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Abstract: In genomic studies, univariate analysis is commonly used to discover susceptible variants.
It applies univariate regression for each variant and tests the significance of the regression coefficient
or slope parameter. This strategy, however, may miss signals that are jointly detectable with other
variants. Multivariate analysis is another popular approach, which tests grouped variants with a
predefined group, e.g., based on a gene, pathway, or physical location. However, the power will be
diminished if the modeling assumption is not suited to the data. Therefore, data-adaptive testing that
relies on fewer modeling assumptions is preferable. Possible approaches include a data-adaptive
test proposed by Ueki (2021), which applies to various data-adaptive regression models using a
generalization of Yanai’s generalized coefficient of determination. While several regression models
are possible choices for the data-adaptive test, this paper focuses on the fused lasso that can count
for the effect of adjacent variants and investigates its performance through comparison with other
existing tests. Simulation studies demonstrate that the test using fused lasso has a high power
compared to the existing tests including the univariate regression test, saturated regression test, SKAT
(sequence kernel association test), burden test, SKAT-O (optimized sequence kernel association test),
and the tests using lasso, ridge, and elastic net when assuming a similar effect of adjacent variants.
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1. Introduction

Univariate analysis is often used in genome-wide association studies [1,2]. Univariate
analysis is based on univariate regression for each variant with a target phenotype and tests
the significance of the regression coefficient or slope parameter. The use of the univariate
regression model, however, restricts the alternative model to being overly simple, meaning
it is unable to capture complex phenomena as the model consists of only a few parameters,
such as situations where single genetic variants are independently associated with the
disease. The strategy may miss signals jointly detectable with other variants.

Multivariate analysis is another popular approach. It tests grouped variants simulta-
neously. The groups are predefined by users based on gene, pathway, or physical location,
etc. [3–7]. The typical statistical methods include burden test [8] and SKAT (sequence kernel
association test) [6]. Burden test collapses rare variants in a region into a single variable, and
subsequently, this variable is tested for association with the phenotype. SKAT aggregates
the associations between variants and the phenotype through a kernel matrix, which is
derived as a variance-component test in the mixed models where regression coefficients
are assumed to be independent and follow a distribution with the variance component or
a random effect. Burden test is powerful when a large proportion of variants are causal
and associated with a trait with the same direction of effect. SKAT (optimized sequence
kernel association test) is powerful in the presence of both positive and negative effects
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of variants in a genomic region. SKAT-O is a omnibus test that combines burden test and
SKAT data-adaptively by a linear combination of SKAT and burden test statistics and
the optimal combination is found by minimizing the p-value [9]. A detailed review of
burden test, SKAT and SKAT-O is given in Lee et al. [10]. Since the disease-development
mechanism is unknown a priori for many complex diseases, it is often difficult to specify
an appropriate method or model in exploring susceptibility genes or variants. There exist
many data-adaptive approaches, such as Sham and Curtis [11], Hirotsu et al. [12], Freidlin
et al. [13], González et al. [14], Li et al. [15], Hothorn and Hothorn [16], Joo et al. [17], Zang
and Fung [18], Ueki [19], but they are not versatile because null distribution specific to each
test is often required, which differs from familiar tests whose null distribution is normal or
chi-squared. It is necessary to develop special algorithms to compute the null distributions
or expensive numerical procedures such as permutation tests.

Recently, Ueki [20] developed a data-adaptive test based on Yanai’s generalized coeffi-
cient of determination [21,22]. The test is based on the regression model that maximizes
Yanai’s generalized coefficient of determination [21,22], generalizing it to any modeling
procedure. Yanai’s generalized coefficient of determination is proportional to the covari-
ance between a response variable and its predicted value divided by the square root of
the generalized degrees of freedom [23], and the dimension of the selected model tends
to be large under the null hypothesis of no effect. The above characteristic under the null
hypothesis enables the type I error rate to be controlled approximately with the significance
threshold for the saturated model, without having test-specific null distributions. Since
it is simple and simulation-free in computing p-value, the data-adaptive test is readily
applicable to genome-wide scans as a multivariate test for assessing grouped variants.
Actually, Ueki [20] applied it to lasso [24], ridge [25], and elastic net [26] for flexible data-
adaptive variant discovery in real genomic study data. Among them, variable selection
approaches, i.e., lasso and elastic net, can automatically remove variants irrelevant to
predicting the phenotype by setting the corresponding regression coefficients to zero while
accounting for correlations between variants. This data-adaptive filtering of variants helps
to interpret the results.

Groups of variants are sometimes made based on physical location. This in turn
implies that the adjacency between variants could be useful information to further en-
hance the power of detecting variant sets associated with phenotype. Fused lasso [27]
is a popular penalized regression model that allows explicitly incorporating adjacency
information in grouped variants in the variable selection scheme. The assumption that
the adjacent variants may have a similar effect is sometimes considered in the existing
literature [10,28,29]. Bao and Wang [29] proposed genome-wide association studies using a
penalized moving-window regression with a fused lasso-like penalty [30] to incorporate
the adjacency of variants and linkage disequilibrium.

This paper considers the fused lasso for the data-adaptive test of Ueki [20] and in-
vestigates the performances as a multivariate test for genomic studies through simulation
studies. The fused lasso test is compared with the univariate regression test, saturated
regression test, SKAT, burden test, SKAT-O [6,9], and the data-adaptive tests of Ueki [20]
using lasso, ridge, and elastic net. Simulation studies compare the above group tests. Real
genotype data from the 1000 Genomes Project is used for simulating the phenotype in
genomic analyses.

The rest of this paper is organized as follows. Section 2 describes the methods including
descriptions of the testing procedure of Ueki [20], its application to penalized regression
including the fused lasso, and the description of simulation studies. Section 3 describes the
results of the simulation studies. Section 4 concludes the paper.

