above critical steps of airfoil aerodynamic
optimization is presented with comments on their performance and contributions.

2.1. Geometric Parameterization

The accuracy and efficiency of the geometric profile description has a crucial impact on
the quality of the optimization results. The method of geometrical description is also called
geometric parameterization [59]. Various parametric methods influence the design space
and determine the design boundaries of the optimization. In general, fewer geometric
parameters are expected to achieve wider design space for efficient parametric methods.
In order to meet the geometric control requirements of configurations in aerodynamic
optimization, parametric methods need to provide accurate modeling and flexible geo-
metric updating capabilities, with relevant adjustments based on aerodynamic design
requirements and model complexity.

Geometric parameterization methods can be basically classified into two categories [56].
In first category are descriptive parameterization methods, which can directly achieve the
description of the target geometry by given parameters, including PARSEC parametric sec-
tion (PARSEC) [60], class function/shape function transformation (CST) [61], B-Splines [62],
and non-uniform rational B-spline (NURBS) [63]. In the second category are geometrically
modified parametric methods, which achieve the description of the target geometry by
applying perturbations to the basic geometry, including Hicks–Henne (H–H) [64] and
free-form deformation (FFD) [65]. The above conventional geometric parametric methods
frequently employed an extensive set of design variables to ensure that the optimal design
was encompassed within the prescribed design space. Nevertheless, such an approach
can result in the curse of dimensionality and compromise design efficiency, which makes
CFD solution and optimization difficult to merge. In choosing geometric dimensionality
reduction techniques, there exists a trade-off between the precision of the global repre-
sentation and the computational burden. Reducing the number of design parameters to
improve the feasibility of an optimal design may inadvertently constrain the potential
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design space of the airfoil. Therefore, geometric parametric method is extremely essential
in the aerodynamic optimization of airfoils.

Artificial intelligence tools provide a novel approach for geometric parameterization.
Intelligent tools efficiently extract low-dimensional latent variables from a high-dimensional
aerodynamic shape design space to ensure global geometric control and reconstruction
accuracy. The effective parametric methods based on advanced models are mainly of two
types, including modal parametric methods and geometric filtering methods [4]. Modal
parametric models are employed to improve the geometric efficiency by coupling design
variables. Geometric filtering models are employed to reduce the design space by adding
geometric constraints. The aerodynamic geometry is controlled by derived modes applied
in modal parametric methods. Orthogonal modes were extracted from the supercritical
airfoil in the initial modal parametric method. Robinson and Keane [66] presented an
approach to numerically derive a set of geometrically orthogonal base functions which
provide a more concise representation of supercritical sections compared to analytically de-
rived ones. Then principal component analysis (PCA)-based modal parameterization was
gradually developed. Wang et al. [67] adopted PCA to perform dimensionality reduction on
the geometry of high-lift device (HLD), and conducted the designing for robustness of stall
lift using the proposed model. Poole et al. [68] applied singular value decomposition to a set
of airfoil shapes for extracting airfoil deformation ‘modes’, which is used to mathematically
define the optimal number of degrees of freedom. These modes were combined with the ra-
dial basis function (RBF)-based control point technique for unified shape parameterization,
surface control and mesh deformation, linked to a parallel feasible sequential quadratic
programming optimizer. Li et al. [69] suggested utilizing PCA to extract camber-thickness
modes. Camber-thickness modes are the modes of airfoil camber and thickness lines. They
are more intuitive and practical for airfoil shape optimization. Subsequently, deep learning
techniques, such as variational encoders (VAE) [70] and generative adversarial networks
(GANs) [71], have been explored for their capacity to acquire low-dimensional represen-
tations from intricate and widely distributed data. The data-driven advanced models for
geometric parameterization have been developed. Chen et al. [72] introduced a novel para-
metric approach, utilizing Bézier-GAN, that incorporates latent code and noise variables to
encode primary and secondary geometry variations. This method effectively reduced the
design space by filtering out impractical airfoil shapes using intelligent techniques. The
results demonstrated that the utilization of the Bézier-GAN parametric method expedites
convergence and attains superior design results. Du et al. [73] proposed an intelligent
parametric approach by combining B-Spline and a Generative Adversarial Network (GAN).
The BSpline-GAN model was trained to generate airfoil geometries, effectively reducing
the initial design space while preserving an adequate range of design flexibility. Wang
et al. [74] introduced a method that combines autoencoders (AE) with powerful non-linear
data-dimensionality reduction capabilities, along with class function/shape function trans-
formation (CST), for deep manifold learning-assisted geometric multiple dimensionality
reduction. The process depicted in Figure 2 involves the extraction of low-dimensional
latent variables from a high-dimensional design space. These latent variables are then
utilized to achieve a parametric representation of high-dimensional manifolds through
the application of manifold learning techniques. Uα is the manifold satisfying geometric
constraint α, Uβ is the manifold satisfying geometric constraint β. Uα and Uβ are open
sets. For the two open set, two mappings exist, φα : Uα → Rn , φβ : Uβ → Rm . The trans-
formations φαβ = φβ φ−1

