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Abstract: Attribute reduction is a core technique in the rough set domain and an important step
in data preprocessing. Researchers have proposed numerous innovative methods to enhance the
capability of attribute reduction, such as the emergence of multi-granularity rough set models,
which can effectively process distributed and multi-granularity data. However, these innovative
methods still have numerous shortcomings, such as addressing complex constraints and conducting
multi-angle effectiveness evaluations. Based on the multi-granularity model, this study proposes
a new method of attribute reduction, namely using multi-granularity neighborhood information
gain ratio as the measurement criterion. This method combines both supervised and unsupervised
perspectives, and by integrating multi-granularity technology with neighborhood rough set theory,
constructs a model that can adapt to multi-level data features. This novel method stands out by
addressing complex constraints and facilitating multi-perspective effectiveness evaluations. It has
several advantages: (1) it combines supervised and unsupervised learning methods, allowing for
nuanced data interpretation and enhanced attribute selection; (2) by incorporating multi-granularity
structures, the algorithm can analyze data at various levels of granularity. This allows for a more
detailed understanding of data characteristics at each level, which can be crucial for complex datasets;
and (3) by using neighborhood relations instead of indiscernibility relations, the method effectively
handles uncertain and fuzzy data, making it suitable for real-world datasets that often contain
imprecise or incomplete information. It not only selects the optimal granularity level or attribute
set based on specific requirements, but also demonstrates its versatility and robustness through
extensive experiments on 15 UCI datasets. Comparative analyses against six established attribute
reduction algorithms confirms the superior reliability and consistency of our proposed method. This
research not only enhances the understanding of attribute reduction mechanisms, but also sets a new
benchmark for future explorations in the field.

Keywords: rough sets; attribute reduction; multi-granularity; information gain
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1. Introduction

In this era of information explosion, data are growing exponentially in both dimension
and volume, which leads to the attributes of data becoming redundant and vague. How to
find valuable information from massive data has become challenging. Rough set theory,
introduced by Pawlak [1] in 1982 as a simple and efficient method for data mining, can
deal with fuzzy, incomplete, and inaccurate data [2].

The traditional model of rough sets mainly focuses on describing the uncertainty and
fuzziness of data through binary relations [3]. In recent years, multi-granularity rough
set models have been proposed to fully mine the multiple granularity levels of target
information, extending the traditional single binary relation to multiple binary relations,
with the work of Qian et al. [4] being representative. This model has provided a new
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solution for rough set theory in dealing with distributed data and multi-granularity data.
Afterward, researchers continuously improved Qian’s multi-granularity rough set model.
Some of the improvements combine multi-granularity rough sets with decision-theoretic
rough sets to form a multi-granularity decision-theoretic rough set model [5]. In addition,
there is research combining multi-granularity rough sets with the three-way decision model,
proposing a multi-granularity three-way decision model [6]. Targeting the granulation
of attributes and attribute values, Xu proposed an improved multi-granularity rough set
model [7]. To expand the applicability of multi-granularity rough sets, Lin et al. integrated
the neighborhood relation into the multi-granularity rough set model, proposing the
neighborhood multi-granularity rough set. The introduction of this model has made the
multi-granularity rough set research branch a hot topic of study [8]. These rough set models
can effectively reduce data dimensionality, achieved by attribute reduction [9].

Attribute reduction can be achieved through supervised or unsupervised constraints,
and research on constraints from both supervised and unsupervised perspectives has been
extensively explored [10]. Specifically, some studies propose attribute reduction constraints
based on measures from only one perspective, using these constraints to find qualified
reductions. For instance, Jiang et al. [11] and Yuan et al. [12] concentrated on attribute
reduction through the lens of supervised information granulation and related supervised
metrics, respectively; meanwhile, Yang et al. [13] proposed a concept known as fuzzy
complementary entropy for attribute reduction within an unsupervised model; The algo-
rithm discussed by Jain and Som [14] introduces a sophisticated multigranular rough set
model that utilizes an intuitionistic fuzzy beta covering approach; Ji et al. [15] developed an
extended rough sets model based on a fuzzy granular ball to enhance attribute reduction
effectiveness. However, whether considering supervised measures or unsupervised mea-
sures, single-perspective based measures exhibit inherent constraints. Firstly, measures
relying on a single perspective may overlook the multifaceted evaluation of data, leading to
the neglect of some important attributes [16]. This is because when only one fixed measure
is used for the attribute reduction of data, the importance of each attribute is judged only
based on its criterion. However, if other measures are needed for evaluation, then relying
only on that criterion may no longer yield accurate results. Secondly, relying only on a
single-perspective measure may not fully capture the characteristics of data under complex
conditions, resulting in the selection of attributes that are neither accurate nor complete.
For instance, if conditional entropy is used as a measure to evaluate attributes [17], the de-
rived reduction may only possess the single feature required for evaluation, without fully
considering other types of uncertainty features and learning capabilities.

To solve the limitations of the attribute reduction mentioned above, this paper intro-
duces a new measure that merges both supervised and unsupervised perspectives, leading
to a novel rough set model. The model proposed in this paper has the following advantages:
(1) it integrates multi-granularity and neighborhood rough sets, making the model more
adaptable to data features at different levels; and (2) for attribute sets of different granulari-
ties, it introduces a fusion strategy, selecting the optimal granularity level or attribute set
according to the needs of different tasks and datasets, which can be flexibly adjusted based
on specific circumstances.

The rest of this paper is organized as follows. Section 2 reviews related basic concepts.
Section 3 provides a detailed introduction to the basic framework and algorithm design of
the proposed method. In Section 4, the accuracy of our method is calculated and discussed
through experiments. Finally, Section 5 concludes this paper and depicts some future works.

2. Preliminaries
2.1. Neighborhood Rough Sets

Neighborhood rough sets were proposed by Hu et al. as an improvement over tradi-
tional rough sets [18]. The key distinction lies in that neighborhood rough sets are estab-
lished on the basis of neighborhood relations, as opposed to relations of indiscernibility [19].
Hence, the neighborhood rough set model is capable of processing both discrete and contin-
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uous data [20]. Moreover, the partitioning of neighborhoods granulates the sample space,
which can reflect the discriminative power of different attributes on the samples [21].

Within the framework of rough set theory, a decision system is characterized by a
tuple, represented by DS = (U, AT), where U denotes a finite collection of samples and
AT encompasses a suite of conditional attributes, including a decision attribute d [22].
The attribute d captures the sample labels [23]. For every x in U and every a in AT, a(x)
signifies the value of x for the conditional attribute a, and d(x) represents the label of x.
Utilizing d, one can derive an equivalence relation on U:

IND(d) = {(x, y) ∈ U × U : d(x) = d(y)} (1)

Pursuant to IND(d), it leads to a division of U/IND(d) = X1, X2, . . . , Xq(q ≥ 2). Each
Xk within U/IND(d) is recognized as the k-th decision category. Notably, the decision
category that includes the sample x can be similarly referred to as [x]d.