2. Methods
2.1. Test Based on Yanai’s Generalized Coefficient of Determination

This section presents the test developed by Ueki [20]. Suppose that n samples
are observed where a response variable y = (y1, . . . , yn)T and d explanatory variables
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X = (X1, . . . , Xd) are collected for each sample, in which X j = (x1j, . . . , xnj)
Tfor j = 1, . . . , d.

For application to genomic studies, the response variable y corresponds to quantitative
phenotype and X is the grouped variants to be tested for association with y. Consider a set
of regression models indexed by a tuning parameter λ, gλ(y) that models the conditional
expectation µ = µ(X) = E(y|X) given X. It contains models typically ordered by the
extent of complexity controlled by λ, which eventually tends to the saturated model as
λ → 0. The saturated model is given at λ = 0, i.e., g0(y) = PX y, where PX is the projection
matrix onto X. The model sequence considered includes the lasso, ridge, elastic net, fused
lasso, generalized lasso, and many other regression models in statistics or machine learning.
To be specific, the testing procedure applies to the model sequence gλ(y). The procedure
includes a model selection step based on a generalization of Yanai’s generalized coefficient
of determination [21]. Yanai’s generalized coefficient of determination is a measure of
similarity between two linear spaces and has been used for variable selection in principal
component analysis [31]. A description of the original Yanai’s generalized coefficient of
determination and its generalized version are presented in Appendix A.

Instead of y and X, centered variables ỹ = Q1n
y, µ̃ = Q1n

µ, and X̃ = Q1n
X are

considered. Here, Q1n
= In − n−11n1T

n , In is the nth identity matrix, and 1n is the n-vector
of ones. Let {gλ(ỹ) : λ ≥ 0} be a model sequence indexed by a tuning parameter λ ≥ 0,
where the saturated model at λ = 0 is given by g0(ỹ) = PX̃ ỹ. Then, Yanai’s generalized
coefficient of determination for a modeling procedure gλ is given by

r(ỹ, gλ) =
||ỹ||−2ỹT gλ(ỹ)

gdf0(gλ)1/2 , (1)

where
gdf0(gλ) = Eµ̃=0{ỹT gλ(ỹ)}, (2)

and Eµ̃=0 indicates the expectation under the assumption of µ̃ = 0.
The quantity gdf0(gλ) coincides with the generalized degrees of freedom of gλ de-

fined by cov{ỹ, gλ(ỹ)} = E{(ỹ − µ̃)T gλ(ỹ)} [23,32] under the null hypothesis µ = α01n
because of µ̃ = Q1n

µ = 0, where α0 is an intercept parameter. For least-squares regres-
sion with explanatory variables X̃s, the sub-matrix of X̃ consisting of the column vectors
(X̃ j)j∈s in a given index set s ⊂ {1, . . . , d}, the generalized degrees of freedom is given by
tr(PX̃s

) = |s| [23], and consequently, (1) reduces to the original Yanai’s generalized coeffi-
cient of determination (A1) presented in Appendix A. The quantity (1) possesses a property
that the expectation of r(ỹ, gλ) under the null hypothesis µ = α01n is approximately propor-
tional to gdf0(gλ)

1/2 if y ∼ N(µ, σ2
0 In). Therefore, by assuming that gdf0(gλ) ≤ d, because

of the assumption g0(ỹ) = PX̃ ỹ, the model that achieves the maximum, maxλr(ỹ, gλ), may
have a large dimensionality and is close to that of the saturated model with a high probabil-
ity. In contrast, under the alternative hypothesis of µ ̸= α01n, assuming that gλ(ỹ) ≈ µ̃, the
expectation of r(ỹ, gλ) is approximately proportional to ||µ̃||2/gdf0(gλ)

1/2, and the model
with the smallest gdf0(gλ)

1/2 is chosen.
Let the significance threshold for the hypothesis test be α ∈ (0, 1). For a given model

sequence {gλ(ỹ) : λ ≥ 0}, the selected model is the model at the tuning parameter that
maximizes the Yanai’s generalized coefficient of determination, λ̂∗, i.e.,

λ̂∗ = argmaxλr(ỹ, gλ).
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Exploiting the property that the selected model by the Yanai’s generalized coefficient of
determination tends to be the saturated model, or λ̂∗ ≈ 0 under the null hypothesis µ̃ = 0,
the proposed test procedure is to reject the null hypothesis when

||ỹ||2d(1−δ)/2r(ỹ, g
λ̂∗)/d

σ̂2
y

> F̄−1
α (d) if gdf0(g

λ̂∗) < d1−γ, (3)

||PX̃ ỹ||2/d
σ̂2

y
> F̄−1

α (d) if gdf0(g
λ̂∗) ≥ d1−γ, (4)

where F̄−1
α (d) is the (1 − α)th quantile of the F-distribution with (d, n − d − 1) degrees of

freedoms, δ is a small constant set as 1/d, and σ̂2
y = ||Q(1n ,X)y||2/(n − d − 1).

The rationale of the above test procedure, (3) and (4), is described in what follows.
First, note that, at λ = 0,

||ỹ||2d1/2r(ỹ, gλ)/d
σ̂2

y
=

d1/2ỹT g0(ỹ)/d
gdf0(g0)1/2σ̂2

y
=

||PX̃ ỹ||2/d
σ̂2

y
, (5)

which is also the left-hand side of (3) in the case when λ̂∗ = 0 and δ = 0. The quantity
||PX̃ ỹ||2/d

σ̂2
y

above is the usual F-statistic under the saturated model, that is, it follows an

F-distribution with (d, n − d − 1) degrees of freedoms if y ∼ N(α01n, σ2
0 In). Because, under

the null hypothesis, the generalized degrees of freedom corresponding to maxλr(ỹ, gλ) are
close to d with a high probability if d is large, the saturated model F-statistic can be used if
the generalized degrees of freedom of the selected model is close to d, which is the second
case (4). In other cases where the generalized degrees of freedom of the selected model are
not close to d, which rarely occurs when the null hypothesis is true, the first case (3) is used
for the test.