α and φβα = φα φ−1
β refer to the transformation from the manifold

to the coordinates and from local coordinates to the manifold, respectively. In comparison
to conventional parametric methods, the proposed geometric dimensionality reduction
technique enhances the precision and efficiency of geometric reconstruction and aerody-
namic evaluation. These studies significantly advance the efficacy of parametric methods
in airfoil applications, making notable contributions to the advancement of geometric
dimensionality reduction methods combined with deep learning technology.
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On the other hand, geometric filtering methods are also the essential processes of
geometric description. Geometric filtering evaluates the anomalies of the samples by
defining a constraint function, which excludes the anomalous regions and reduces the
design space [4]. Different to conventional geometric constraints, geometric filtering
constraints are not subject to defined equations. Therefore, the data-driven advanced
model are needed to be constructed [75]. Employing deep learning techniques, Li et al. [76]
constructed a universal validation model to identify geometric anomalies in airfoils, as
illustrated in Figure 3. Through ensuring that irregular shapes are not included in the
training data, this method enhances the effectiveness of surrogate-based optimization
by improving the precision of surrogate models. Moreover, this method benefits the
development of precise and universally applicable data-driven aerodynamic models for
interactive design optimization. The results validated the effectiveness of integrating
data-driven advanced geometric filtering techniques in airfoil aerodynamic optimization.
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2.2. Aerodynamic Solving and Performance Evaluation

Aerodynamic solving and performance evaluation is essential in the aerodynamic
optimization of airfoil. In the early stage, aerodynamic performance evaluation was based
on CFD or wind tunnel experiments [77]. Especially in aerodynamic design, the evaluation
of aerodynamic target and constraint functions corresponding to a large number of different
airfoils tends to be costly.

Since the 21st century, the requirements and constraint complexity of aircraft design
have gradually increased, and a complex coupling relationship between various disciplines
also exists. Although traditional CFD methods can perform high-precision numerical simu-
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lations, the computation for data acquisition is much more expensive and time-consuming
in airfoil aerodynamic optimization. Therefore, the surrogate model has emerged and
gradually been developed as an essential branch and key technology of aerodynamic
optimization [78].

The application of surrogate models can improve the efficiency of optimization design
as well as reduce the complexity of optimization, and it is beneficial to filter out numerical
noise and realize parallel optimization design [79]. It is worth stating that, although
surrogate models can improve the performances in terms of simulation speed, they are
bounded by the data that generated them and the characteristics of the model algorithm
(trade-off speed/accuracy, danger associated extrapolation, predictive capabilities, etc.). In
the early stage, a surrogate model is constructed based on sample point data that predict
results similar to the results of the original model (numerical or experimental analysis) [80].
In addition, when it is difficult to express the objective function with an explicit function,
a surrogate model can also be employed to express the objective function. The principle
is as follows. Firstly, the design variables of the problem x = (x1, x2, · · · , xn)

T and the
upper and lower boundary of the variables (xl , xu) are determined. The locations of
sample points Xi =

(
x(i)1 , x(i)2 , · · · , x(i)m

)
are determined by sampling and the response

Yi =
(

y(i)1 , y(i)2 , · · · , y(i)m

)
at the sample points Xi is obtained by numerical calculation.

Finally, a surrogate model is constructed based on the dataset X and the response Y to
realize the output ŷ = f (x) at any x in the variable space. In order to improve the
accuracy of model, the number of samples needs to be increased accordingly, but this also
leads to an increase in computational cost. With the deep integration of AI technology
and aerodynamic optimization, the data-driven surrogate model has demonstrated to be
effective in reducing cost and improving accuracy [4]. In terms of aerodynamic solution and
performance evaluation, the applications of data-driven advanced models can be classified
into two categories: one is the performance prediction model with a limited set of scalar
outputs, including aerodynamic coefficient prediction and flow field prediction; the other is
the surrogate model, to enhance the performance of the flow field solution, which responses
the function of time or a dimensionality comparable with the number of vertexes in the
mesh (or both), including transition model, turbulence model, and boundary function
model. In this section, the applications of data-driven advanced models in aerodynamic
solving and performance evaluation are summarized. To facilitate readers in easily finding
their interested targets and typical advanced models, we have compiled them along with
their corresponding references, as shown in Table 1.