In rough set methods, binary relations are often used for information granulation,
among which neighborhood relations, as one of the most effective binary relations, have
received extensive attention. The formation of neighborhood relations is as follows:

NA
δ = {(x, y) ∈ U × U : rA(x, y) ≤ δ} (2)

where rA is a distance function regarding A ⊆ AT, r ≥ 0 is a radius.

rA = ∑
a∈A

(a(x)− a(y))2 (3)

Based on IND(d), a segmentation of U/IND(d) = X1, X2, ..., Xq(q ≥ 2) can be initi-
ated. For every Xk within U/IND(d), it is identified as the k-th decision group. In particu-
lar, the decision group that encompasses sample x may also be represented as [x]d.

In alignment with Equation (2), the vicinity of a sample x is established as follows:

δA(x) = {y ∈ U : rA(x, y) ≤ δ} (4)

From the perspective of granular computing [24,25], both IND(d) and NδA are deriva-
tions of information granules [26]. The most significant difference between these two types
of information granules lies in their intrinsic mechanisms, i.e., the binary relations used.
Based on the outcomes of these information granules, the concepts of lower and upper
approximations within the context of neighborhood rough sets, as the fundamental units,
were also proposed by Cheng et al.

2.2. Multi-Granularity Rough Sets

For multi-granularity rough sets [27,28], given DS = (U, AT), where AT = {Ak|k ∈
{1, 2, . . . , m}} is a set of attributes, and the family of attribute subsets on AT is represented
by {A1, A2, . . . , Am} [29].

[x]Ai is an equivalence class of x under Ai, for any X ⊆ U, the optimistic multi-
granularity lower and upper approximations of Ai with respect to X are defined as follows:

m

∑
i=1

AO
i (x) = {x ∈ U | [x]A1 ⊆ X ∨ [x]A2 ⊆ X ∨ . . . ∨ [x]Am ⊆ X}, (5)

m

∑
i=1

AO
i (x) = (

m

∑
i=1

AO
i (xc))c (6)

If ∑m
i=1 AO

i (x) ̸= ∑m
i=1 AO

i (x), then ∑m
i=1 AO

i (x) and ∑m
i=1 AO

i (x) are called optimistic
multi-granularity rough sets.

Given DS = (U, AT), where AT = {Ak|k ∈ {1, 2, . . . , m}} is a set of attributes, and the
family of attribute subsets on AT is represented by {A1, A2, . . . , Am}.
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[x]Ai is an equivalence class of x under Ai, for any X ⊆ U, the pessimistic multi-
granularity [30] lower and upper approximations of Ai with respect to X are defined
as follows:

m

∑
i=1

AP
i (x) = {x ∈ U | [x]A1 ⊆ X ∧ [x]A2 ⊆ X ∧ . . . ∧ [x]Am ⊆ X}, (7)

m

∑
i=1

AP
i (x) = (

m

∑
i=1

AP
i (xc))c (8)

If ∑m
i=1 AP

i (x) ̸= ∑m
i=1 AP

i (x), then ∑m
i=1 AP

i (x) and ∑m
i=1 AP

i (x) are called pessimistic
multi-granularity rough sets.

In the pursuit of refining data analysis, particularly when addressing complex and
heterogeneous data sets, the application of multi-granularity rough sets provides a trans-
formative framework. This approach offers a flexible methodology for representing data
across various levels of granularity, allowing analysts to dissect large and diverse datasets
into more comprehensible and manageable segments. This adaptability is crucial in en-
vironments where data exhibits varying degrees of precision, stemming from different
sources or capturing differing phenomena.

2.3. Multi-Granularity Neighborhood Rough Sets

In the literature [31], Lin et al. proposed two types of neighborhood multi-granularity
rough sets, which can be applied to deal with incomplete systems containing numerical
and categorical attributes [32]. To simplify the problem, when dealing with incomplete
systems, only the application of neighborhood multi-granularity rough sets to numerical
data are considered.

Given DS = (U, AT), where AT = {Ak | k ∈ {1, 2, . . . , m}}, U = {xi | i ∈
{1, 2, . . . , n}}, X ⊆ U, in the optimistic neighborhood multi-granularity rough sets, the neigh-
borhood multi-granularity approximation of X is defined as:

m

∑
i=1

NO
i (x) = {xi ∈ U | δA1(xi) ⊆ X ∨ δA2(xi) ⊆ X ∨ . . . ∨ δAk(xi) ⊆ X} (9)

m

∑
i=1

NO
i (x) = {xi ∈ U | δA1(xi) ∩ X ̸= ∅ ∧ δA2(xi) ∩ X ̸= ∅ ∧ . . . ∧ δAm(xi) ∩ X ̸= ∅} (10)

where δAk(xi) is the neighborhood granularity of xi, based on the granularity structure
Ak.

Given DS = (U, AT), where AT = {Ak | kin{1, 2, . . . , m}}, U = {xi | iin{1, 2, . . . , n}},
X ⊆ U, in the pessimistic neighborhood multi-granularity rough sets, the neighborhood
multi-granularity approximation of X is defined as:

m

∑
i=1

NP
i (x) = {xi ∈ U | δA1(xi) ⊆ X ∧ δA2(xi) ⊆ X ∧ . . . ∧ δAk(xi) ⊆ X} (11)

m

∑
i=1

NP
i (x) = {xiinU | δA1(xi) ∩ X ̸= ∅ ∨ δA2(xi) ∩ X ̸= ∅ ∨ . . . ∨ δAk(xi) ∩ X ̸= ∅} (12)

where δAk(xi) is the neighborhood granularity of xi, based on the granularity structure Ak.
The incorporation of multi-granularity neighborhood rough sets extends this concept

by emphasizing local contexts and the spatial or temporal relationships inherent within the
data. By focusing on the neighborhoods around each data point, these sets are particularly
adept at mitigating the influence of noise and anomalies, significantly enhancing the
robustness of the analysis. The neighborhood-based approach also facilitates adaptive
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threshold settings, crucial for accurately defining the granularity level in datasets where
this parameter is not readily apparent.

2.4. Supervised Attribute Reduction

It is well known that neighborhood rough sets are often used in supervised learn-
ing tasks, especially in enhancing generalization performance and reducing classifier
complexity [33]. The advantage of attribute reduction lies in its easy adaptation to dif-
ferent practical application requirements, hence a variety of forms of attribute reduction
have emerged in recent years. For neighborhood rough sets, information gain and split
information value are two metrics that can be used to further explore the forms of at-
tribute reduction.

