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Abstract: Knowledge graphs have been extensively studied and applied, but most of these studies
assume that the relationship facts in the knowledge graph are correct and deterministic. However,
in the objective world, there inevitably exist uncertain relationship facts. The existing research
lacks effective representation of such uncertain information. In this regard, we propose a novel
representation learning framework called CosUKG, which is specifically designed for uncertain
knowledge graphs. This framework models uncertain information by measuring the cosine similarity
between transformed vectors and actual target vectors, effectively integrating uncertainty into the
embedding process of the knowledge graph while preserving its structural information. Through
multiple experiments on three public datasets, the superiority of the CosUKG framework in repre-
senting uncertain knowledge graphs is demonstrated. It achieves improved representation accuracy
of uncertain information without increasing model complexity or weakening structural information.

Keywords: knowledge graph; uncertain knowledge graph; knowledge representation learning;
uncertainty information; confidence

MSC: 68T07; 68T30; 68T50

1. Introduction

A knowledge graph is a structured representation of facts in the form of a directed
graph with multiple relationships. Nodes represent entities, and edges represent relation-
ships between entities. Currently, knowledge graphs have been extensively studied and
applied. However, these studies and applications are based on the assumption that the
facts in the knowledge graph are correct, which does not align with the objective world.
In the process of building a knowledge graph, it is inevitable to include some erroneous
or incomplete information from the objective world. Therefore, in order to better express
knowledge of the objective world, knowledge graphs should consider describing these
uncertain facts with errors. To differentiate, a knowledge graph that only considers certain
facts is referred to as a deterministic knowledge graph, while a knowledge graph that
includes uncertain information is referred to as an uncertain knowledge graph.

Knowledge graph embedding refers to encoding the entities in a knowledge graph
into spatial vectors using a certain encoding method, aiming to capture both semantic
and structural information. Researchers have conducted extensive studies on this topic
and proposed various embedding models, such as distance-based models like TransE [1],
TransH [2], TransR [3]; semantic matching models like DistMult [4], SME [5], HolE [6];
complex geometric models like TorusE [7], QuatE [8], Poincaré [9]; and neural network
models like ConvKB [10], ConvE [11], SCAN [12], etc. [13]. However, most of these models
are designed for traditional deterministic knowledge graphs, and there is relatively limited
research on embedding uncertain information. Currently, research in this area is still in the
developmental stage. Therefore, after realizing the importance of uncertain knowledge, it
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is crucial to study the embedding of uncertain knowledge graphs for various applications
and better representation of the objective world within knowledge graphs.

Currently, existing models for embedding uncertain knowledge graphs mostly trans-
form the scoring functions of deterministic knowledge graph embedding models into
uncertain information in the form of function transformations. This approach does not
truly incorporate uncertainty into the embedding process and weakens the embedding of
structural information within the knowledge graph. Additionally, these models often have
high computational complexity.

In light of this, this paper proposes a novel framework for uncertain knowledge graph
embedding called CosUKG. This framework not only effectively incorporates uncertainty
into the representation learning process of knowledge graphs but also captures the struc-
tural information of the knowledge graph. Furthermore, a training strategy involving
negative samples is designed to further enhance the embedding accuracy.

The specific contributions of this paper are as follows:

• A novel framework for uncertain knowledge graph embedding, CosUKG, is proposed.
• A new method for generating negative samples specifically for uncertain knowledge

graphs is introduced.
• A training strategy involving negative samples designed for uncertain knowledge

graphs is presented.
• A confidence inference method for unobserved relationship facts is proposed.
• Multiple experiments on three general datasets demonstrate the superior performance

of CosUKG in uncertain knowledge graph representation learning.

The remaining sections of this paper are organized as follows. In Section 2, we
review relevant literature on deterministic and uncertain knowledge graphs. Section 3
provides a formal definition of uncertain knowledge graphs, uncertain knowledge graph
representation learning models, and link prediction tasks. Section 4 elaborates on the
proposed CosUKG framework. In Section 5, we present the experimental results. Finally,
we conclude our research with a summary and discussion in the concluding section.

2. Related Work

In recent years, a considerable amount of work has been devoted to studying models
for knowledge graph representation learning. We have collected existing models and
conducted in-depth research and analysis. A comprehensive summary of knowledge
graph representation learning models from both deterministic and uncertain perspectives
is presented in Figure 1. Our proposed CosUKG framework leverages the research findings
of some existing deterministic knowledge graph representation learning models while
addressing the challenges present in uncertain knowledge graph representation. Therefore,
we first provide an overview of deterministic knowledge graph models, followed by a
summary of uncertain knowledge graph representation learning models and an analysis of
the issues they face.

2.1. Deterministic Knowledge Graph Representation Learning Models

The scoring function is a crucial component in deterministic knowledge graph repre-
sentation learning models. Based on the scoring function, these models can be categorized
into five types, distance models, semantic matching models, geometric models, neural
network models, and auxiliary information models [14], as shown in Figure 1.