Table 1. A compliment of advanced models for aerodynamic solving and performance evaluation
and their corresponding references.

Target Typical Advanced Models References

Aerodynamic coefficient evaluation

Response surface method Ahn et al. [81]
Giunta et al. [82]

Kriging model Han et al. [83,84]

ANN/DNN

Oktay et al. [85]
Wang et al. [67]

Bouhlel et al. [86]
Li and Zhang et al. [87]

CNN
Zhang et al. [88]

Yu et al. [89]
Bakar et al. [90]

Physical informed machine learning Sun et al. [91]
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Table 1. Cont.

Target Typical Advanced Models References

Flow field prediction

ANN/DNN Renganathan et al. [28]

CNN Bhatnagar et al. [29]

LSTM Mohan and Gaitonde [23]

Physical informed machine learning Raissi et al. [45,46]

Field inversion and machine learning Holland et al. [92]

VAE Wang et al. [93]

GAN Wu et al. [94]

GCN Lan et al. [95]

Transition modeling and turbulence modeling

ANN/DNN Tieghi et al. [96]
Wang et al. [97,98]

CNN Zafar et al. [99]

Physical informed machine learning Wang et al. [100]

Field inversion and machine learning Yang et al. [101]
Zhang et al. [102]

Symbolic regression Zhao et al. [103]
Wu and Zhang et al. [104]

2.2.1. Aerodynamic Coefficient Evaluation

CFD solution provides abundant flow field information in the computational domain;
however, aerodynamic design is generally based on aerodynamic performance indicators.
Therefore, it is significant to construct the evaluation model of aerodynamic performance.

Traditional aerodynamic performance modeling is implemented based on classical
surrogate models. The surrogate model is constructed by fitting a prediction function
between the geometry design variables and the aerodynamic coefficients using training
data generated by high-fidelity aerodynamic analyses. Traditional methods for training
surrogate models include polynomial response surface method, support vector regression
method, and the kriging model. Ahn et al. [81] applied the response surface method to the
transonic airfoil design problem with another optimization method. The objective function
and constraints of this method are modeled by quadratic polynomials, and the response
surface is constructed by Navier–Stokes analysis in the transonic region. Giunta et al. [82]
developed an aerodynamic response surface model for lift-induced volumetric wave drag
and supersonic drag in wing design and employed the model to optimize the High Speed
Civil Transport(HSCT) wing. Han et al. [83,84] used the kriging model approach to model
the aerodynamic characteristics of the airfoil and wing, respectively, and then combined the
gradient information obtained by the adjoint optimization method in efficient aerodynamic
design. The traditional surrogate model has adjustable parameters; however, the main
issue is that it is not suitable for handling large-scale training data, so it is usually trained
with a small amount of data in a relatively limited space [4].

To address the above issue, machine learning-based methods for training aerodynamic
surrogate models with neural networks have been developed to deal with large-scale
training data efficiently. Artificial neural networks (ANN) were first applied to construct
surrogate models of geometric–aerodynamic performance characteristics. With its eco-
nomical computational effort and accurate generalization capability, the ANN surrogate
model provides a feasible method for fast research and optimal solution in the aerodynamic
design [67,85–87,105,106]. Oktay et al. [85] trained the model with the drag coefficient
data obtained from the accumulated experimental results from the wind tunnel tests, and
established the model to evaluate the accurate values of parameters of geometry relative to
the input drag coefficient. Wang et al. [67] trained an inverse design model based on princi-
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pal component analysis–artificial neural network (PCA–ANN) for stall-lift robust design
considering aerodynamic constraints. Bouhlel et al. [86] employed a gradient-enhanced
artificial neural network to train the aerodynamic surrogate model of the airfoil at subsonic
and transonic conditions. The result of optimal airfoil is similar to that of high-fidelity CFD
optimization. Li and Zhang [87] utilized 135,108 wing samples with different aerodynamic
shapes, flight speeds, and flight altitudes. They trained the above data to construct an
ANN-based aerodynamic analysis model for wing shape design. It is verified that the
average relative errors of drag, lift, and pitch moments with the results by high-fidelity CFD
are within 0.4%. The above results show that the ANN model can achieve aerodynamic
evaluation with high accuracy on the basis of the large-scale database.