Given the data DS = ⟨U, AT, d, δ⟩, for any A ⊆ AT, the neighborhood information
gain of D based on A is defined as:

IGNRS(d, A) = HNRS − HNRS(d, A) (13)

Here, HNRS is the entropy of the entire dataset D, calculated based on the distribution
under neighborhood lower or upper approximation [34]. HNRS(d, A) is the expected value
of uncertainty considering attribute A, defined as:

HNRS(d, A) = − 1
|U| ∑

x∈U
|δs(x) ∩ [x]d| log

|δs(x) ∩ [x]d|
|δs(x)| (14)

Given the data DS = ⟨U, AT, d, δ⟩, for any A ⊆ AT, the neighborhood split informa-
tion value of d based on A is defined as:

SINRS(d, A) = −
n

∑
j=1

|δA(Xj)|
|U| log2

|δA(Xj)|
|U| (15)

Here, δA(Xj) represents the sample set Xj within the neighborhood formed by attribute
A, and n is the number of different neighborhoods formed by A [35].

The combination of neighborhood information gain and split information value helps
to more comprehensively assess the impact of attributes on dataset classification, thereby
making more effective decisions in attribute reduction.

2.5. Unsupervised Attribute Reduction

It is widely recognized that supervised attribute reduction necessitates the use of sam-
ple labels, which are time-consuming and expensive to obtain in many practical tasks [36].
In contrast, unsupervised attribute reduction does not require these labels, hence it has
received more attention recently.

In unsupervised attribute reduction, if it is necessary to measure the importance of
attributes, one can construct models by introducing pseudo-label strategies and using
information gain and split information as metrics.

Given unsupervised data IS = ⟨U, AT⟩ and δ, for any A ⊆ AT, the unsupervised
information gain based on A is defined as:

IGNRS(d, A) = HNRS − HNRS(d, A) (16)

where HNRS(d, A) is the expected value of uncertainty considering attribute A, defined as:

HNRS(d, A) =
1
|A| ∑

a∈A
(HNRS(d, A)(da)) (17)

da denotes the pseudo-label decision for samples generated using conditional attribute a.
Given unsupervised data IS = ⟨U, AT⟩ and δ, for any A ⊆ AT, the unsupervised split

information based on A is defined as:
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SINRS(d, A) =
1
|A| ∑

a∈A
(SINRS(d, A)(da)) (18)

Here, da is a pseudo-label decision, recorded by using conditional attribute a for
sample pseudo-labels.

These definitions provide a new method for evaluating attribute importance in an
unsupervised setting. Information gain reflects the contribution of an attribute to data
classification, while split information measures the degree of confusion introduced by an
attribute in the division of the dataset. This approach helps in more effective attribute
selection and reduction in unsupervised learning.

3. Proposed Method
3.1. Definition of Multi-Granularity Neighborhood Information Gain Ratio

Considering a dataset DS = ⟨U, AT, d, δ⟩, with U representing the sample set, AT
indicating the attribute set, d denoting the decision attribute, and δ specifying the neighbor-
hood radius.

For any A ⊆ AT, the multi-granularity neighborhood information gain ratio is de-
fined as:

ϵA(d) =
SINRS(d, A)

e|IGNRS(d,A)| × WA (19)

where SINRS(d, A) is the neighborhood split information quantity based on A, e|IGNRS(d,A)|

is the information gain for decision attribute d based on attribute A with the base of
the natural logarithm, and WA is the granularity space coefficient of attribute A in the
multi-granularity structure, reflecting its importance in the multi-granularity structure.

For the calculation of the granularity space coefficient, given a set of granularities
G1, G2, ..., Gn, the performance of attribute A under each granularity can be measured by
the quantitative indicator PGi (A). The definition of the granularity space coefficient WA is
as follows:

WA =
∑n

i=1 βi · PGi (A)

∑n
i=1 βi

(20)

where βi is the granularity space allocated to each granularity Gi, reflecting the importance
of different granularities. These granularity spaces are usually determined based on the
specific background knowledge or experimental verification of the problem.

The granularities G1, G2, ..., Gn in the multi-granularity structure are determined ac-
cording to the data characteristics, problem requirements, etc. [37], and each granularity
reflects different levels or details of the data. When calculating the granularity space coeffi-
cient, the performance of the attribute under different granularities is considered, in order
to more accurately reflect its importance in the multi-granularity structure.

The neighborhood rough set is a method for dealing with uncertain and fuzzy data,
which uses neighborhood relations instead of the indiscernible relations in traditional rough
sets. In this method, data are decomposed into different granularities, each representing
different levels or details of the data. Information gain ratio is a method for measuring the
importance of attributes in data classification. It is based on the concept of information
entropy and evaluates the classification capability of an attribute by comparing the entropy
change in the dataset with and without the attribute.

Therefore, ϵ combines these two concepts, i.e., neighborhood information gain at dif-
ferent granularities and the split information value of attributes, to evaluate the importance
of attributes in multi-granularity data analysis. The structure of the ϵ-reduct part is shown
in Figure 1. This method not only considers the information gain of attributes, but also
their performance at different granularities, thus providing a more comprehensive method
of attribute evaluation.

Given a decision system DS and a threshold θ ∈ [0, 1], an attribute A is considered
significant if it satisfies the following conditions:



Mathematics 2024, 12, 1434 7 of 18

1. ϵA(d)
ϵAT(d)

≥ θ;

2. There is no proper subset A′ of attribute A such that ϵ′A(d)
ϵAT(d)

< θ.

In this definition, significant attributes are determined based on their contribution
to the information gain ratio, aiming to select attributes that are informative, yet not
redundant for the decision-making process. This method is based on greedy search tech-
niques for attribute reduction, and helps identify attributes that significantly impact the
decision outcome.

Given a dataset DS = ⟨U, AT, d⟩, where U is the set of objects, AT is the set of
conditional attributes, and d is the decision attribute. For any attribute subset A ⊆ AT and
any a ∈ AT − A (i.e., any attribute not in A), the significance of attribute a regarding the
multi-granularity neighborhood information gain ratio is defined as follows:

Sigϵa(d) = ϵA∪{a}(d)− ϵA(d) (21)

The aforementioned significance function suggests that an increase in value enhances
the importance of a conditional attribute, making it more probable to be included in
the reduction set. For example, if Sigϵa1(d) < Sigϵa2(d), where a1, a2 ∈ AT − A, then
ϵA∪{a1}(d) < ϵA∪{a2}(d). Such a result indicates that choosing a2 to join A would lead to a
higher multi-granularity neighborhood information gain ratio compared to a1.