The parameter γ is a given constant in (0, 1), which plays a role to judge whether the
selected model is close to the saturated model, and is set as γ = 0.01 according to Ueki [20].
The parameter δ is introduced to alleviate slight inflation in test statistic due to finite d
observed in preliminary numerical experiments, which is arbitrarily set as δ = 1/d to
satisfy δ → 0 as d → ∞. Under certain regularity conditions, the above test procedure with
a significance level α for the null hypothesis µ = α01n may approximately maintain the
type I error rate at α as d/n tends to a fixed constant in (0, 1) when n → ∞. See Section 2.4
of Ueki [20] for the theoretical results.

2.2. Data-Adaptive Test Using Penalized Regression

Penalized regression models such as lasso, ridge, elastic net and fused lasso are
regarded as a model sequence, {g(λ1,...,λl)

(ỹ) : λ1 ≥ 0, . . . , λl ≥ 0}, where λ1, . . . , λl are l
non-negative tuning parameters to control model complexity. The penalized regression
models are written in a unified manner as the following minimization problem:

argminβ

{
1

2n
||ỹ − X̃β||2 + pen(λ1,...,λl)

(β)

}
, (6)

where pen(λ1,...,λl)
(β) is a penalty function of β with tuning parameters λ1, . . . , λl . Various

procedures are obtained by altering the penalty function as follows:

• Lasso: penλ(β) = λ ∑d
j=1 |β j|.

• Ridge: penλ(β) = λ ∑d
j=1 |β j|2.

• Elastic net: pen(λ1,λ2)
(β) = λ1 ∑d

j=1 |β j|+ λ2 ∑d
j=1 |β j|2.

• Fused lasso: penλ(β) = λ ∑d
j=2 |β j − β j−1|.

The lasso and elastic net produce exactly zero regression coefficients, while the ridge
does not do so. Thus, the lasso and elastic net are more suitable than the ridge regression
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when there exist redundant explanatory variables in the d variables that give zero regression
coefficient. The fused lasso is suited to the data where indexes of explanatory variables
have an order, such as physical location. The fused lasso penalizes successive differences of
regression coefficients in absolute value and makes the regression coefficients identical for
some of the adjacent variants depending on the value of λ. This feature is absent in lasso,
ridge, and elastic net, and there exist several applications of the fused lasso in different
fields [33–35]. The fact that the fused lasso can explicitly handle the adjacency between
variants suggests an application to multivariate tests for genome-wide association studies.
For example, it would be useful when investigators attempt to assume a similar variant
effect in unknown subregions in the studied gene region.

To conduct the data-adaptive test with the penalized regression, the generalized
degrees of freedom method (2) is required for computing the Yanai’s generalized coefficient
of determination (1). Fortunately, estimates for the generalized degree of freedom are
available for the above penalized regression models. For the ridge regression, gλ(ỹ) = Pλỹ

where Pλ = X̃(X̃
T

X̃ + nλId)
−1X̃

T
, the generalized degrees of freedom are given explicitly

as gdf0(gλ) = tr(Pλ) if y ∼ N(µ, σ2
0 In), which can be used as an estimate. Analogously, for

the lasso, gdf0(gλ) = E(|Aλ|) holds [36–38], where Aλ is the active set at a given tuning
parameter λ, hence, the cardinality |Aλ| can be used as an estimate. More generally, for the
elastic net with a tuning parameter vector λ = (λ1, λ2) (the first and second elements are

for L1- and L2-norms), tr{X̃ Aλ
(X̃

T
Aλ

X̃ Aλ
+ nλ2 I|Aλ |)

−1X̃
T
Aλ

} can be used as an estimate,
where Aλ is the active set at a given tuning parameter λ. The form of the generalized
degrees of freedom for the generalized lasso including the fused lasso is given by Tibshirani
and Taylor [37], where the generalized lasso is the penalized regression (6) with a penalty
function penλ(β) = λ||Dβ||1 for a given specified penalty matrix D. It includes lasso and
fused lasso as a special case. The generalized degrees of freedom for other models are given
in Chen et al. [39]. If no closed-form estimate is available, a simulation-based method is a
possible approach [23]. For the fused lasso, the generalized degrees of freedom is equal to
the expected number of fused groups [37]. This paper uses the number of fused groups of
the estimated regression coefficients as an estimate of the generalized degrees of freedom.

2.3. Other Multivariate Tests

Other methods for the multivariate tests for a given group comprising of d variants
considered in this paper are as follows.

• Univariate regression test: Minimum of the d Bonferroni adjusted p-values from
univariate F-test for each variant, i.e., min{d min(p1, . . . , pd), 1}, where pj denotes the
p-value for testing if the regression coefficient is zero in the univariate normal linear
regression model with the phenotype y and the jth variant as the explanatory variable
(j = 1, . . . , d). The Bonferroni correction is the method that adjusts the significance
level of individual tests to level α/d, where α is the desired family-wise error rate [40],
which gives the Bonferroni adjusted p-value as defined in Wright [41]. The univariate
regression test does not take the correlation between d variants into account.

• Saturated regression test: F-test for the analysis of variance under the saturated linear
regression model with normal error using all d variants simultaneously, i.e., test for the
null hypothesis H0 : β1 = · · · = βd = 0 with the saturated normal linear regression
model y = β0 + β1x1 + · · · + βdxd + ϵ for the phenotype y and the d variants in a
given group, where β j is the regression coefficient for xj, β0 is the intercept, and ϵ is
the normal error with mean zero and nonzero variance. The saturated regression test
is susceptible to the “curse of dimensionality”, i.e., when d is large relative to n, and
cannot be used when d > n.

• SKAT: SKAT is developed for analysis of association between variants in a region and
a phenotype [6]. It can be seen as a variance component test in the induced mixed
models where regression coefficients are assumed to be independent and follow a
distribution with the variance component or a random effect. The statistic of the
SKAT forms (y − µ̂0)

TK(y − µ̂0), where µ̂0 is the estimated mean under the null
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hypothesis, and K is an n × n kernel matrix with genotype data in the region, and a
given prespecified weight to give a higher weight for rarer variant [6]. It is known to
be robust when variants in a genomic region have both positive and negative effects.
SKAT function in R package SKAT is used with default option which conducts the SKAT
test of Wu et al. [6].