Artificial neural networks essentially analyze the algorithmic laws between input and
output parameters through the connected neurons, and cannot locally sense and learn
from the nodes in the flow field. With the development of machine learning techniques
and aerodynamic evaluation, convolutional neural networks (CNN) with feature learning
capability are applied to finely identify flow field images and perform the hierarchical
learning of aerodynamic characteristics [88–90,107–109]. Zhang et al. [88] developed an
appropriate CNN structure for varying flow conditions and geometric configurations,
which could predict airfoil’s lift coefficients under different Mach numbers, Reynolds
numbers, and various attack angles. Yu et al. [89] proposed an enhanced deep CNN
method by introducing the “feature enhance-image” strategy for airfoil images. Bakar
et al. [90] presented a framework for designing low Reynolds number airfoils based on a
CNN-based aerodynamic coefficient prediction model. The trained model is validated that
can reproduce the authentic Pareto front in a very short time compared with other models.
Powerful CNN models demonstrate promise in predicting aerodynamic coefficients based
on geometric coordinates without relying on shape parameterization.

Besides, the introduction of physics-informed neural networks (PINNs) ensures pre-
diction models adhere to the fundamental physics, with the improvement of prediction
accuracy. PINNs possess extrapolation capabilities, which can mitigate the curse of dimen-
sionality in airfoil aerodynamic optimization. Sun et al. [91] applied PINNs to concurrently
model and optimize the airfoil flow, with the aim of maximizing its lift-to-drag ratio. PINN
is intrinsically differentiable, allowing for the computation of gradients of the lift-to-drag
ratio relative to the airfoil shape parameters. The airfoil aerodynamic optimization offers
greater efficiency than non-gradient-based algorithms, without requiring the derivation of
an adjoint code.

2.2.2. Flow Field Prediction

Aerodynamic coefficient prediction for configurations based on surrogate models
could only be applied to analyze the specified aerodynamic performance in aerodynamic
optimization. However, in order to study the flow mechanism, the prediction of flow
field, such as pressure distribution and velocity distribution, is of great significance. It is
important research to determine the flow field detail information of airfoil efficiently and
accurately. Advanced models based on artificial intelligence can seek and learn hidden
feature information from big data to predict the future behavior of complex nonlinear
systems, providing a fast and alternative solution for solving complex and time-consuming
N-S equations.

Flow field prediction involves the prediction of physical parameters for a large number
of grid points within the flow field, thus dimensionality reduction is an essential step in flow
field prediction. Mohan and Gaitonde [23] built reduced order modeling (ROM) by using
long short-term memory (LSTM) to model the key physics/features of a flow-field without
computing the full Navier–Stokes (NS) equations. In order to overcome heavy offline costs
incurred by proper orthogonal decomposition-reduced order modeling (POD-ROMs) in
constructing the reduced operators and adapting to parametric changes, Renganathan
et al. [28] proposed a machine learning-based approach based on deep neural networks
to learn the nonlinear dependence of the reduced state on high-dimensional parameters
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with modest training dataset sizes. This model was employed in prediction of flow field of
RAE2822 airfoil under inviscid transonic flight conditions. Singh et al. [110] developed a
modeling paradigm to augment the prediction of turbulence by machine learning utilizing
limited data generated from physical experiments, and applied the methodology to turbu-
lent flows over airfoils involving flow separation. The neural networks-augmented Spalart
Allmaras (NN-augmented SA) model has great performance in predicting the pressure
distribution of surface.

With the development of deep learning models, an increasing number of advanced
models, e.g., convolutional neural networks (CNN), variational autoencoder (VAE), gener-
ative adversarial networks (GAN), and graph convolutional network (GCN), have been
applied to flow field modeling and prediction. Zuo et al. [111] proposed a data-driven
method based on CNN and multi-head perceptron to predict the incompressible laminar
steady sparse flow field around the airfoils. The authors considered that the multi-head
perceptron can achieve better prediction results than multi-layer perceptron for sparse flow
field. Bhatnagar et al. [29] proposed a CNN-based approximation model for flow field
prediction, and explored the effectiveness of the network structure in predicting flow fields
with different airfoil shapes, angles of attack, and Reynolds numbers. Kashefi et al. [22]
presented a novel PointNet-based framework for flow field predictions in irregular do-
mains. Grid vertices in CFD domain were viewed as point clouds and used as inputs to
a neural network, which learns an end-to-end mapping between spatial positions and
CFD quantities. In the work by Wang et al. [93], a VAE network was designed to extract
informative features from the flow fields. In order to predict the flow fields under high
Reynolds number, multi-layer perceptron (MLP) is connected with the decoder of VAE.
The effectiveness of this model was verified by achieving accurate predictions over the
shock. Wu et al. [94] introduced a novel data-augmented GAN for rapid and precise flow
filed prediction. This approach enables effective adaptation to flow field prediction tasks
even with sparse data. Wu et al. [77] also leveraged the property of GAN combined with
CNN to directly establish a one-to-one mapping between a parameterized supercritical
airfoil and its corresponding transonic flow field profile over the parametric space. Lan
et al. [95] presented a novel framework to predict cascades flow fields, utilizing GCN and
point clouds to enhance prediction performance, as shown in Figure 4. It has been proved
that the innovative framework can reconstruct the internal flow field at a high speed on a
large-scale point cloud, while maintaining the accuracy of the prediction.
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Physical information performs an important role in flow field prediction, and data-
driven models that fully incorporate physical constraints improve the accuracy and general-
ization of flow field prediction. Holland et al. [92] applied the Field Inversion and Machine
Learning (FIML) approach to embed the discrepancies into functional forms reconstructed
by machine learning within physical models. This model was demonstrated to improve
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Reynolds-averaged Navier–Stocks (RANS) predictions for airfoils at high angles of attack.
Raissi et al. [45] introduced PINN to solve the partial differential equations of flow field.
The neural network was trained with specific flow field data and used the governing
equations as constraints without boundary conditions to realize the prediction of the flow
field in a specific region.