Data

Supervised

learning

Unsupervised

learning

Distinguish

granularity

Information

gain
ϵ-ratio Constraint Reduct

Figure 1. The structure of the ϵ-reduct part.

Given the foregoing, it is not formidable to conclude that ϵ-reduct has the following
benefits.

1. Multi-level data analysis: By incorporating multi-granularity structures, the algorithm
can analyze data at various levels of granularity. This allows for a more detailed
understanding of data characteristics at each level, which can be crucial for complex
datasets.

2. Comprehensive attribute evaluation: The algorithm evaluates attributes not only
based on information gain, but also considering their performance across different
granularities through the granularity space coefficient. This provides a holistic mea-
sure of attribute importance that accounts for varied data resolutions and contexts.

3. Handling uncertainty and fuzziness: by using neighborhood relations instead of
indiscernibility relations, the method effectively handles uncertain and fuzzy data,
making it suitable for real-world datasets that often contain imprecise or incomplete
information.

However, while having various advantages, it may also has certain limitations like
computational complexity due to the computation of neighborhood information gain
ratio for each attribute across multiple granularities. These have endowed it with infinite
potential and room for development.

3.2. Detailed Algorithm

Based on the significance function, Algorithm 1 is designed to find the ϵ-reduct.
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To streamline the analysis of the computational complexity for Algorithm 1, we initiate
by applying k-means clustering to generate pseudo labels for the samples. With T denoting
the iteration count for k-means clustering and k indicating the cluster count, the complexity
of creating pseudo labels is O(k · T · |U| · |AT|), where |U| is the total number of samples,
and |AT| signifies the attribute count. Subsequently, the calculation of ϵA∪a(d) occurs
no more than (1 + |AT|) · |AT|/2 times. In conclusion, the computational complexity of

Algorithm 1 equates to O
(
|U|2·|AT|3

2 + k · T · |U| · |AT|
)

.

Algorithm 1 Forward greedy searching for ϵ-reduct with neighborhood rough set (NRS-ϵ)

Input: A decision system DS = (U, AT, d), a neighborhood radius δ, a significance thresh-
old θ.

Output: An ϵ-reduct A.
1: Initialize A = ∅;
2: Calculate initial neighborhood rough set characteristics for DS;
3: for each attribute a ∈ AT do
4: Generate neighborhood relations Na

δ for a;
5: end for
6: repeat
7: for each a ∈ AT − A do
8: Calculate the neighborhood information gain IGNRS(d, A ∪ {a});
9: Calculate the neighborhood split information SINRS(d, A ∪ {a});

10: Compute ϵA∪{a}(d) =
SINRS(d,A∪{a})
e|IGNRS(d,A∪{a})| × WA∪{a};

11: end for
12: Select attribute b = arg max{ϵA∪{a}(d) : a ∈ AT − A};
13: Update A = A ∪ {b};
14: until No attribute can improve the significance threshold θ or ϵA(d)

ϵAT(d)
≥ θ return A

4. Experimental Analysis
4.1. Dataset Description

To evaluate the performance of the proposed measure, 15 UCI datasets are used in this
experiment. These datasets were carefully selected after a thorough review to meet the multi-
granular criteria required by our method, accommodating both supervised and unsupervised
learning scenarios. Table 1 summarizes the statistical information of these datasets.

Table 1. Dataset descriptions.

ID Datasets Samples Attributes Labels

1 Adult Income 48,842 14 2
2 Iris Plants Database 150 4 3
3 Wine 178 13 3
4 Breast Cancer Wisconsin (Original) 699 10 2
5 Climate Model Simulation Crashes 540 20 2
6 Car Evaluation 1728 6 4
7 Human Activity Recognition Using Smartphones 10,299 561 6
8 Statlog (Image Segmentation) 2310 18 7
9 Yeast 1484 8 10

10 Seeds 210 7 3
11 Ultrasonic Flowmeter Diagnostics-Meter D 180 43 4
12 Spambase 4601 57 2
13 Mushroom 8124 22 2
14 Heart Disease 303 75 5
15 Letter Recognition 20,000 16 26
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4.2. Experimental Configuration

The experiment was performed on a personal computer running Windows 11, featur-
ing an Intel Core i5-12500H processor (2.50 GHz) with 16.00 GB RAM. MATLAB R2023a
served as the development environment.

In this experiment, a double means algorithm was adopted to recursively allocate
attribute granularity space, while utilizing the k-means clustering method [38] to generate
pseudo labels for samples, and the information gain ratio as the criterion for evaluating
attribute reduction. Notably, the selected k-value needs to match the number of decision
categories in the dataset. Moreover, the effect of the neighborhood rough set is significantly
influenced by the preset radius size. To demonstrate the effectiveness and applicability of
the proposed method, a series of experiments are designed using 20 different radius values,
incremented by 0.02, ranging from 0.02 to 0.40. Through 10-fold cross-validation, the sim-
plified reasoning process is validated. Specifically, for each specific radius, the dataset was
divided into ten subsets, nine for training and one for testing. This cross-validation process
was repeated 10 times to ensure that each subset had the opportunity to serve as the test set,
thereby evaluating the classification performance and ensuring the reliability and stability
of the model.

In the experiment, the proposed measure is compared with six advanced attribute
reduction algorithms as well as with the algorithm without applying any attribute reduction
methods (no reduct) using Regression Trees (CART) [20], K-Nearest Neighbors (KNN,
K = 3) [39], and Support Vector Machines (SVM) [40]. The performance of the reducer is
evaluated in aspects of the stability, accuracy, and timeliness of classification, as well as the
stability of reduction. The attribute reduction algorithms included for comparison are:

MapReduce-Based Attribute Reduction Algorithm (MARA) [41];
Robust Attribute Reduction Based On Rough Sets (RARR) [42];
Bipolar Fuzzy Relation System Attribute Reduction Algorithms (BFRS) [43];
Attribute Group (AG) [44];
Separability-Based Evaluation Function (SEF) [45];
Genetic Algorithm-based Attribute Reduction (GAAR) [46].