In distance models, a distance-based scoring function is utilized. These functions
consider the distance between the head and tail entities and transform the relationship into
a translation vector or projection matrix. The transformed distance between the head and
tail entities is expected to be small. Examples of distance models include TransE, TransH,
TransR, TransD [15], KG2E [16], TransA [17], TransF [18], TransM [19], etc.
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Geometric models refer to representing triples in non-Euclidean spaces such as com-
plex space, Gaussian space, toroidal space, hyperbolic space, etc. The relationship is treated
as a complex geometric transformation in the semantic space, and the scoring function
measures the distance between the transformed head entity and tail entity. Examples of
geometric models include TorusE, QuatE, Poincaré, ATTH [20], ProjE [21], HOLEX [22],
MuRP [23], RotatE [24], etc.

Semantic matching models employ similarity-based scoring functions to measure
the plausibility of triples by matching the latent semantics of entities and projecting them
into a vector space. Examples of semantic matching models include HolE, SME, DistMult,
ComplEx [25], ANALOGY [26], SimplE [27], TuckER [28], RESCAL [29], etc.

Neural network models refer to treating triples as inputs and utilizing the powerful fea-
ture capturing ability of neural networks to represent knowledge graphs in a feature space
and learn feature representations of entities and relations. Examples of this type of model
include ConvKB, ConvE, SCAN, CapsE [30], R-GCN [31], HypER [32], ConvR [33], etc.

Auxiliary information models refer to incorporating additional auxiliary information
such as text, images, entity types, or relation paths during knowledge graph embedding.
Examples of auxiliary information models include TKRL [34], PTransE [35], DKRL [36],
IKRL [37], KG-BERT [38], MKBE [39], MT-KGNN [40], KR-EAR [41], etc.

2.2. Uncertain Knowledge Graph Representation Learning Models

Current research on the representation of uncertain knowledge in knowledge graphs
can be categorized into two types: those that explicitly incorporate uncertainty into their
embeddings and those that do not.

The first type uses uncertainty information but does not preserve it in the embedding
space. For example, CKRL [42] multiplies the confidence level used to express uncertainty
information directly by the corresponding triple’s scoring function. They then optimize
using a margin-based ranking loss function such that triples with higher confidence levels
receive greater optimization weights. Similarly, the GtransE [43] model utilizes the TransE
scoring function but adjusts the margin between positive and negative triples dynamically
based on their confidence levels. This allows triples with higher confidence levels to have a
larger margin, while those with lower confidence levels have a smaller margin, making the
model more focused on learning from high-confidence triples. The FocusE [44] model uses
the same scoring function as GtransE but directly adds larger weights to triples with higher
confidence levels during optimization, thus increasing their impact.

Although these three models increase the weight of high-confidence triples during
optimization in different ways, the numerical value of confidence is not preserved in
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the embedding space. This can lead to poor results for certain tasks related to uncertain
knowledge graphs, such as confidence prediction and link prediction.

The second type incorporates uncertainty information and preserves it in the embed-
ding space. For example, IIKE [45] assumes that each node in the knowledge graph is
independent and models confidence using the TransE scoring function. The confidence of
each triple is defined as the joint probability, and the prediction task is defined as the con-
ditional probability. Optimization is performed using a mean squared error loss function.
Although uncertainty information is preserved in the embedding space, the model does
not consider the correlation information in the knowledge graph. Both UKGE [46] and
SUKE [47] use the scoring function of the Distmult model and map the scoring function
to confidence through a function. They both optimize using a mean squared error loss
function. The difference is that UKGE only focuses on confidence learning and does not
fully utilize structural information, while SUKE considers both confidence and structural
information. However, SUKE needs to learn two vector representations simultaneously for
each entity and relation, making the model complex and training difficult. BEUrRE [48]
models entities as axis-aligned hyperrectangles and relations as affine transformations
between the head and tail entity rectangles. The overlapped region after transformation
represents uncertainty information. It models the relationship information at two levels
and can represent hierarchical structure well, but the learned vectors are complex and
computationally expensive.

To address the issues with uncertain knowledge graph representation learning men-
tioned above, this paper proposes an embedding model framework that can incorporate
uncertainty information while fully capturing structural and semantic information. Mul-
tiple experiments were conducted on three datasets, and the proposed model showed
excellent performance in both confidence prediction and relation fact classification tasks.

3. Problem Definition

In this section, we provide definitions for uncertain knowledge graphs as well as
uncertain knowledge graph representation learning and prediction.

Definition 1. Uncertain Knowledge Graph. An Uncertain Knowledge Graph is commonly defined
as UKG = {E, R, Q, C}, where E represents the set of entities, R represents the set of relations,
C represents the set of uncertainty information, and Q ⊆ E × R × E × C represents the set
of quadruples. The quadruple (h, r, t, c)∈ Q represents all existing quadruples with uncertainty
information in the UKG. h is the head entity, t is the tail entity, and both h and t belong to the
entity set E. r∈ R represents the directed relation between h and t. c∈ C represents uncertainty
information, which is the probability or confidence that the triple (h, r, t) holds true. It is also
known as the confidence, and its value ranges from 0 to 1. The larger the value of c, the higher the
likelihood that (h, r, t) is true. However, a low value of c does not imply that (h, r, t) is false; it
simply indicates a lower probability of its truthfulness.

Definition 2. Representation learning for Uncertain Knowledge Graphs. Uncertain Knowledge
Graph representation learning refers to the process of encoding relationships and entities in a given
UKG while preserving structural, semantic, and confidence information. Uncertain Knowledge
Graph representation learning is also known as Uncertain Knowledge Graph embedding, where
h, r, t, respectively, represent the embedding vectors for h, r, t.