2.2.3. Transition Modeling and Turbulence Modeling

Simulation of complex flow phenomena and analysis of flow field mechanisms have
been focused by researchers. According to the report “CFD Vision 2030 Study” by NASA,
RANS method will remain the main numerical simulation method for CFD until 2030 [112].
Based on RANS, transition modeling and turbulence modeling are essential for accurate
simulation of the flow field and the analysis of typical flow phenomena.

Boundary layer transition usually refers to the development of boundary layer flow
from laminar flow to turbulence, which is a strongly nonlinear evolutionary process with
the coupled influence of multiple factors [113]. Therefore, the complex transition mech-
anism has achieved much attention, and the calculation and prediction of the transition
is the key factor in the design of the aircraft. In recent years, with the development of
algorithms and the accumulation of transition data, boundary layer transition modeling
methods incorporating machine learning have gradually developed [99,101,102,114–117].
Transition theories, models, and methods through artificial intelligence have been estab-
lished to promote the intelligent application of fluid mechanics to overcome the lack of
theory and experience. Zafar et al. [99] proposed a CNN-based model to construct a
transition model. This method extracted integral quantities from the velocity profiles,
and then fully connected layers were used to map the extracted integral quantities, along
with frequency and Reynolds number, to the output (amplification ratio). Li et al. [114]
trained a model to identify the turbulent/non-turbulent interface in the flow past a circular
cylinder by machine learning method. Meng et al. [115] validated the effectiveness of pre-
diction neural networks-model of transition location in three-dimensional (3D) hypersonic
boundary layers. Besides the application of machine learning model for transition location
determination, it is also critical to improve the predictive performance of conventional
transition models by constructing advanced models for Reynolds-averaged simulations.
Yang et al. [101] improved the four-equation k-omega-gamma-A(r) transition model by
field inversion and machine learning. The regularizing ensemble Kalman filtering (EnKF)
was employed to obtain the distributions of space-varied correction terms. Additionally,
a mapping was established from the mean flow variables to the correction terms. Zhang
et al. [102] developed a data-driven framework to enhance the prediction capability of the
original gamma-Re(theta) transition model for the hypersonic boundary layer transition.
The results demonstrated a significant improvement in the performance of transition pre-
diction. The data-driven framework successfully enabled accurate determination of the
boundary layer transition onset location and the length of the transition zone.

The capturing of turbulence phenomena is an essential means of flow mechanism
analysis. The conventional turbulence models have difficulty achieving better prediction
accuracy in complex flows such as large separations and unsteady conditions. In recent
years, machine learning-based turbulence modeling has made great progress in improv-
ing the performance of traditional turbulence models and directly constructing surrogate
models for Reynolds stress models [100,103,104,118–120]. Ling et al. [119] presented a
model for the Reynolds stress anisotropy tensor employing deep neural networks based
on high-fidelity simulation data, which constructed a multiplicative layer with an invari-
ant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. The
improved turbulence model was demonstrated significant improvement compared with
linear and nonlinear eddy viscosity model. Wang et al. [100] proposed a physics-informed
machine learning approach for reconstructing discrepancies in RANS modeled Reynolds
stresses based on DNS data and evaluated its effectiveness. Zhu et al. [120] between the
turbulent eddy viscosity and the mean flow variables by neural networks, which improved
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the accuracy and generalization capability of turbulence models based on machine learning.
Zhao et al. [103] introduced the gene-expression programming (GEP) to develop turbulence
models based on CFD-driven training. The candidate EASM-like models were explicitly
given via symbolic regression in GEP. Wu and Zhang [104] modified a Shear Stress Trans-
port (SST) turbulence model using flow field inversion and symbolic regression, which
provided a generalizable and interpretable data-driven approach for turbulence modeling
based on the advanced model.