• Burden test: Burden tests collapse rare variants in a genetic region into a single burden
variable, and then the burden variable is tested for an association with the phenotype
in the region. It is a score test for an aggregated effect of d variables [8,42], which
is made by combining minor allele counts in the region into a single variable. The
burden test is powerful if a large proportion of the rare variants in a region are truly
causal and influence the phenotype in the same direction. SKAT function in R package
SKAT is used with option r.corr=1.

• SKAT-O: A combination of SKAT and burden test [9]. SKAT-O considers optimal
test of the form (1 − ρ)Q1 + ρQ2, where Q1 and Q2 are the SKAT and burden test
statistics, respectively, and ρ is a parameter between 0 and 1 to optimally combine
Q1 and Q2. An optimal ρ is found by minimizing the p-value computed based on
(1 − ρ)Q1 + ρQ2 with respect to ρ [9]. SKAT function in R package SKAT is used with
option method="SKATO".

2.4. Description of Simulation Studies

The simulation studies aim to investigate the power of the data-adaptive test using
fused lasso as a multivariate test for multiple single nucleotide variants under various
settings through comparison with the above multivariate tests, i.e., univariate regression
test, saturated regression test, SKAT, burden test, SKAT-O, and the data-adaptive tests
using lasso, ridge, and elastic net. The investigation includes assessing the type I error rates
of the multivariate tests.

The simulations consider two different scenarios to generate d single nucleotide
variants X = (xij)i=1,...,n;j=1,...,d for n individuals. The two scenarios are as follows.

• Genotypes using 1000 Genomes Project data: For the simulation, whole genome
sequencing data from the 1000 Genomes Project, phase 3, is used [43]. A total of
493 individuals from the European population (Utah Residents (CEPH) with North-
ern and Western European ancestry, i.e., Toscani from Italy, Finnish from Finland,
British from England and Scotland, and Iberian from Spain) are extracted. In total,
3,837,178 single nucleotide variants of chromosome 10 are used. Chromosome 10 is
often used to evaluate statistical methods that account for linkage disequilibrium in
human genetics, e.g., [44,45], and is therefore suitable to evaluate the methods under
a practical correlation structure in genotypes. The following quality control is applied:
excluding loci with missing rates > 0.99, Hardy–Weinberg equilibrium test p-value
< 10−5, or minor allele frequency < 0.05. Then, the pruning based on linkage dise-
quilibrium is applied by the PLINK software version 1.9 using the --indep-pairwise
50 5 0.99 option, resulting in 143,222 variants. From those variants, we randomly
choose a set of d contiguous variants as X = (xij)i=1,...,493;j=1,...,d, in which xij denotes
the number of minor alleles, i.e., xij ∈ {0, 1, 2}. Missing genotypes are replaced by
the mean of each locus. Fixed sample size n = 493 is used, and two scenarios for
the number of variants d = 50 or 100 are considered. To see the effect of correlation
between variants, an additional simulation is carried out with genotypes that are
randomly shuffled for each locus, eliminating the correlation between the variants.

• Simulated genotypes under exchangeable correlation structure: First, d minor allele
frequencies are randomly generated from a uniform distribution in [0.05, 0.5]. Then,
d correlated binary variables (i.e., 0 or 1) are generated using bindata package for
R with variance-covariance matrix S independently for i = 1, . . . , 2n, in which S is
the d × d matrix with off-diagonal and diagonal elements of ρ and 1, respectively,
giving a 2n × d binary matrix. Let its rows 1 to n, and rows (n + 1) to 2n be X(1)

and X(2), respectively. Then, an n × d genotype matrix is made by X = X(1) + X(2),
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whose elements take values in {0, 1, 2}. It is equivalent to the situation where the
genotypes are under the Hardy–Weinberg equilibrium. Three scenarios for the pairs
of sample size and number of variants are considered, (n, d) = (400, 50), (800, 100),
and (1200, 150), the aim of which is to confirm type I error control as n → ∞ while
d/n is kept constant. Two scenarios ρ = 0.3 and 0.7 are also considered.

Given the genotype matrix X with d variants made in each of the above scenarios,
quantitative phenotype is generated by y = Xβ0 + ϵ, with ϵ = (ϵ1, . . . , ϵn)T , where
ϵ1, . . . , ϵn are generated independently and identically from standard normal distribution.
Three scenarios for the regression coefficients β0 are considered, as follows:

• Random: This scenario is considered for comparing the power of the multivariate
tests. Given rβ ∈ (0, 1), let d0 = ⌊drβ⌋ variants have nonzero regression coeffi-
cients and remaining d − d0 variables have zero regression coefficients, and the d0
variants are randomly selected from the d variants. Now, 100 × rβ% have nonzero
regression coefficients among d variants. Then, d0 nonzero regression coefficients are
independently generated from normal distribution N(0, σ2

β), with standard deviation

σβ = 0.005/rβ, multiplied by 1/{2MAF(1−MAF)}1/2 where MAF denotes the minor
allele frequency of the corresponding variant. The above scheme gives larger vari-
ance of nonzero regression coefficients for smaller nonzero proportion, rβ, and also
results in rarer variants having larger effects as commonly considered in polygenic
models [46]. For the proportion of nonzero effect variants, three values are considered;
rβ = 0.2, 0.5, and 0.8.