Definition 3. Uncertain Knowledge Graph prediction. Uncertain Knowledge Graph prediction
is the task of predicting the probability of a relationship fact (h, r, t) being true, i.e., (h, r, t, ?). It
involves predicting the confidence c for a given triple (h, r, t).
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4. The CosUKG Framework

To genuinely incorporate confidence into the encoding of entities and relations, while
fully capturing both structural and semantic information, the CosUKG framework is
proposed. Firstly, an overview of the CosUKG framework is provided, followed by the
motivation behind its proposal in Section 4.2. Subsequently, in Section 4.3, the principles of
embedding confidence in CosUKG and reflecting structural and semantic information are
elucidated. Section 4.4 describes the training process of the framework, concluding with
the method for inferring confidence of unobserved triples.

4.1. Overview of the CosUKG Framework

The CosUKG framework consists of three modules, initialization, training, and evalu-
ation, as shown in Figure 2. The initialization module is responsible for reading positive
samples, generating negative samples, selecting models, and generating embedding vectors.
Model selection aims to choose an appropriate model, which includes pre-defined scoring
functions suitable for UKG. The embedding vector generation is responsible for initializing
the embedding vectors and updating and storing intermediate vectors.
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The training module consists of two functionalities: score computation and loss opti-
mization. Score computation involves using the model’s scoring function to calculate the
scores of positive and negative samples. Then, through loss optimization, an appropriate
loss function is selected to optimize the embedding vectors. The results are passed to the
embedding vector generation module, and this process iterates until reaching the maximum
number of iterations. The choice of loss function should correspond to the selected model.

Finally, the evaluation module assesses the trained model parameters and learned
embedding vectors. It analyzes the embedding performance of CosUKG through two tasks:
confidence prediction and relation fact classification.

4.2. Motivation behind the CosUKG

From the analysis of Section 2, it can be seen that a large amount of research work
proposes deterministic knowledge graph representation learning models, all aiming to
bring the head entity as close as possible to the tail entity through transformation. In
deterministic knowledge graph representation learning, each relational fact is deterministic,



Mathematics 2024, 12, 1419 6 of 19

and, during representation learning, for each deterministic relational fact, the smaller the
value of its scoring function, the better, ideally being 0.

As shown in Figure 3, taking TransE as an example, it is desirable that h + r − t = 0,
that is, h + r = t, which is the ideal result. However, in reality, it is often difficult to achieve;
that is, there is usually a gap between the transformed vector t̂ = h + r and the true t.
Assuming an offset angle o represents this distance, the smaller the offset angle, the closer
t̂ is to the target vector t. When θ = 0◦, t̂ = t, which means cos θ = (t̂·t)/(|t̂| ∗ |t |) = 1.
In other words, for a deterministic relational fact (h, r, t), the cosine similarity between t̂
and t is 1. If the distance between t̂ and t increases, the offset angle θ will also increase,
and the cosine similarity will decrease. Furthermore, according to Definition 1, uncertain
knowledge graphs assign a confidence to each relational fact (h, r, t) to represent uncertainty,
with values ranging from 0 to 1. A higher confidence indicates a higher likelihood that the
relational fact (h, r, t) is true, which is consistent with the change in cosine similarity values.
Therefore, by modeling confidence using cosine similarity and incorporating them into the
scoring function formula, uncertainty can be represented in the embedding vector space.
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4.3. Embedding Confidence, Structural, and Semantic Information

It is natural to model confidence information using the offset angle θ between vectors.
When the confidence is 1, t̂ = t, meaning the offset angle from the transformed vector t̂ to
the target vector t is 0, which results in cos 0◦ = 1. When the confidence is 0, t̂ and t are
significantly different, indicating an offset angle of greater than or equal to 90 degrees from
t̂ to t. Therefore, the confidence c = cos θ = (t̂·t)/(|t̂| ∗ |t |), which is based on the well-
known cosine of the angle equation and is the reason why the proposed model framework
is named CosUKG. The general scoring function is designed as Equation (1):

f = (t̂·t) − c(| t̂| ∗ |t |) (1)

The embedding of structural and semantic information is primarily reflected in the
transformation process from the head entity to the tail entity, which determines how t̂ is
derived. There are multiple choices for this process, such as the simple TransE model where
the transformed vector t̂ = h + r, and the scoring function is defined as:

f = ((h + r)·t) − c(|h + r| ∗ |t |) (2)

The TransE model performs well only in handling one-to-one relationships. It tends to
make errors when dealing with one-to-many, many-to-one, and many-to-many relation-
ships. This limitation also applies to CosUKG, restricting it to handling only one-to-one
uncertain relational facts. To improve upon this, one may choose the TransH, TransR, or
TransD models, which all utilize the relation r to project or transform h, t. In summary,
ϕr

1(t̂) = ϕ
r
2(h)+r, where ϕr

i (·) represents matrix multiplication with respect to r. The
scoring function can be represented by Equation (3):

f = ((ϕr
2(h)+r)·ϕr

1(t)) − c(|ϕr
2(h)+r| ∗ |ϕr

1(t) |) (3)
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The TransX series models excel in modeling one-to-many, many-to-one, and many-to-
many relationships. If we select Equation (3) as the scoring function, CosUKG can handle
uncertain relational facts of types including one-to-many, many-to-one, and many-to-many.