In order to analyze complex flows, in addition to transition modeling and turbulence
modeling, near-wall modeling through the construction of wall functions is also utilized
to assist the numerical simulations. The application of neural networks to construct data-
driven wall surrogate models can achieve a compromise between accuracy and solution
efficiency. Tieghi et al. [96] constructed a data-driven wall-function to k-epsilon simulations
of a 2D periodic hill and a modified compressor cascade National Advisory Committee for
Aeronautics (NACA) airfoil with a sinusoidal leading edge. The wall-function was trained
by the multilayer perceptron ANN to obtain turbulent production and dissipation values
near the walls. In our team’s previous work, an ANN-based wall modification model
was applied to perform multi-scale numerical simulations of aeronautical configurations
with micro/nano-scale surface structures. For a realistic aeronautical configuration with
micro-texture, using massive grids to describe the flow within the boundary layer makes
the simulation of multi-scale flow field unfeasible. Wang et al. [97,98] proposed a novel
aerodynamic solution strategy based on the wall modification model by machine learning
to perform multi-scale numerical simulations. Flow features of micro-textured surface are
provided by high-fidelity surface flow data acquired through Lattice Boltzmann Method
(LBM) simulation. The wall modification model is constructed to reproduce the behavior
of microflow near the micro-textured surface. The ANN-based wall modification model
was applied in the simulation of airfoil and compressor cascade shown in Figure 5.
The results indicate that the micro-textured surface structure has the effect of reducing
the flow loss and the wall modification model was validated through numerical and
experimental study.
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2.3. Optimization Model

The optimization model is an essential component of the airfoil aerodynamic opti-
mization. After completing the geometrical parametric modeling and the aerodynamic
performance evaluation of the flow field, it is necessary to establish an appropriate optimiza-
tion model to design the airfoil. Advanced models support new optimization architectures
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and contribute to improving the performance of traditionally optimal design. In this section,
optimization pattern and optimization strategy are introduced.

2.3.1. Optimization Pattern

In general, the airfoil aerodynamic optimization includes two optimization patterns,
respectively, direct design and inverse design [121]. The optimization objectives of the direct
design are mostly flow field integral features (e.g., lift, drag, moment, etc.), and are also
single flow field features (e.g., laminar flow length, shock wave intensity, drag divergence
velocity, etc.). The aerodynamic geometry that satisfies the objectives and constraints is
obtained through optimization iterations. The optimization objectives of inverse design
methods are mostly flow field features (e.g., pressure distribution, isentropic Mach number
distribution, etc.). Through the parametric method, the geometry is continuously adjusted
to obtain the aerodynamic shape that is closest to the target feature distribution of flow field.

In the direct optimization, the aerodynamic optimization process can be divided into
gradient-based optimization and non-gradient-based optimization. The adjoint method is a
typical gradient-based optimization algorithm, and the direction of searching optimization
can be obtained directly by solving the adjoint equations. Tanabi et al. [122] proposed
an adjoint-based optimization framework that can robustly optimize the shape of the
airfoil based on variable parameters of the airfoil and flight conditions. Chen et al. [123]
developed an adjoint-based robust optimization design framework of laminar airfoil subject
to uncertainties in flight conditions for subsonic and transonic conditions. The results
indicated that the adjoint-based optimization can improve the ability of the laminar airfoil
under uncertain disturbance of flight conditions. Compared with the adjoint method
in aerodynamic optimization, non-gradient optimization algorithms are more widely
used in engineering problems. Non-gradient optimization is not able to directly obtain
the gradient of the optimization objective with respect to the design variables, making
the efficiency more dependent on the performance of the optimization algorithm. Non-
gradient optimization has been developed since 1970s. First, aerodynamic evaluation was
carried out based on small disturbance equation and velocity potential flow [124–127]. In
the 1980s, modern optimization algorithms represented by particle swarm algorithm [8],
genetic algorithm [7], and simulated annealing algorithm [9] gradually began to be used in
aerodynamic optimization. In recent years, machine learning has started to be applied to
improve the performance and efficiency of optimization. Owoyele et al. [128] proposed
a novel design optimization approach that employs an ensemble of machine learning
algorithm. Compared with genetic algorithm, the proposed method reduced the number
of function evaluations needed to reach the global optimum, and thereby reduced time-to-
design by 80%. Song et al. [129] presented a machine learning-based algorithm that can
achieve much better aerodynamic performance and much shorter simulation time for the
same airfoil optimization problem compared with the traditional genetic algorithm method.