4.3. Comparison of Classification Accuracy

In this part, the classification accuracy of each algorithm is evaluated using KNN,
SVM, and CART for predicting test samples. Regarding attribute reduction algorithms,
within a decision system DS, the definition of classification accuracy post-reduction is
as follows:

Accred =
|{xi ∈ red|Prered(xi) = d(xi)}|

|U| , (22)

where Prered(xi) is the predicted label for xi using the reduced set red.
Table 2 and Figure 2 present the specific classification accuracy outcomes for each

algorithm across 15 datasets. From these observations, several insights can be readily
inferred:

1. For most datasets, the classification accuracy associated with NRS-ϵ is superior to
other comparison algorithms, regardless of whether the KNN, SVM, or CART clas-
sifier is used. For example, in the “Car Evaluation (ID: 6)” dataset, when using the
CART classifier, the classification accuracies of NRS-ϵ, MARA, RARR, BFRS, AG, SEF,
and GAAR are 0.5039, 0.4529, 0.4157, 0.494, 0.4886, 0.4909, 0.4719, respectively; when
using the KNN classifier, the classification accuracies of NRS-ϵ, MARA, RARR, BFRS,
AG, SEF, and GAAR are 0.6977, 0.6584, 0.535, 0.6747, 0.6675, 0.6586, 0.6579, respec-
tively; when using SVM, the classification accuracies of NRS-ϵ, MARA, RARR, BFRS,
AG, SEF, and GAAR are 0.5455, 0.4307, 0.368, 0.4737, 0.4698, 0.4718, 0.4923, respec-
tively. Therefore, NRS-ϵ derived simplifications can provide effective classification
performance.

2. Examining the average classification accuracy per algorithm reveals that the accuracy
associated with NRS-ϵ is on par with, if not exceeding, that of MARA, RARR, BFRS,
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AG, SEF, and GAAR. When using the CART classifier, the average classification
accuracy of NRS-ϵ is 0.8012, up to 29.28% higher than other algorithms; when using
the KNN classifier, the average classification accuracy of NRS-ϵ is 0.8169, up to 34.48%
higher than other algorithms; when using SVM, the average classification accuracy of
NRS-ϵ is 0.80116, up to 36.38% higher than other algorithms.

Table 2. The comparisons of the classification accuracies.

CART

ID NRS-ϵ MARA RARR BFRS AG SEF GAAR NO REDUCT

1 0.8514 0.5849 0.5911 0.8469 0.8511 0.8494 0.8452 0.8377
2 0.6795 0.5078 0.6392 0.6604 0.6749 0.6516 0.6573 0.6715
3 0.7312 0.6342 0.7584 0.7213 0.7671 0.7568 0.7687 0.7019
4 0.9507 0.5655 0.1499 0.9503 0.9502 0.9466 0.9445 0.9434
5 0.8783 0.8057 0.8779 0.8468 0.8532 0.8340 0.8184 0.8528
6 0.5039 0.4529 0.4157 0.4940 0.4886 0.4909 0.4719 0.5006
7 0.9848 0.7403 0.6217 0.9831 0.9845 0.9825 0.9820 0.9818
8 0.9271 0.3540 0.3046 0.9187 0.9262 0.9245 0.9259 0.9007
9 0.8101 0.7125 0.8015 0.8014 0.8097 0.7944 0.8075 0.7884

10 0.8091 0.4674 0.7979 0.7947 0.8047 0.8023 0.8022 0.8005
11 0.9281 0.8612 0.8769 0.9072 0.9140 0.9276 0.8937 0.8917
12 0.8206 0.5887 0.5967 0.8161 0.8161 0.8161 0.8169 0.8016
13 0.8834 0.8115 0.8828 0.8652 0.8665 0.8670 0.8794 0.8769
14 0.6158 0.5784 0.6048 0.6067 0.6095 0.6053 0.6138 0.6117
15 0.6434 0.6308 0.6422 0.6430 0.6414 0.6421 0.6425 0.6482

Average 0.8012 0.6197 0.6374 0.7903 0.7972 0.7927 0.7913 0.7873
rate 29.27% ↑ 25.68% ↑ 1.37% ↑ 0.49% ↑ 1.06% ↑ 1.24% ↑ 1.77% ↑

KNN

1 0.8898 0.5177 0.4930 0.8898 0.8935 0.8891 0.8891 0.8794
2 0.6547 0.4723 0.6140 0.6465 0.6529 0.6387 0.6410 0.6438
3 0.6802 0.5942 0.6880 0.6703 0.6930 0.6702 0.7005 0.6925
4 0.9445 0.5269 0.1590 0.9436 0.9414 0.9419 0.9344 0.9261
5 0.8392 0.7890 0.8390 0.7659 0.8015 0.7768 0.7701 0.7349
6 0.6977 0.6584 0.5350 0.6747 0.6675 0.6586 0.6579 0.6098
7 0.8597 0.7315 0.5796 0.8620 0.8671 0.8691 0.8632 0.8672
8 0.9743 0.2733 0.2094 0.9671 0.9684 0.9659 0.9658 0.9176
9 0.8730 0.7087 0.8685 0.8671 0.8729 0.8605 0.8650 0.8714

10 0.7655 0.3996 0.7533 0.7527 0.7634 0.7577 0.7603 0.7476
11 0.9267 0.8927 0.8943 0.9081 0.9121 0.9266 0.9042 0.8905
12 0.9132 0.6035 0.6066 0.8998 0.8981 0.8959 0.8972 0.9027
13 0.8948 0.7087 0.8945 0.8700 0.8871 0.8791 0.8865 0.8845
14 0.6148 0.5105 0.6122 0.6079 0.6115 0.6145 0.6104 0.6112
15 0.7260 0.7254 0.7096 0.7064 0.7094 0.7009 0.7032 0.6994

Average 0.8169 0.6075 0.6304 0.8021 0.8093 0.8030 0.8033 0.7919
rate 34.47% ↑ 29.59% ↑ 1.84 % ↑ 0.94% ↑ 1.73% ↑ 1.70% ↑ 3.16% ↑

SVM

1 0.8616 0.5751 0.5741 0.8573 0.8612 0.8613 0.8580 0.8194
2 0.6343 0.3989 0.5935 0.6231 0.6314 0.6047 0.6142 0.6241
3 0.7388 0.4890 0.7211 0.7270 0.7614 0.7538 0.7400 0.5212
4 0.9280 0.4741 0.1499 0.9169 0.9108 0.9150 0.9106 0.8723
5 0.6392 0.5834 0.6390 0.5834 0.5912 0.5618 0.5962 0.6231
6 0.5455 0.4307 0.3680 0.4737 0.4698 0.4718 0.4923 0.5298
7 0.6809 0.6021 0.4575 0.6636 0.6756 0.6573 0.6603 0.5643
8 0.9354 0.3234 0.3016 0.9129 0.9193 0.9146 0.9187 0.8759
9 0.8718 0.6420 0.8636 0.8672 0.8672 0.8549 0.8651 0.8831
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Table 2. Cont.