Compared to the TransX series models, the RotatE model can better embed structural
and semantic information, where t̂ = h� r, with � representing Hadamard (or element-
wise) product. The scoring function is defined by Equation (4):

f = ((h� r)·t)− c(|h� r| ∗ |t |) (4)

The RotatE model accurately handles relationships of one-to-one, one-to-many, many-
to-one, and many-to-many types, and this capability extends to CosUKG. Therefore, when
using Equation (4), CosUKG can model uncertain relational facts of types including one-to-
one, one-to-many, many-to-one, and many-to-many.

Similarly, this framework can fully leverage existing research achievements in deter-
ministic knowledge graphs, particularly distance models. This ensures the quality of the
embeddings with minimal increase in model complexity.

4.4. Framework Training

The choice of loss function and negative sample generation method are two crucial
aspects in model training. The selection of the loss function depends on the genera-
tion method. For example, TransE utilizes a margin-based ranking loss function, rep-
resented by Equation (5) in the CosUKG framework. On the other hand, RotatE em-
ploys a negative sampling loss function, represented by Equation (6) in the CosUKG
framework. In the equations, p(h′i, r, t′i, c′i

)
denotes the sampling probability of nega-

tive samples, which is used as the weight for negative samples. Q− represents the set
of negative samples, which includes quadruples that do not exist in Q and is defined as
Q− =

{(
h′ , r, t, c)|h′∈ E∧h′ 6= h∧ (h, r, t, c)∈ Q} ∪ {(h, r, t′ , c)|t′ ∈ E∧ t′ 6= t∧ (h, r, t, c) ∈ Q}

∪{(h, r, t, c′ )|c′ ∈ C∧ c′ 6= c∧ (h, r, t, c) ∈ Q}.

L = ∑
(h,r,t,c)∈Q

∑
(h′ ,r,t′ ,c)∈Q−

[γ − f(h, r, t , c) + f(h′, r, t′, c′
)
]+ (5)

L =− logσ(γ − f(h, r, t , c)) −
n

∑
i=1

p(h′i, r, t′i, c′i
)
logσ(f(h′i, r, t′i, c′i) − γ) (6)

A simple uniform distribution of negative samples with zero confidences cannot be
used during the training process. Therefore, a new negative sample generation strategy
has been designed for CosUKG. Specifically, for a quadruple (h, r, t, c), if c >x1, n negative
samples (h, r, t, c′) are generated, where the value range of c′ is (0, 1 − c]; if c <x2, n
negative samples (h, r, t, c′) are generated, where the value range of c′ is [1 − c,1); and,
if c < x1, n negative samples

(
h′ , r, t′ , c) are generated. x1 and x2 are hyperparameters,

where x1 > x2, and they need to be adjusted during the training process. The negative
sample generation process is described in Algorithm 1. Compared to using a uniform
distribution, this negative sampling strategy is more nuanced, capable of generating a
greater number of genuine negative samples. By enhancing the contribution of negative
sample scores to the loss function, it aids the model in learning more about the structure
and semantic features of the knowledge graph.

The computational complexity of Algorithm 1 mainly lies in detecting whether the
generated negative samples are true negative samples, i.e., filtering out the samples that
already exist in Q. Assuming that the time required for one detection operation is Tfilter,
the time complexity of generating n negative samples is O(nTfilter).
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Algorithm 1 The Process of Generating Negative Samples

Input: a quadruple (h, r, t, c), negative sampling size n, threshold parameter x1 and x2,
where x1 > x2.
1: if c > x1:

2:
Generate n quadruples (h, r, t, c′ ), where c′∈ {c′ i|0 < c′ i < (1 − c),i = 1, 2, 3, . . . , n} ,
(h, r, t, c′ )∈ Q−

3: else if c < x2:

4:
Generate n quadruples (h, r, t, c′ ), where c′∈ {c′ i|(1 − c) < c′ i < 1,i = 1, 2, 3, . . . , n} ,
(h, r, t, c′ )∈ Q−

5: else:
6: Generate n quadruples

(
h′ , r, t, c) or (h, r, t′ , c),

(
h′ , r, t, c)∈ Q−, (h, r, t′ , c)∈ Q−

7: End if
Output: n quadruples

(
h′ , r, t′, c′

)
The model training process is illustrated in Algorithm 2. During each iteration, B

quadruples are sampled from the training set. n negative samples are generated for
each quadruple, and the scores of both positive and negative samples are calculated.
Then, the loss is computed using either Equation (5) or Equation (6), and the embed-
ding vectors of entities and relations are updated based on the gradients. Assuming
that the time required to compute the scores of positive and negative samples is Tf,
and the time to compute the loss value is Tloss, the time consumption for processing
one batch of samples is B(nTfilter + Tf + Tloss). The time complexity for S iterations is
O(SB(nTfilter + Tf + Tloss)) .

Algorithm 2 The Training Process of CosUKG

Input: training set Qtest = {(h, r, t, c)}, embedding dimension d, scoring function f, batch size B,
negative sampling size n, margin γ, iterations step, etc.
1: Initialize entity embedding vectors and relation embedding vectors.
2: Sample B quadruples from the training set, SB ∈ Qtest
3: for each quadruple (h, r, t, c) ∈ SB do
4: Generate n true negative samples

(
h′ , r, t′, c′

)
using Algorithm 1.