Different from the direct optimization, the inverse design method usually requires
the given desired aerodynamic parameters (e.g., pressure coefficient distribution, velocity
distribution, etc.). The aerodynamic configuration that satisfies the given flow field features
are obtained by solving the flow control equations step by step. The inverse design method
is efficient and favorable for engineering when the aerodynamic constraints are given.
Sun et al. [130] introduced an applicable airfoil/wing inverse design method with the
help of ANN and airfoil/wing database, and provided the verification of the applicability
of the approach. Sekar et al. [131] proposed an approach to perform the inverse design
of airfoils using CNN. Due to the excellent capability of airfoil feature extraction, the
pressure coefficient distribution was as the input to CNN, and the airfoil geometry was the
output. However, even though the inverse design approach is efficient, it requires giving
the excepted flow field distribution in advance, which makes it difficult to guarantee that
the target distribution is the optimal solution. Therefore, researchers have improved the
aerodynamic inverse design method to address this problem. Zhang et al. [132] determined
the derivatives of the design target by the adjoint method in the airfoil inverse design.
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Sketching a rough expectation of the pressure distribution law can greatly improve the
efficiency of the initial stage of optimal. Wang et al. [133] employed the conditional
variational autoencoder (CVAE) and Wasserstein GAN (WGAN) to generate the target wall
Mach distribution, and a deep neural network was used for nonlinear mapping to obtain
an airfoil geometry corresponding to the target wall Mach distribution. Yang et al. [134]
used a VAE and MLP to generate realistic target distributions, respectively, and predicts
the quantities of interest and shape parameters from the generated distribution. The target
distribution was then determined in the inverse optimization. Wang et al. [135] proposed
an inverse design framework based on improved GAN shown in Figure 6. The GAN
model was trained using a database of pressure distributions obtained from CFD, and a
large number of samples were generated using a well-trained generator to search for the
optimal pressure distribution. Double ANN models were built to evaluate the aerodynamic
performance of the target distribution and obtain the geometry corresponding to the target
distribution. The results showed that the inverse design framework with the improved
GAN model achieved better optimal results compared with the traditional method.
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2.3.2. Optimization Strategy

The optimization strategy has a significant impact on determining the aerodynamic
optimization model, and a suitable design strategy can improve the efficiency and accuracy
of the design problem. In this section, several typical optimization strategies are introduced.

In order to enhance the optimization efficiency, a two-wheel optimization strategy is
applied for the airfoil aerodynamic design. The first round of optimization provides an
initial solution and does not require high accuracy. The second round of optimization is
based on the results of the first round of optimization and minor adjustments are conducted
to obtain the object with better performance. Xing et al. [136] obtained supercritical airfoil
with better laminar performance using a genetic algorithm based on a surrogate model.
The proportion of laminar flow region is expected to improve while satisfying the lift
coefficient, lift-to-drag ratio, airfoil thickness, and airfoil leading edge radius. Due to the
slow convergence of the genetic algorithm and the large amount of computation, the goal
of this round is just to provide a better initial solution for the second round of optimization.
The goal of the second round of optimization is to minimize or eliminate the shock wave
while ensuring the proportion of the laminar flow region, so as to further improve the
lift-to-drag ratio of the airfoil.