SVM

ID NRS-ϵ MARA RARR BFRS AG SEF GAAR NO REDUCT

10 0.7724 0.4580 0.7565 0.7461 0.7543 0.7453 0.7535 0.7478
11 0.9209 0.9075 0.9078 0.9092 0.9105 0.9201 0.9075 0.9052
12 0.9402 0.6625 0.6774 0.9267 0.9240 0.9218 0.9249 0.9324
13 0.8940 0.8001 0.8938 0.8371 0.8645 0.8367 0.8827 0.8560
14 0.6372 0.5436 0.6357 0.6281 0.6286 0.6228 0.6281 0.6405
15 0.6662 0.6641 0.6544 0.6533 0.6549 0.6522 0.6544 0.6248

Average 0.7778 0.5703 0.6129 0.75502 0.7621 0.7530 0.7604 0.7347
rate 36.38% ↑ 26.90% ↑ 3.01% ↑ 2.05% ↑ 3.29% ↑ 2.27% ↑ 5.87% ↑

NRS-

MARA

RARR BFRS

AG

SEF

GAAR
CART
KNN
SVM

(a) ID-1

NRS-

MARA

RARR BFRS

AG

SEF

GAAR
CART
KNN
SVM

(b) ID-2

NRS-

MARA

RARR BFRS

AG

SEF

GAAR
CART
KNN
SVM

(c) ID-3

NRS-

MARA

RARR BFRS

AG

SEF

GAAR
CART
KNN
SVM

(d) ID-4

NRS-

MARA

RARR BFRS

AG

SEF

GAAR
CART
KNN
SVM

(e) ID-5

NRS-

MARA

RARR BFRS

AG

SEF

GAAR
CART
KNN
SVM

(f) ID-6

NRS-

MARA

RARR BFRS

AG

SEF

GAAR
CART
KNN
SVM

(g) ID-7

NRS-

MARA

RARR BFRS

AG

SEF

GAAR
CART
KNN
SVM

(h) ID-8

NRS-

MARA

RARR BFRS

AG

SEF

GAAR
CART
KNN
SVM

(i) ID-9

NRS-

MARA

RARR BFRS

AG

SEF

GAAR
CART
KNN
SVM

(j) ID-10

NRS-

MARA

RARR BFRS

AG

SEF

GAAR
CART
KNN
SVM

(k) ID-11

NRS-

MARA

RARR BFRS

AG

SEF

GAAR
CART
KNN
SVM

(l) ID-12

NRS-

MARA

RARR BFRS

AG

SEF

GAAR
CART
KNN
SVM

(m) ID-13

NRS-

MARA

RARR BFRS

AG

SEF

GAAR
CART
KNN
SVM

(n) ID-14

NRS-

MARA

RARR BFRS

AG

SEF

GAAR
CART
KNN
SVM

(o) ID-15

Figure 2. Classification accuracies of three classifiers.
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4.4. Comparison of Classification Stability

Similar to the evaluation of classification accuracy, this section explores the classi-
fication stability obtained by analyzing the classification results of seven different algo-
rithms, including experiments with CART, KNN, and SVM classifiers. In a decision system
DS = ⟨U, AT, d, δ⟩, assume the set U is equally divided into z mutually exclusive groups
of the same size (using 10-fold cross-validation, so z = 10); that is, U1, . . . , Uτ , . . . , Uz
(1 ≤ τ ≤ z). Then, the classification stability based on redundancy reduction redτ (ob-
tained by removing Uτ from the set U) can be represented as:

Stabclass =
2

z · (z − 1)

z−1

∑
τ=1

z

∑
τ′=τ+1

Exa(redτ , redτ′) (23)

where Exa(redτ , redτ′) measures the consistency between two classification results, which
can be defined according to Table 3.

Table 3. Joint distribution of classification results.

Preredτ(x) = d(x) Preredτ(x) ̸= d(x)

Preredτ′ (x) = d(x) ψ1 ψ2
Preredτ′ (x) ̸= d(x) ψ3 ψ4

In Table 3, Preredτ(x) represents the predicted label of x obtained by redτ . The sym-
bols ψ1, ψ2, ψ3, and ψ4, respectively, represent the number of samples that satisfy the
corresponding conditions in Table 4. Based on this, Exa(redτ , redτ′) is defined as

Exa(redτ , redτ′) =
ψ1 + ψ4

ψ1 + ψ2 + ψ3 + ψ4
. (24)

The classification stability index reflects the degree of deviation of prediction labels
when data perturbation occurs. Higher values of classification stability mean more stable
prediction labels, indicating better quality of the corresponding reduction. Improvements
in classification stability mean increased stability of prediction label results and reduced
interference with training samples. After analyzing the 15 datasets using these three classi-
fiers, Table 4 and Figure 3 present the findings of each algorithm in terms of classification
stability. It should be noted that the classification stability index reflects the degree of
change in prediction labels when data are perturbed. Higher classification stability values
indicate more stable prediction labels, meaning the related redundancy reduction has a
higher quality.

1. Across many datasets, the NRS-ϵ algorithm exhibits leading performance compared to
other algorithms in terms of classification stability, playing a leading role. For example,
in the “Iris Plants Database (ID: 2)” dataset, significant differences in classification
accuracy were observed under different classifiers for NRS-ϵ and other algorithms:
when using the CART classifier, the accuracy of NRS-ϵ reached 0.7364, while MARA,
RARR, BFRS, AG, SEF, and GAAR had accuracies of 0.6794, 0.7122, 0.6981, 0.7244,
0.7130, and 0.7276, respectively; when using the KNN classifier, the accuracy of NRS-
ϵ was 0.8357, with MARA, RARR, BFRS, AG, SEF, and GAAR algorithms having
accuracies of 0.6380, 0.8349, 0.8155, 0.8145, 0.8253, and 0.8246, respectively; when
using the SVM classifier, the accuracies of NRS-ϵ, MARA, RARR, BFRS, AG, SEF,
and GAAR were 0.8918, 0.6581, 0.8774, 0.8771, 0.8748, 0.8852, 0.8783, respectively.

2. Regarding average classification accuracy, the stability of NRS-ϵ markedly surpasses
that of competing algorithms. Specifically, when using the CART classifier, the classi-
fication stability of NRS-ϵ was 0.8228, up to 12.51% higher than other methods; when
using the KNN classifier, its classification stability was 0.8972, up to 25.14% higher
than other methods; and through the SVM classifier, the classification stability of
NRS-ϵ was 0.9295, up to 14.61% higher than other methods.
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Table 4. The comparisons of classification stabilities.