5: Calculate f(h, r, t , c) and f(h′, r, t′, c′
)

6: Update embedding parameters based on gradients using Equation (5) or Equation (6).
7: End for
8: Repeat steps 2 to 7 until the maximum number of iterations step is reached.
Output: Learned relation and entity embedding vectors.

4.5. Inference of Confidence for Unobserved Relation Facts

In the UKGE, SUKE, and BEUrRE models, probability soft logic is introduced to
calculate the confidence of unobserved facts. Although these models have achieved good
results, the logical rules and weights are manually determined without considering the
uncertainty of these rules and weights. This approach is somewhat inconsistent with
objective facts and has certain limitations. In this paper, we propose to model uncertainty
information using the cosine similarity of vector angles and leverage the transitivity of
angles to make reasonable inferences about the confidence of unobserved facts.

For example, consider a logical rule defined as (e0, r0, e1, c1)∧ (e1, r1, e2, c2)∧ (e2, r2, e3, c3)
→ (e0, r3, e3, c0) with a length of 3, where e0, e1, e2, e3 ∈ E, r0, r1, r2, r3∈ R, and c1, c2, c3 ∈ C
represent entities and relations, respectively. Taking the TransE model as an example, in the
CosUKG framework, the geometric interpretation of this rule is shown in Figure 4.
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In this case, we have c1 = cosθ1, c2 = cosθ2, c3 = cosθ3. According to Equation (2), we
can calculate ê1 = e0 + r0, ê2 = e1 + r1, and ê3 = e2 + r2, as shown in Figure 4a. Then, based
on the transitivity of angles and vector arithmetic rules, we obtain Figure 4b, which represents
the confidence of the unobserved fact (e0, r3, e3) as c0 = cosθ0 = cos (θ1 + θ2 + θ3).

5. Experimental and Results Analysis

To evaluate the effectiveness of the proposed CosUKG framework, we conducted
confidence prediction and relation fact classification tasks on three public datasets. In
addition, we also performed ablation studies and parameter sensitivity analysis.

5.1. Datasets

The three public datasets used in the experiments are CN15k, NL27k, and PPI5k [46],
which are the most widely used datasets in uncertain knowledge graph research. CN15k
is a subset of ConceptNet, containing 15,000 entities, 36 relations, and 241,158 facts with
confidence information. NL27k [49] is a subset of NELL, with 27,221 entities, 404 relations,
and 175,412 facts with confidence information. It is larger and more complex than CN15k.
PPI5k is a subset of STRING [50], containing 5000 entities, seven relations, and 271,666 facts
with confidence information. The specific statistics are shown in Table 1.

Table 1. Statistics of the datasets.

Dataset #Entity #Relation #Rel.facts Avg(s) Std(s) #Training #Validation #Test #Density

CN15k 15,000 36 241,158 0.629 0.232 204,984 16,881 19,293 16.1
NL27k 27,221 404 175,412 0.797 0.242 149,100 12,278 14,034 6.4
PPI5k 5000 7 271,666 0.415 0.213 230,929 19,017 21,720 54.3

“#Entity” represents the number of entities, “#Relation” represents the number of relations, “#Rel.facts” represents
the number of uncertain relation facts, “Avg(s)” and “Std(s)” are the average and standard deviation of confidence,
“#Training” represents the number of relation facts in the training set, “#Validation” represents the number of
relation facts in the validation set, “#Test” represents the number of relation facts in the test set, and “#Density”
represents the average number of quads per entity.

Among the datasets, PPI5k has the fewest entities but the highest number of quads,
while NL27k has the most entities but the fewest number of quads. Calculating the density
using the average number of quads per entity in each dataset, PPI5k has the highest density
at 54.3, followed by CN15k with a density of 16.1 and NL27k with the lowest density at 6.4.
The datasets contain a large number of quadruples (head, relation, tail, confidence), with
confidence ranging from 0 to 1. For example, (twitter, competitionswith, facebook, 0.859) is
a fact in the NL27k dataset.

To ensure the fairness of the experimental results, the datasets were divided according
to convention, with 85% used for training, 7% for validation, and 8% for testing.

5.2. Experimental Setup

During the embedding learning phase, the optimizer used is Adam, and a grid search ap-
proach is employed to fine-tune the hyperparameters. The dimensions of entity and relation
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embedding vectors are set as follows: embedding dimension d ∈ {128, 256, 500, 1000},
learning rate lr ∈ {0.002, 0.001 , 0.0001, 0.00005}, batch size B ∈ {512, 1024}, negative
sampling size n ∈ {32, 64, 128, 256, 512}. The confidence threshold values x1 and x2 are
set as follows: x1 ∈ {0.7, 0.75, 0.8, 0.85, 0.9}, x2 ∈ {0.3, 0.25, 0.2, 0.15, 0.1}.

In the comparative experiments, the scoring functions using Equations (2)–(4) are
referred to as CosUKGTransE, CosUKGTransH, and CosUKGRotatE, respectively. The uncertain
knowledge graph models UKGE, URGE, SUKE, and BEUrRE are used for comparison,
and their results are obtained from the original papers. Missing data indicate that the
corresponding results are not available in the original papers.