Multi-point optimization strategy is an effective method to improve the robustness
of airfoil aerodynamic optimization design. Hicks and Vanderplaats [137] found that a
single-point optimization of the drag at a design point is not enough to guarantee the drag
performance near the design point. A two-point optimal design or a multi-point optimal
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design can address this issue, making the optimal design more robust. The authors set
the drag at the design Mach number as the objective function and the drag coefficients
at the non-design Mach number are defined as constraints, thus realizing multi-point
aerodynamic optimization. In the optimal design process, a series of constraints are
needed to be imposed. The mathematical description of constraints and design indicators
is still difficult. Ye et al. [138] proposed a multi-point optimization strategy, which can
make up for the insufficiency of constraints and design indicators difficult to be described
mathematically, so as to improve the efficiency and accuracy of optimal design. Multi-point
optimization can make the design more robust to some extent. However, this method relies
strongly on the selection of design points and weights. Wu et al. [139] mathematically
demonstrated that it is necessary to ensure that the number of design points for a multi-
point optimization is greater than the number of design variables characterizing the airfoil,
otherwise the deterioration of the airfoil performance in the off-design state will not
be avoided. On the other hand, due to the cost of aerodynamic analysis, the number
of design points cannot be too large. Robust optimization is a concept appropriate for
aerodynamic design. Robust optimization requires both improving the performance of the
configuration and reducing the sensitivity of the configuration to uncertainties, allowing
the configuration to provide excellent performance and stability in the region of variation of
stochastic factors. This method is generally applied to conditions where there are uncertain
parameters or disturbances. Tao et al. [13] proposed an improved PSO (particle swarm
optimization) algorithm in the robust optimization of a wing at drag divergence Mach
number. Compared with the results of single-point optimization, the robust optimization
reduced drag coefficients of the wing at both cruise Mach numbers and non-designed Mach
numbers, as shown in Figure 7.
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In engineering issues, most of the aerodynamic optimization is multi-objective opti-
mization problem. Multiple objectives do not have the same properties and are even in
conflict with each other. For example, some objectives are continuous and differentiable
functions, while others are discontinuous or discrete functions. The objective of multi-
objective optimization is to obtain a set of approximate Pareto optimal solutions. The Nash
equilibrium theory [140] is an effective approach for solving multi-objective optimization in
aerodynamics. Based on the concept of competitive games, the solution of a multi-objective
optimization problem can be considered as a Nash equilibrium. Tang et al. [141] proposed
a Nash equilibrium strategy in aerodynamic optimization and applied it to optimize the
drag coefficient of a wing–body fusion at transonic speeds while maintaining a constant
lift coefficient. The results showed that the Nash strategy was able to effectively couple
local and global optimization without increasing the computational cost. The drag of the
wing–body fusion body was significantly reduced while keeping the lift constant. The
geometry and pressure distributions of the initial and Nash-optimized wings are indicated
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in Figure 8. A significant shock wave reduction was achieved on the upper airfoil of the
Nash-optimized wing. Han et al. [142] studied the method for multi-objective optimization
when gradients were available. In this method, multi-objective evolutionary algorithm
(MOEA/D) was combined with gradient-enhanced kriging (GEK), and the effectiveness of
the proposed method was validated for a transonic airfoil through experimental studies.
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3. Conclusions

In this paper, the application of advanced models to airfoil aerodynamic optimization
has been reviewed and discussed. Data-driven advanced models have been employed
successfully in critical steps of aerodynamic optimization including geometric parameteri-
zation, aerodynamic solving and performance evaluation, and optimization model. With
the evolution of artificial intelligence technology, advanced models have gradually devel-
oped from small-scale expert knowledge models to machine learning models. Advanced
models have developed from neural networks at the beginning, to multi-layer neural
networks based on deep learning, convolutional neural networks, transformer models, and
then to the current GPT models. The development and refinement of advanced models
has promoted the process of integration between artificial intelligence and aerodynamics.
Based on the updating and iteration of advanced models, the surrogate and optimization
models are provided with more superior performance, thus making it possible to solve
complex aerodynamic optimization problems efficiently.

With respect to the further application of data-driven advanced models in aerodynamic
optimization, the following prospects are proposed and suggested:

(a) Expanding the database for aerodynamic modeling. A large and sufficient amount of
data is the basis for aerodynamic modeling. There is no sufficient publicly available
dataset with abundant flow field characteristics for aerodynamic optimization. The
quantity and quality of data limit the further development and application of models.
In order to address the above problem, it is recommended to develop aerodynamic
modeling strategies applicable for small-scale data, e.g., data augmentation and meta-
learning-based modeling methods. The construction of a large-scale aerodynamic
database might also be enhanced, and the data fusion of wind tunnel test, flight test,
and numerical simulation data could be considered.

(b) Improving the interpretability and generalization of advanced models. Most of the
current aerodynamic models are “black box” models, making it hard for researchers
to understand the learning principle and process in the network. Improving the
interpretability of advanced models and transforming models from the original “black
box” to “gray box” or even “white box” will help to enhance the understanding of
aerodynamics and realize the update of knowledge in the progress of optimization.
On the other hand, improving the generalizability of advanced models is also signif-
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icant for the expansion of application scenes and the improvement of optimization
design efficiency.

(c) Enhancing the ability of advanced models to solve 3D complex configuration opti-
mization. The “dimensional disasters” by three-dimensional complex configurations
are a great challenge for optimization design. Compared to aerodynamic optimiza-
tion of 2D configurations, the difficulty of each process of 3D complex configuration
optimization increases significantly. Most of the current advanced models focus on
improving the efficiency of solving existing problems, and advanced models should
be developed to address the unsolved issue by the traditional methods, especially to
facilitate the aerodynamic optimization of 3D complex configurations.
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