CART

ID NRS-ϵ MARA RARR BFRS AG SEF GAAR NO REDUCT

1 0.8583 0.8663 0.8369 0.8580 0.8566 0.8538 0.8558 0.8551
2 0.7364 0.6794 0.7122 0.6981 0.7244 0.7130 0.7276 0.7130
3 0.7222 0.7453 0.7761 0.7546 0.7553 0.7431 0.7500 0.7495
4 0.9485 0.6265 0.7733 0.9423 0.9454 0.9480 0.9391 0.8747
5 0.8837 0.8279 0.8834 0.8370 0.8473 0.8432 0.8407 0.8518
6 0.6469 0.6557 0.6584 0.6690 0.6473 0.6397 0.6632 0.6543
7 0.9812 0.9334 0.8934 0.9797 0.9806 0.9809 0.9792 0.9611
8 0.9259 0.6674 0.9501 0.9141 0.9041 0.9088 0.9159 0.8837
9 0.9017 0.7772 0.9014 0.8727 0.8880 0.8906 0.8948 0.8752

10 0.8367 0.7041 0.8151 0.8359 0.8082 0.8269 0.8283 0.8078
11 0.9246 0.8853 0.8994 0.9204 0.9054 0.9014 0.9032 0.9056
12 0.7724 0.5217 0.6804 0.7532 0.7492 0.7601 0.7565 0.7134
13 0.9145 0.9144 0.9037 0.8680 0.8515 0.8331 0.8940 0.8827
14 0.6465 0.5331 0.6395 0.6402 0.6372 0.6441 0.6348 0.6250
15 0.6420 0.6316 0.6376 0.6383 0.6339 0.6412 0.6393 0.6377

Average 0.8228 0.7313 0.7974 0.8121 0.8090 0.8085 0.8148 0.7994
rate 12.51% ↑ 3.18% ↑ 1.31% ↑ 1.71% ↑ 1.76%↑ 0.97% ↑ 2.93% ↑

KNN

1 0.9460 0.8825 0.8377 0.9427 0.9378 0.9428 0.9387 0.9186
2 0.8357 0.6380 0.8349 0.8155 0.8145 0.8253 0.8246 0.7841
3 0.7977 0.6518 0.8102 0.7494 0.7526 0.7656 0.7867 0.7591
4 0.9924 0.5949 0.9908 0.9737 0.9689 0.9771 0.9660 0.9234
5 0.9452 0.7945 0.9443 0.8743 0.8709 0.8532 0.8996 0.8830
6 0.8031 0.7612 0.7018 0.7555 0.7539 0.7597 0.7825 0.7597
7 0.9062 0.9357 0.9044 0.9024 0.8903 0.9065 0.9002 0.9065
8 0.9786 0.6906 0.8601 0.9663 0.9592 0.9678 0.9627 0.9122
9 0.9341 0.6991 0.9284 0.9102 0.9233 0.9296 0.9245 0.8927

10 0.8854 0.6707 0.8761 0.8749 0.8541 0.8823 0.8707 0.8449
11 0.9706 0.9705 0.9657 0.9358 0.9309 0.9396 0.9457 0.9514
12 0.9299 0.5301 0.7138 0.8746 0.8745 0.8935 0.8808 0.8140
13 0.9222 0.6058 0.9362 0.8632 0.8705 0.8662 0.8935 0.8511
14 0.7942 0.4714 0.7889 0.7682 0.7727 0.7934 0.7813 0.7386
15 0.8164 0.8574 0.8273 0.8067 0.8063 0.8250 0.8141 0.8206

Average 0.8972 0.7170 0.8614 0.8676 0.8653 0.8752 0.8781 0.8507
rate 25.14%↑ 4.16%↑ 3.41%↑ 3.68% ↑ 2.51% ↑ 2.17% ↑ 5.47% ↑

SVM

1 0.9739 0.8679 0.8877 0.9733 0.9671 0.9698 0.9675 0.9439
2 0.8918 0.6581 0.8774 0.8771 0.8748 0.8852 0.8783 0.8490
3 0.8754 0.6134 0.9050 0.8575 0.8662 0.8668 0.8477 0.8331
4 0.9807 0.7282 0.7456 0.9749 0.9678 0.9797 0.9641 0.9059
5 0.7782 0.7557 0.7779 0.7476 0.7543 0.7576 0.7576 0.7613
6 0.7926 0.6862 0.7394 0.7609 0.7490 0.7519 0.7729 0.7504
7 0.9247 0.9992 1.0001 0.9311 0.9015 0.9376 0.9287 0.9461
8 0.9709 0.6467 0.9567 0.9501 0.9267 0.9478 0.9459 0.9064
9 0.9670 0.7753 0.9655 0.9536 0.9566 0.9646 0.9639 0.9352

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9895
11 0.9975 1.0000 0.9995 0.9846 0.9945 0.9974 1.0000 0.9962
12 0.9694 0.5583 0.8165 0.9141 0.9117 0.9334 0.9225 0.8608
13 0.9338 0.9144 0.9587 0.8968 0.8978 0.8711 0.9314 0.9149
14 0.9245 1.0000 0.9240 0.9221 0.9208 0.9323 0.9262 0.9357
15 0.9619 0.9611 0.9455 0.9382 0.9260 0.9362 0.9421 0.9444

Average 0.9295 0.8110 0.9000 0.9121 0.9077 0.9154 0.9166 0.8989
rate 14.61% ↑ 3.30% ↑ 1.90%↑ 2.41% ↑ 1.54% ↑ 1.41% ↑ 3.42% ↑
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Figure 3. Classification stabilities of three classifiers.

4.5. Comparisons of Elapsed Time

In this section, the time required for attribute reduction by different algorithms is
compared. The results are shown in Table 5.

An increase in the value of dimensionality reduction stability correlates with an extended
length of reduction. Through an in-depth analysis of the table below, the findings listed below
can be easily derived. The reduction length of NRS-ϵ is longer, suggesting that there is a need
to enhance the algorithm’s time efficiency throughout the simplification process.

When analyzing the average processing time performance of algorithms, from the
perspective of average time consumed, it is noteworthy that the value of NRS-ϵ is reduced
by 97.23% and 48.86% compared to RARR and GAAR, respectively. Taking the dataset
“Car Evaluation (ID: 6)” as an example, the time consumed by NRS-ϵ, MARA, RARR, BFRS,
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AG, SEF, and GAAR are 122.1212 s, 6.9838 s, 421.1056 s, 154.8219 s, 31.4599 s, 33.3661 s,
and 54.0532 s, respectively. Hence, under certain conditions, the time NRS-ϵ takes for
attribute reduction is less compared to RARR and BFRS.

Based on the discussion, it is evident that while our novel algorithm exhibits better
time efficiency compared to RARR and BFRS on certain datasets, the speed of NRS-ϵ
requires further enhancement.