• Ordered: This scenario is considered for comparing power of the multivariate tests.
Given rβ ∈ (0, 1), let d0 = ⌊drβ⌋ variants have nonzero regression coefficients and
remaining d − d0 variables have zero regression coefficients, and the d0 variants are
randomly selected from the d variants. Now, 100 × rβ% have nonzero regression
coefficients among d variants. Then, d0 normal random variables are independently
and identically drawn from N(0, σ2

β) with standard deviation σβ = 0.005/rβ. Next,
negative and positive values simulated above are placed on the lower and upper index
sides, respectively. Zero regression coefficients are placed at the remaining d − d0
indexes in the middle, which are between the indexes of negative and positive values.
For example, if d = 10, d0 = 5 and simulated d0 = 5 nonzero values of regression
coefficients are (−0.5, 2.2,−3.4, 1.0,−0.7), then, the ordered regression coefficients
result in (−0.5,−3.4,−0.7, 0, 0, 0, 0, 0, 2.2, 1.0). Similar to the above scenario, the sim-
ulated values from normal distribution are multiplied by 1/{2MAF(1 − MAF)}1/2

where MAF denotes the minor allele frequency of the corresponding variant. For the
proportion of nonzero effect variants, three values are considered, rβ = 0.2, 0.5, and
0.8. This scenario considers a situation where there exist positive-effect, non-effect,
and negative-effect blocks. The indexes separating each block are unknown. Unlike
the above “Random” scenario, the “Ordered” scenario corresponds to the situation
where the modeling by the fused lasso is suitable because the regression coefficients
have a block structure. It is thus expected that the data-adaptive test using the fused
lasso exhibits a higher power than the other methods because competing tests do not
explicitly account for the ordering information of regression coefficients.

• Null: This scenario is considered for assessing type I error rates of the multivariate
tests. All of the d regression coefficients are set to zero.

The following multivariate tests are investigated: data-adaptive test for the elas-
tic net, lasso, ridge regression, fused lasso, univariate regression test, saturated regres-
sion test, SKAT, burden test, and SKAT-O. For the scenarios “Random” and “Ordered”,
power of the nine competing multivariate tests is evaluated at three nominal levels,
α ∈ {10−3, 10−5, 10−7} based on the p-value outputted from each test. The above three lev-
els correspond to the situation where test is carried out using 50, 5000, and 500,000 groups
of variants at the family-wide rate of 5% with the Bonferroni correction, respectively.
1000 replicates are used for each simulation scenario. For the scenario “Null”, the type
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I error rate of the nine competing multivariate tests is evaluated at four nominal levels,
α ∈ {0.1, 0.01, 0.001, 0.0001}. In total, 50,000 replicates are used for simulations.

3. Results

Simulation results under scenarios “Random” and “Ordered” are given in Figures 1–4,
which summarize the power of the nine multivariate tests, data-adaptive test for the elastic
net, lasso, ridge regression, fused lasso, univariate regression test, saturated regression test,
SKAT, burden test, and SKAT-O. Scenarios “Random” and “Ordered” allow comparison
between the absence and presence of block structure on the regression coefficients in terms
of the power of the compared tests. It is expected that the test based on the fused lasso
performs better in the presence of the block structure.
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Figure 1. Power in simulation studies (1000 replicates) using 1000 Genomes Project data. Three
scenarios for the proportion of nonzero regression coefficients, rβ ∈ {0.2, 0.5, 0.8}. Regression
coefficients are randomly placed (“Random”) or placed in order (“Ordered”); power is evaluated
at three significance levels α ∈ {10−3, 10−5, 10−7}. Number of variants to be tested is d = 50 or 100.
Enet, data-adaptive test for elastic net; Lasso, data-adaptive test for lasso; Ridge, data-adaptive test
for ridge regression; FLasso, data-adaptive test for fused lasso; Saturated, saturated regression test;
Univariate, univariate regression test; SKAT, sequence kernel association test; Burden, burden test;
SKATO, optimized sequence kernel association test.

In Figures 1 and 2, the power of the nine tests from the simulation using 1000 Genomes
Project data is given. Simulations in Figures 1 and 2 are the same except for that the
variants are randomly shuffled in the latter. In Figure 1, the fused lasso test tends to give a
higher or comparable power compared with the other eight competing tests throughout
the scenarios. SKAT, burden test, and SKAT-O tend to give a lower power than the other
tests. It can be seen from Figures 1 and 2 that SKAT, burden test, and SKAT-O have
lower power than the other tests (i.e., the data-adaptive tests with the elastic net, lasso,
ridge regression, and fused lasso, and univariate regression test, and saturated regression
test). The observed differences in power between competing tests appear to be roughly
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unchanged with varying the number of variants d and the proportion of nonzero regression
coefficients rβ.

In Figure 1, there is no clear difference on the power of the fused lasso test relative to
other eight tests by comparison between “Random” and “Ordered” scenarios. In Figure 2,
especially comparing the power of the fused lasso test in the top three panels with that in
the three panels in the second row, it exhibits higher power in “Ordered” scenario than
in “Random” scenario relative to other eight tests. For example, the power of the fused
lasso test in n = 493, d = 50, rβ = 0.2 (“Random”) is lower than saturated regression test
at − log10(α) = 7, but the power of the fused lasso test in n = 493, d = 50, rβ = 0.2 (“Or-
dered”) is the best among the compared nine tests. This result implies that the fused lasso
test performs better in the presence of block structure on the regression coefficients in terms
of power as expected. Since the chief difference between Figures 1 and 2 is the magnitude of
the correlation between variants, it could be considered that the correlation could influence
on power of the fused lasso test, although the actual mechanism is unknown.
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Figure 2. Power in simulation studies (1000 replicates) using 1000 Genomes Project data where
variants are randomly shuffled to eliminate correlation structure between variants. Three scenarios
for the proportion of nonzero regression coefficients, rβ ∈ {0.2, 0.5, 0.8}. Regression coefficients are
randomly placed (“Random”) or placed in order (“Ordered”); power is evaluated at three significance
levels α ∈ {10−3, 10−5, 10−7}. Number of variants to be tested is d = 50 or 100. Enet, data-adaptive
test for elastic net; Lasso, data-adaptive test for lasso; Ridge, data-adaptive test for ridge regression;
FLasso, data-adaptive test for fused lasso; Saturated, saturated regression test; Univariate, univariate
regression test; SKAT, sequence kernel association test; Burden, burden test; SKATO, optimized
sequence kernel association test.