5.3. Analysis of Experimental Results
5.3.1. Confidence Prediction

The confidence prediction task refers to predicting the confidence value c, i.e., (h, r, t, ?),
of an unobserved quadruple. In this paper, for each quadruple in the test set, the predicted
value of confidence is ĉ = (t̂·t)/(|t̂| ∗ |t |).

Evaluation metrics: The mean squared error and mean absolute error between the
predicted and true values are calculated as evaluation metrics for confidence prediction. A
smaller value of these metrics indicates better performance of the model.

Experimental results: To ensure fairness in comparison with baseline models, we
use the same threshold values as the baselines for displaying the results. Specifically, the
threshold values x1 for CN15k and NL27k are 0.85, and the threshold value x1 for PPI5k is
0.7. The prediction results of CosUKG are shown in Table 2.

Table 2. Confidence prediction (×10−2).

Model
CN15k NL27k PPI5k

MSE MAE MSE MAE MSE MAE

URGE 10.32 22.72 7.48 11.35 1.44 6.00
UKGErect 8.61 19.90 2.36 6.90 0.95 3.79
UKGElogi 9.86 20.74 3.43 7.93 0.96 4.07

SUKE 5.12 17.82 0.77 3.19 0.29 1.95
BEUrRE 7.49 19.88 2.01 6.89 —— ——

CosUKGTransE 3.86 15.96 1.99 5.05 0.33 2.21
CosUKGTransH 3.83 14.9 1.67 4.19 0.31 2.02
CosUKGRotatE 3.70 14.70 1.41 3.08 0.30 1.99

The optimal results are indicated in bold, while the second-best results are annotated with an underline. A
dash (—) signifies that the experiment was not conducted on this dataset, indicating missing data for that
particular item.

From Table 2, it can be observed that the proposed CosUKG outperforms all baseline
models on CN15k, with a significant reduction in MSE and MAE compared to the baseline
models. This clearly demonstrates the notable effectiveness of CosUKG in incorporating
uncertain information into embeddings. It is also worth noting that the MSE result is second-
best on NL27k, while the MAE result is the best. On PPI5k, the results are consistently
second-best. There are two reasons for these observations. First, it can be attributed to
the characteristics of the datasets themselves. PPI5k has the highest density, followed by
NL27k. On these two datasets, both MSE and MAE are smaller than CN15k, especially
PPI5k, where MSE is exceptionally small. This indicates that high-density datasets are
advantageous for embedding learning, but they provide limited room for improvement in
evaluation metrics for researchers. Second, the scoring function of CosUKG is derived from
the scoring function of a translation model, which is not precise enough when dealing with
embedding learning on high-density datasets. These datasets contain a significant number
of one-to-many relationship facts, making it relatively challenging for the translation model
to learn such relationships accurately. Despite these two factors, CosUKG still achieves
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impressive prediction results, once again highlighting its advantages in learning confidence
representations.

To provide a more comprehensive illustration of the disparity between predicted
confidences and actual confidences, we have plotted scatter plots using CN15k as an
example, as shown in Figures 5–7. The x-axis represents the index of quadruples in the
test set, while the y-axis represents the confidences. The red dots represent the actual
confidences, while the black dots represent the predicted confidences.
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The scatter plots reveal that on the CN15k dataset, the actual confidences are mostly
distributed within the range of [0.1, 1.0], while the predicted confidences are mainly
concentrated in the range of [0.2, 0.9]. Overall, the model demonstrates good prediction
performance. On NL27k, the distribution of actual confidences is relatively concentrated,
and the predicted confidences are also close to the actual values, indicating a relatively
better prediction performance of the model. On PPI5k, the actual confidences are mostly
distributed within the range of [0.1, 0.6] and around 0.9, and the distribution of the predicted
confidences closely aligns with that of the actual confidences, indicating excellent predictive
results by the model. This observation is consistent with the results presented in Table 2.
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5.3.2. Relation Fact Classification

Relation fact classification is a binary classification task used to determine whether an
unobserved relation fact is a strong relation fact, and, if so, the quadruple is considered
reliable. Specifically, for each quadruple in the test set, a confidence value ĉ is calculated
based on ĉ = (t̂·t)/(|t̂| ∗ |t |), and if ĉ > x1, it is classified as a strong relation fact; otherwise,
it is considered a weak relation fact. However, errors are inevitable during the classification
process. For example, for a quadruple (h, r, t, c), and c < x1, it belongs to the weak relation
fact category, but if ĉ > x1 after calculation, it is misclassified as a strong relation fact,
resulting in false positives (FP), true positives (TP), false negatives (FN), and true negatives
(TN). The specific judgment criteria are shown in Table 3.

Table 3. Method for relation fact classification judgment.

True Confidence Real
Classification

Predictive
Confidence

Predictive
Classification

Classification
Results

c > x1 strong relation fact ĉ > x1 strong relation fact TP
c > x1 strong relation fact ĉ < x1 weak relation fact FN
c < x1 weak relation fact ĉ > x1 strong relation fact FP
c < x1 weak relation fact ĉ < x1 weak relation fact TN

Evaluation metrics: The evaluation metrics for assessing the quality of classification
are accuracy (Accu.) and F1-score. A higher value indicates better classification perfor-
mance. Accuracy is the ratio of correctly classified instances (true positives + true negatives)
to the total number of examples (true positives + true negatives + false positives + false
negatives). The F1-score is composed of precision (Precision = true positives/(true positives
+ false positives)) and recall (Recall = true positives/(true positives + false negatives)),
specifically calculated as F1-score = 2 * Precision * Recall/(Precision + Recall).