Table 5. The elapsed time of all seven algorithms.

ID NRS-ϵ MARA RARR BFRS AG SEF GAAR

1 429.7783 0.8807 6.6227 57.0501 7.2915 6.5293 26.3625
2 2.4335 0.6513 0.8982 0.9413 0.1933 0.2173 0.3533
3 21.0802 0.3232 0.7559 1.9937 0.2217 0.1986 0.6452
4 7.0519 1.3462 4.2944 7.0359 1.4769 1.1096 1.9095
5 14.0703 0.2167 5.3504 11.7332 1.9639 1.8331 3.4963
6 122.1212 6.9838 421.1056 154.8219 31.4599 33.3661 54.0532
7 233.6055 81.7964 21.1919 80.4803 20.2694 18.389 35.7563
8 36.3329 0.5928 28.5184 66.8708 11.0547 9.1725 15.1738
9 70.3101 5.7716 532.7057 286.4753 49.7015 38.066 73.976
10 7.9717 0.6485 1.8745 9.1748 1.5362 1.1173 2.0991
11 2.3576 0.5797 0.6115 1.0526 0.2311 0.2115 0.3641
12 18.2902 0.5314 6.0787 43.3079 8.0851 5.6702 11.0026
13 167.9126 15.3875 1605.0476 1466.822 254.7792 157.5132 327.6303
14 8.5942 0.6286 0.7663 3.7765 0.5923 0.5887 0.9772
15 345.9941 10.34 1946.5721 1403.8344 207.5309 167.8453 310.1552
Average 99.1936 8.4452 305.4930 239.6914 39.7592 29.4552 57.5970
rate 1001% ↑ 97.23% ↓ 27.45% ↑ 503.1 % ↑ 34.98% ↑ 48.86 % ↓

4.6. Comparison of Attribute Dimensionality Reduction Stability

In this section, the attribute dimensionality reduction stability related to 15 datasets is
presented. Table 6 shows that the dimensionality reduction stability of NRS-ϵ is slightly
lower than GAAR and SEF, but still maintains a leading position. Compared to MARA,
RARR, BFRS, and AG, the average dimensionality reduction stability value of NRS-ϵ has
increased by 100.2%, 49.89%, 27.19%, and 14.15%, respectively, while it only decreased by
19.323% and 6.677% compared to GAAR and SEF.

Table 6. The stabilities of all seven algorithms.

ID NRS-ϵ MARA RARR BFRS AG SEF GAAR

1 0.6587 0.1275 0.4888 0.1535 0.1232 0.2059 0.6033
2 0.5761 0.6308 0.9277 0.2903 0.2941 0.3647 0.5004
3 0.8504 0.2051 0.9506 0.6211 0.4254 0.6466 0.9209
4 0.9271 0.4013 0.9224 0.7869 0.8033 0.9356 0.898
5 0.8246 1.0000 0.9045 0.7659 0.7281 0.8687 0.8007
6 0.9006 0.1498 0.6007 0.5958 0.5818 0.7154 0.6374
7 0.5577 0.4933 0.7277 0.2996 0.1764 0.3813 0.5346
8 0.9153 0.3103 1.0000 0.8698 0.6712 0.8967 0.7945
9 0.8959 1.0000 1.0000 0.7955 0.7183 0.8788 0.8257
10 0.8246 0.4051 0.8588 0.8033 0.7261 0.8280 0.815
11 0.6606 0.0546 0.3773 0.5284 0.3484 0.3265 0.5815
12 0.9146 0.2001 0.9917 0.8328 0.8259 0.9281 0.8708
13 0.9054 0.3037 1.0000 0.7155 0.5962 0.7672 0.7502
14 0.7816 0.1602 0.8678 0.6017 0.6038 0.7438 0.7165
15 0.8608 0.6001 0.4011 0.7882 0.6549 0.7723 0.7442
Average 0.8034 0.4014 0.8012 0.6299 0.5518 0.6840 0.7329
rate 100.2% ↑ 49.89% ↓ 27.19% ↑ 14.15% ↑ 19.323% ↓ 6.677% ↓

Although NRS-ϵ does not fall short of GAAR and SEF’s results in terms of dimensional-
ity reduction stability on many datasets, in some cases, its results in attribute dimensionality
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reduction are superior to the six advanced algorithms. For example, for the “Letter Recog-
nition (ID: 15)” dataset, the dimensionality reduction stability of NRS-ϵ, MARA, RARR,
BFRS, AG, SEF, and GAAR were 0.8608, 0.6001, 0.4011, 0.7882, 0.6549, 0.7723, and 0.7442,
respectively. Compared to other algorithms, the results of NRS-ϵ improved by 43.47%,
115.2%, 9.211%, 31.44%, 11.46%, and 15.67%, respectively. Thus, it is important to recognize
that employing NRS-ϵ favors the selection of attributes better aligned with variations
in samples.

5. Conclusions and Future Expectations

In this study, we introduced a novel attribute reduction strategy designed to address
the challenges associated with high-dimensional data analysis. This strategy innovatively
combines multi-granularity modeling with both supervised and unsupervised learning
frameworks, enhancing its adaptability and effectiveness across various levels of data
complexity.

This model’s integration of multi-granularity aspects distinguishes it from conven-
tional attribute reduction methods by providing enhanced flexibility and adaptability to
different data feature levels. This allows for more precise and effective handling of complex,
high-dimensional datasets. The application of our proposed strategy across 15 UCI datasets
has demonstrated not only exceptional classification performance, but also robust stability
during the dimensionality reduction process. These results substantiate the practical utility
and effectiveness of our approach in diverse data scenarios. While the strategy marks a sig-
nificant advancement in attribute reduction, it does present challenges, primarily related to
computational efficiency. The sophisticated nature of the integrated measurement methods,
though beneficial for attribute selection quality, substantially increases the computational
time required. This aspect can be particularly limiting in time-sensitive applications. To
enhance the practicality and efficiency of our attribute reduction strategy, future research
efforts could focus on:

1. Implementing acceleration technologies could significantly reduce the computational
burden, making the strategy more feasible for larger or more complex datasets.

2. Exploring alternative rough set-based fundamental measurements could provide
deeper insights into their impact on classification performance. This exploration may
lead to the discovery of even more effective attribute reduction techniques.

By addressing these limitations and exploring these suggested future research di-
rections, we can further refine our attribute reduction strategy, potentially setting a new
benchmark in the field. Our findings not only contribute to the existing body of knowledge,
but also pave the way for future explorations aimed at enhancing data preprocessing
techniques in the era of big data.
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