Figures 3 and 4 give the results of the simulation of genotypes under exchangeable
correlation structure with ρ = 0.3 and 0.7, respectively. Overall, the power results in
Figures 3 and 4 show a similar tendency to that observed in Figures 1 and 2, and the
fused lasso test gives a higher or comparable power compared with the other eight tests.
As in Figures 1 and 2, it can be seen from Figures 3 and 4 that SKAT, burden test, and
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SKAT-O have lower power than the other tests. The observed differences in power between
competing tests appear to be roughly unchanged with varying the number of variants d
and the proportion of nonzero regression coefficients rβ. Similar to Figure 2, comparing the
power of the fused lasso test in the top three panels with the three panels in the second row
of Figure 3 or 4, it exhibits higher power in the “Ordered” scenario than in the “Random”
scenario relative to other eight tests, implying that the fused lasso test performs better in
the presence of block structure on the regression coefficients in terms of power as expected.
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Figure 3. Power in simulation studies (1000 replicates) under exchangeable correlation structure with
ρ = 0.3. Three scenarios for the proportion of nonzero regression coefficients, rβ ∈ {0.2, 0.5, 0.8}.
Regression coefficients are randomly placed (“Random”) or placed in order (“Ordered”); power is
evaluated at three significance levels α ∈ {10−3, 10−5, 10−7}. Sample size and number of variants
to be tested are (n, d) = (400, 50), (800, 100), or (1200, 150). Enet, data-adaptive test for elastic
net; Lasso, data-adaptive test for lasso; Ridge, data-adaptive test for ridge regression; FLasso, data-
adaptive test for fused lasso; Saturated, saturated regression test; Univariate, univariate regression
test; SKAT, sequence kernel association test; Burden, burden test; SKATO, optimized sequence kernel
association test.

The results of type I error rate in scenario “Null” are given in Table 1. Compared with
the nominal levels, type I error rates for the data-adaptive tests using elastic net, lasso,
ridge regression, and fused lasso are controlled, especially when both n and d are large. In
simulations using 1000 Genomes Project data, type I error rates for the data-adaptive tests
using elastic net, lasso, ridge regression, and fused lasso are conservatively controlled as
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expected from its theoretical result [20]; that is, the type I error rate of the data-adaptive test
is asymptotically lower than the given nominal level as both n and d tends to ∞ while n/d
is kept constant. Type I error rates tend to be slightly larger for the shuffled genotypes than
for the unshuffled genotypes for the tests with elastic net, lasso, and ridge regression except
for the test with fused lasso. In simulations under an exchangeable correlation structure,
type I error rates for the data-adaptive tests using elastic net, lasso, ridge regression, and
fused lasso are slightly larger than the nominal level when n = 400, but turn out to be
lower than the nominal level when n = 800. Type I error rates for the other tests, i.e.,
saturated regression test, univariate regression test, SKAT, burden test, and SKAT-O, are
well controlled. Univariate regression test results in lower type I error rate than the nominal
level due to the Bonferroni correction.
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Figure 4. Power in simulation studies (1000 replicates) under exchangeable correlation structure with
ρ = 0.7. Three scenarios for the proportion of nonzero regression coefficients, rβ ∈ {0.2, 0.5, 0.8}.
Regression coefficients are randomly placed (“Random”) or placed in order (“Ordered”); power is
evaluated at three significance levels α ∈ {10−3, 10−5, 10−7}. Sample size and number of variants
to be tested are (n, d) = (400, 50), (800, 100), or (1200, 150). Enet, data-adaptive test for elastic
net; Lasso, data-adaptive test for lasso; Ridge, data-adaptive test for ridge regression; FLasso, data-
adaptive test for fused lasso; Saturated, saturated regression test; Univariate, univariate regression
test; SKAT, sequence kernel association test; Burden, burden test; SKATO, optimized sequence kernel
association test.
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Table 1. Results of “Null” simulations (50,000 replicates). Type I error rate is evaluated at four nominal
significance levels, α ∈ {0.1, 0.01, 0.001, 0.0001}. The first column gives sample size n, number of
variants d, and correlation structure between the d variants. Enet, test using elastic net; Lasso, test
using lasso; Ridge, test using ridge regression; FLasso, test using fused lasso; Saturated, test under
saturated regression test; Univariate, univariate regression test; SKAT, sequence kernel association
test; Burden, burden test; SKATO, optimized sequence kernel association test.

n, d, Correlation α (Nominal Level) Enet Lasso Ridge FLasso Saturated Univariate SKAT Burden SKATO

Simulation using 1000 Genomes Project data

n = 493,
d = 50,

Shuffled

0.1000 0.0728 0.0724 0.0654 0.0732 0.1019 0.0946 0.0960 0.0977 0.0975
0.0100 0.0062 0.0061 0.0051 0.0069 0.0103 0.0104 0.0093 0.0094 0.0095
0.0010 0.0005 0.0005 0.0004 0.0008 0.0009 0.0012 0.0010 0.0009 0.0010
0.0001 0.0001 0.0001 0.0001 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001

n = 493,
d = 100,
Shuffled

0.1000 0.0761 0.0756 0.0679 0.0748 0.1007 0.0967 0.0993 0.0984 0.1000
0.0100 0.0068 0.0067 0.0057 0.0067 0.0100 0.0099 0.0089 0.0101 0.0098
0.0010 0.0004 0.0004 0.0004 0.0005 0.0007 0.0010 0.0007 0.0012 0.0009
0.0001 0.0001 0.0001 0.0000 0.0001 0.0001 0.0001 0.0000 0.0001 0.0001

n = 493,
d = 50

0.1000 0.0671 0.0643 0.0131 0.0775 0.1001 0.0454 0.0963 0.0974 0.0978
0.0100 0.0056 0.0052 0.0006 0.0072 0.0097 0.0051 0.0092 0.0092 0.0100
0.0010 0.0004 0.0004 0.0000 0.0009 0.0010 0.0006 0.0008 0.0009 0.0009
0.0001 0.0001 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001 0.0000 0.0001

n = 493,
d = 100

0.1000 0.0646 0.0611 0.0052 0.0771 0.0985 0.0434 0.0947 0.0993 0.0994
0.0100 0.0053 0.0048 0.0002 0.0070 0.0102 0.0050 0.0089 0.0091 0.0104
0.0010 0.0003 0.0003 0.0000 0.0006 0.0009 0.0005 0.0008 0.0007 0.0008
0.0001 0.0001 0.0001 0.0000 0.0001 0.0001 0.0000 0.0001 0.0000 0.0001