Experimental results: The results of relation fact classification are presented in Table 4.
Based on Table 4, it can be observed that the CosUKG model achieved the optimal F1-score
and accuracy on the CN15k dataset. The results of CosUKGTransE, CosUKGTransH, and
CosUKGRotatE were all higher than the baseline model. Particularly, CosUKGRotatE showed
a significant improvement of 26.67% in F1-score compared to UKGErect, demonstrating
the superior performance of the proposed CosUKG framework in embedding confidence
information. Additionally, the model achieved the highest accuracy and the second-highest
F1-score on the NL27k dataset. On the PPI5k dataset, it obtained the second-best F1-score.
The F1-score and accuracy are closely related to the threshold value x1 for strong relation
facts. By adjusting the value of x1, better results in terms of F1-score and accuracy can be



Mathematics 2024, 12, 1419 13 of 19

achieved. However, for fair comparison, the results presented in Table 4 used the same
threshold for strong relation facts as the UKGE model.

Table 4. Results of relation fact classification.

Model
CN15k NL27k PPI5k

F1-Score Accu. F1-Score Accu. F1-Score Accu.

URGE 21.2 86.0 83.6 88.7 85.2 98.6
UKGErect 28.8 90.4 92.3 95.2 95.1 99.4
UKGElogi 25.9 90.1 88.4 93.0 94.5 99.5

SUKE 26.2 81.0 95.0 93.6 97.8 99.7

CosUKGTransE 34.10 90.57 88.52 92.93 93.57 98.77
CosUKGTransH 35.26 91.71 91.43 94.10 95.7 99.19
CosUKGRotatE 36.48 93.00 93.38 95.65 96.30 99.35

The optimal results are indicated in bold, while the secondary results are underscored.

The performance of CosUKG on the NL27k and PPI5k datasets aligns with the re-
sults of confidence prediction experiments. Specifically, CosUKG shows limited improve-
ment in embedding performance on dense datasets but exhibits prominent advantages on
sparse datasets.

5.3.3. Case Study

Taking the CN15k dataset as an example, confidence scores for predicting unobserved
facts were estimated based on the inference rules shown in Table 5.

Table 5. Inference rules.

Inference Rules

(A, relatedto, B) ∧ (B, relatedto, C)→ (A, relatedto, C)
(A, hassubevent, B) ∧ (B, causes, C)→ (A, causes, C)

(A, notdesires, B) ∧ (B, madeof, C)→ (A, notdesires, C)
(A, partof, B) ∧ (B, isa, C) ∧ (C, synonym, D)→ (A, partof, D)

According to the inference rules, previously unobserved relation facts were discovered in the
CN15k dataset. The predicted confidence closely aligned with the calculated confidence through
inference, as shown in Table 6. For example, the unobserved relation fact (fish, notdesires, metal)
was derived from the rule (A, notdesires, B)∧ (B, madeof, C)→ (A, notdesires, C). The confidence
for(A, notdesires, B) was cAB = cos(θAB) = 0.709, and the confidence for (B, madeof, C) was
cBC = cos(θBC) = 0.999. According to the calculation method for confidence of unobserved
relation facts described in Section 4.5, the theoretical value of the confidence for (fish, notdesires,
metal) should be cfish = cos(θAB + θBC) =cos(θAB)cos(θBC) − sin(θAB)sin(θBC) =cABcBC−√

1 − cAB
2
√

1 − cBC
2 ≈ 0.707. The model’s predicted confidence of 0.710 is very close to the

theoretical value, differing only by 0.003. Moreover, the predicted confidence aligns with human
common sense, further demonstrating the excellent performance of the proposed CosUKG
framework for reasoning with unobserved knowledge.

Table 6. Partial unobserved relation facts and their confidence.

Unobserved Relation Facts Predictive Confidence Theoretical Confidence

(abbey, relatedto, building) 0.616 0.619
(baghdad, partof, nation) 0.746 0.741
(fish, notdesires, metal) 0.710 0.707

(going to party, causes, being happy) 0.792 0.793
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5.4. Ablation Research

To demonstrate the effectiveness of the proposed negative sample generation method,
ablation studies were conducted by removing the negative sample generation module
from CosUKG while keeping the hyperparameters consistent. Subsequently, ten experi-
ments were performed on each of the three datasets, and the results were averaged. In
order to distinguish them, the models without the negative sample generation module
for CosUKGTransE, CosUKGTransH, and CosUKGRotatE were labeled as CosUKG−Neg

TransE,
CosUKG−Neg

TransH, and CosUKG−Neg
RotatE, respectively.

Table 7 displays the confidence prediction results. Compared with Table 2, it can be ob-
served that after removing the negative sample generation module, the values of MSE and
MAE have increased. Although the model still outperforms the baseline model, the degree
of performance improvement is significantly reduced. This not only demonstrates the con-
tribution of the negative sample generation module to CosUKG but also further confirms
the scientific validity of using vector cosine similarity to model uncertainty information.