Simulation under exchangeable correlation structure

n = 400,
d = 50,
ρ = 0.3

0.1000 0.1020 0.1015 0.0907 0.1017 0.0988 0.0877 0.0995 0.1003 0.1019
0.0100 0.0113 0.0112 0.0096 0.0119 0.0105 0.0102 0.0099 0.0097 0.0107
0.0010 0.0012 0.0012 0.0008 0.0016 0.0011 0.0011 0.0012 0.0007 0.0011
0.0001 0.0002 0.0002 0.0001 0.0004 0.0002 0.0001 0.0000 0.0002 0.0001

n = 400,
d = 50,
ρ = 0.7

0.1000 0.1014 0.1006 0.0881 0.1018 0.0986 0.0645 0.1006 0.1014 0.1035
0.0100 0.0103 0.0102 0.0083 0.0108 0.0097 0.0077 0.0095 0.0098 0.0107
0.0010 0.0012 0.0012 0.0008 0.0015 0.0011 0.0008 0.0010 0.0009 0.0012
0.0001 0.0001 0.0001 0.0001 0.0004 0.0001 0.0000 0.0001 0.0001 0.0001

n = 800,
d = 100,
ρ = 0.3

0.1000 0.0978 0.0974 0.0905 0.0968 0.0991 0.0860 0.0980 0.1025 0.1031
0.0100 0.0095 0.0095 0.0086 0.0100 0.0098 0.0094 0.0091 0.0093 0.0101
0.0010 0.0011 0.0011 0.0010 0.0012 0.0011 0.0010 0.0010 0.0008 0.0010
0.0001 0.0001 0.0001 0.0001 0.0002 0.0001 0.0000 0.0001 0.0001 0.0001

n = 800,
d = 100,
ρ = 0.7

0.1000 0.1002 0.0996 0.0893 0.0999 0.1013 0.0594 0.0996 0.0997 0.1041
0.0100 0.0098 0.0097 0.0081 0.0100 0.0100 0.0077 0.0095 0.0100 0.0107
0.0010 0.0010 0.0009 0.0008 0.0011 0.0010 0.0010 0.0011 0.0010 0.0012
0.0001 0.0001 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

n = 1200,
d = 150,
ρ = 0.3

0.1000 0.0782 0.0777 0.0722 0.0769 0.1012 0.0884 0.1017 0.0987 0.1037
0.0100 0.0066 0.0065 0.0057 0.0064 0.0098 0.0108 0.0095 0.0103 0.0105
0.0010 0.0004 0.0004 0.0003 0.0004 0.0008 0.0012 0.0011 0.0010 0.0012
0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0000

n = 1200,
d = 150,
ρ = 0.7

0.1000 0.0773 0.0767 0.0684 0.0761 0.0997 0.0572 0.1005 0.1004 0.1050
0.0100 0.0066 0.0066 0.0053 0.0065 0.0100 0.0069 0.0106 0.0101 0.0115
0.0010 0.0006 0.0005 0.0004 0.0005 0.0010 0.0009 0.0010 0.0010 0.0011
0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0001 0.0001

4. Conclusions

This paper investigates the performances of the recently developed test by Ueki [20]
applied to the fused lasso as a multivariate test for genomic studies through simulation
studies. The existing multivariate tests compared in this paper are univariate regression
tests, saturated regression tests, SKAT, and burden tests. Those tests ignore the ordering
of variants in physical position. In some cases, researchers may exploit the location of the
variants for effect size modeling [10,28]. In genome-wide scans, sets of grouped variants
are often given based on genes, pathways, or physical position. The grouping strategy
typically includes ambiguity and may differ depending on criteria such as the choice of
database. It is unknown whether all grouped variants can be considered to have the same
or similar effects.

Fused lasso modeling can be useful when the grouped effect is unknown, because
it estimates the grouped effect from data. Indeed, in the simulation studies assuming
block structure of regression coefficients, i.e., scenario “Ordered”, the case where ordering
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between adjacent variants is important, the test using fused lasso exhibits a high power
compared to the existing tests including univariate regression test, saturated regression
test, SKAT, SKAT-O, and the tests using lasso, ridge, and elastic net. Furthermore, the
test using fused lasso still shows high or comparable power compared with other tests
even without assuming the block structure (i.e., “Random” scenario). In most simulation
scenarios, tests using the elastic net, lasso, and fused lasso perform well compared with
other competing tests considered in this paper. In some scenarios, the saturated regression
test shows a comparable power with the data-adaptive tests using the elastic net, lasso, and
fused lasso, but results in lower performance than the data-adaptive tests, e.g., nine panels
in the first to third rows of Figure 1 (simulations with unshuffled 1000 Genomes Project
data). For the other tests, there are cases where the univariate regression test performs
poorly as observed in Figures 2–4. SKAT, burden test, and SKAT-O show lower power
than univariate regression tests. The possible reasons for this include that these tests are
designed for the study of rare variant association and do not perform well for the common
variants considered in this paper.

The test procedure of Ueki [20] is a general method applicable to various regression
procedures. The model sequence contains low- to high-complexity models, where the high-
complexity model is the saturated regression model with a large number of explanatory
variables. A low-complexity model would be selected if this kind of model can adequately
capture the data-generating process. Furthermore, the type I error is controlled without
normality assumption on error distribution, if the number of explanatory variables is
sufficiently large [20]. Although, in this paper, the testing framework is demonstrated
for linear or additive model for variants, it is in principle applicable to nonlinear models
such as the genetic models involving interaction terms, e.g., gene–gene interaction and
gene–environment interaction as in [19,47]. Other potential applications include association
studies with many phenotypes called PheWAS [48] and those with high-dimensional
nuisance parameters [49].