Table 7. Confidence prediction (×10−2).

Model
CN15k NL27k PPI5k

MSE MAE MSE MAE MSE MAE

CosUKG−Neg
TransE 4.59 17.53 2.14 5.61 0.36 2.36

CosUKG−Neg
TransH 4.32 16.94 1.84 4.59 0.32 2.13

CosUKG−Neg
RotatE 3.91 15.49 1.43 3.16 0.31 2.03

The optimal results are indicated in bold, while the second-best results are annotated with an underline.

To further visually demonstrate the impact of the negative sample generation module,
a comprehensive comparison was made between the modified CosUKG without the module
and the complete CosUKG. Figure 8 shows the changes in MSE and MAE before and after
removing the negative sample generation module. Overall, after removing the module,
both MSE and MAE increased, with the specific increase rates shown in Table 8. Particularly
on the CN15k dataset, the average increases in MSE and MAE were 15.46% and 9.63%,
respectively, once again highlighting the beneficial role of the negative sample generation
method in enhancing the performance of CosUKG.
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5.5. Sensitivity Analysis

In the previous experiments, it was mentioned that the threshold for strong relation-
ship facts is closely related to F1-score and accuracy. Here, by varying the value of the
threshold x1 for strong relationship facts, the changes in F1-score and accuracy on the
three datasets are observed. Taking CosUKGRotatE as an example, the results are shown in
Figure 9.
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It can be observed that on the CN15k dataset, as the threshold for strong relationship
facts increases, the F1-score decreases while the accuracy increases. On the NL27k dataset,
the highest accuracy is achieved when the threshold for strong relationship facts is set to
0.7, and the maximum F1-score is obtained when the threshold is set to 0.75. On the PPI5k
dataset, the maximum accuracy and F1-score are achieved when the threshold is set to 0.65,
and they decrease as the threshold increases.

To investigate this phenomenon of different trends on the three datasets, it was found
that it is related to the distribution of confidences in the datasets. The distribution plots
of confidences for the test sets of the three datasets are shown in Figures 10–12. From
Figure 10, it can be seen that the confidences of the CN15k dataset are mostly distributed
below 0.75. When the threshold for strong relationship facts is set to 0.8, both the accuracy
and F1-score are relatively high because it can effectively classify confidences below 0.75
and those above 0.85. However, if the threshold is set to 0.85, which is closer to 0.9, not all
confidences around 0.9 can be properly classified as above 0.85, resulting in a decrease in
the F1-score.
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From Figure 11, it can be seen that the NL27k dataset has a significant number of
confidences around 0.85. Therefore, when the threshold for strong relationship facts is set
to 0.85, the obtained accuracy and F1-score are not the best, as there are many confidences
around 0.85 that cannot be properly classified. However, a decent F1-score can be achieved
when the threshold is set to 0.75 and 0.8.

From Figure 12, it can be observed that the PPI5k dataset has fewer confidences
distributed around 0.7. Therefore, when the threshold for strong relationship facts is set to
0.7, both the accuracy and F1-score obtained are relatively good.

In conclusion, the accuracy and F1-score are sensitive to the choice of threshold x1
for strong relationship facts. When setting the threshold, it is important to consider the
distribution of confidences in the dataset itself.

Furthermore, the impact of different parameter values x2 used in generating negative
samples on confidence prediction results was also investigated. It was found that the results
on the CN15k and NL27k datasets were not affected by the choice of x2. This is because
there are very few relationship facts with confidences less than 0.3 in these two datasets,
which have minimal impact on the training process. On the PPI5k dataset, different values
of x2 slightly affect the prediction results. Taking CosUKGTransE as an example, Figure 13
shows the changes in MSE and MAE with different values of x2. The variation is minimal
because there are many relationship facts in PPI5k with confidences between 0.15 and
0.3, and the contribution of x2 from 0.1 to 0.3 in generating negative samples is limited.
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Therefore, while x2 does have some influence on confidence prediction results, its impact is
very slight according to Algorithm 1.
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6. Conclusions

A representation learning framework called CosUKG is proposed for embedding
uncertainty information in uncertain knowledge graphs. CosUKG not only integrates
confidences into the encoding of entities and relationships but also effectively captures
structural information. Multiple sets of experiments were conducted on three datasets, and
the results demonstrate that the proposed CosUKG exhibits outstanding performance in
confidence prediction and relation fact classification. The effectiveness of the proposed
negative sample generation strategy was validated through ablation experiments. Sen-
sitivity analysis of the relation fact threshold parameter further confirms the superiority
of CosUKG. The introduction of CosUKG provides a scientifically sound foundation for
downstream applications of uncertain knowledge graphs. For instance, in the field of tradi-
tional Chinese medicine (TCM), where numerous vague and uncertain pieces of knowledge
exist, the CosUKG framework can represent such uncertainty. This capability effectively
mitigates the problem of insufficient representation of uncertain knowledge in TCM, thus
providing data support for knowledge applications in this domain. Future plans include
integrating additional models into the CosUKG framework, such as KG2E, TorusE, QuatE,
Poincaré, ATTH, ProjE, HOLEX, and MuRP, and evaluating them on more datasets. Fur-
thermore, there is an intention to explore embedding multidimensional information and
comprehensive methods for representing knowledge graphs in greater detail.
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