Through simulation studies, this paper evaluates the performance of the data-adaptive
test using fused lasso and shows its potential applicability to the test for grouped variants
in genomic studies. It is interesting to apply it to real genomic data with actual phenotypes
and to find a case where the fused lasso has a practical advantage. Furthermore, computa-
tional feasibility in large-scale data is desirable for current genomic studies as in the UK
Biobank [50]. However, penalized regression models require higher computational cost
than the standard univariate regression, which may lead to computational burden in the
data-adaptive tests for biobank-scale genomic data. Also, while quantitative phenotypes
are investigated, extension to generalized linear models to deal with binary phenotypes is
another direction worthy of research. For applications to real genomic studies, the above
topics need be addressed in future.
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Appendix A. Yanai’s Generalized Coefficient of Determination and Its Generalization

The following is a brief description of Yanai’s generalized coefficient of determination.
Yanai’s generalized coefficient of determination can measure a similarity between two linear

https://www.internationalgenome.org/
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spaces, which has been used for variable selection in principal component analysis [31].
For two linear subspaces spanned by an n × c matrix Y and an n × d matrix X, let the
corresponding projection matrixes be PY and PX . Then, Yanai’s generalized coefficient of
determination r(Y , X) is given as follows:

r(Y , X) =
tr(PY PX)

c1/2d1/2 .

Since c = tr(PY ) = tr(P2
Y ) and d = tr(PX) = tr(P2

X), by the Cauchy–Schwarz inequality,
r(PY , PX) ≤ 1 and the equality holds if and only if PY = PX . Thus, its value being close to
1 indicates that the two linear spaces are similar. It is noteworthy that r(Y , X) can be used
even when c ̸= d, i.e., the number of dimensions differs.

Considering the special case with c = 1 for Y , the Yanai’s generalized coefficient of
determination is also applicable to model selection in least-squares regression by expressing
it through projection matrix. Consider a variable selection problem with response variable
y and candidate d explanatory variables X. For a given subset of d variables, s ⊂ {1, . . . , d},
the Yanai’s generalized coefficient of determination can be written as

r(ỹ, X̃s) =
tr(PỹPX̃s

)

|s|1/2 =
||ỹ||−2ỹTPX̃s

ỹ

|s|1/2 =
||ỹ||−2ỹTX̃s β̃s

|s|1/2 , (A1)

where X̃s denotes the sub-column matrix of X̃ corresponding to the index set s, |s| denotes
the cardinality of s, and β̃s is the least-squares estimate of regression of ỹ onto X̃s. The
value r(ỹ, X̃s) being close to 1 means that PX̃s

ỹ is a good modeling procedure. The quantity

ỹTX̃s β̃s in the numerator is proportional to the sample covariance between the observation
ỹ and the fitted value X̃s β̃s, and is optimistic if it is used as a measure of model fit. The
denominator, |s|1/2, penalizes the apparent goodness of the model, allowing the model to
be evaluated by adjusting for model complexity. The metric is invariant by replacing X̃ by
X̃B with a d × d regular matrix B, that is, r(ỹ, X̃) = r(ỹ, X̃B).

Ueki [20] generalized Yanai’s generalized coefficient of determination for a modeling
procedure gλ as given by (1), i.e.,

r(ỹ, gλ) =
||ỹ||−2ỹT gλ(ỹ)

gdf0(gλ)1/2 ,

with gdf0(gλ) = Eµ̃=0{ỹT gλ(ỹ)}, and Eµ̃=0 indicates the expectation under the assumption
of µ̃ = 0. If gλ(ỹ) = PX̃s

ỹ, the r(ỹ, gλ) reduces to the original Yanai’s generalized coefficient
of determination in (A1). The denominator, gdf0(gλ), is a key quantity for the use in
hypothesis testing.

Consider the null hypothesis H0,n : µ = α01n, in the regression model, y = µ + ϵ, in
which α0 is some constant and ϵ ∼ N(0, σ2

0 In), and ϵ is independent of µ. Then, since
E(ỹTPX̃s

ỹ) = σ2
0 |s|, the expectation of r(ỹ, X̃s) is approximately proportional to |s|1/2. It is

monotonically increasing as the model dimensionality |s| increases. Noting that ||ỹ||2 does
not depend on s, the Yanai’s generalized coefficient of determination tends to select a model
with large dimensionality under the null hypothesis of no effect µ = α01n. Specifically,
for a given model sequence with large d, M = {PX̃s

ỹ, |s| = 1, . . . , d}, the model that
achieves the maximum of r(ỹ, X̃s) among the model sequence tends to be close to the
saturated model. Equivalently, the dimensionality of the selected model is close to d
with high probability. On the other hand, under the alternative hypothesis of µ ̸= α01n,
the expectation of r(ỹ, X̃s) does not necessarily increase monotonically, in contrast to
when the null hypothesis is true. For example, if PX̃s

µ̃ = µ̃, or the model completely

recovers µ̃, it holds that E(ỹTPX̃s
ỹ) = σ2

0 |s|+ ||µ̃||2. Then, the expectation of r(ỹ, X̃s) is
approximately proportional to σ2

0 |s|1/2 + ||µ̃||2/|s|1/2. If ||µ̃||2 is sufficiently large, the
second term dominates the first term, and the model with the smallest |s| is chosen, which
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differs from the case of null hypothesis where the saturated model tends to be chosen.
The different behavior on dimensionality of the selected model by Yanai’s generalized
coefficient of determination under the alternative and under the null hypotheses suggests
using it for hypothesis test. The saturated model is used to set the significance level because
it tends to be selected by Yanai’s generalized coefficient of determination under the null
hypothesis. More rigorous arguments are found in Ueki [20].
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