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Abstract: Aiming at the problem that the search efficiency of key vulnerable nodes in large-scale
networks is not high and the consideration factors are not comprehensive enough, in order to improve
the time and space efficiency of search and the accuracy of results, a key vulnerable node discovery
method based on Bayesian attack subgraphs and improved fuzzy C-means clustering is proposed.
Firstly, the attack graph is divided into Bayesian attack subgraphs, and the analysis results of the
complete attack graph are quickly obtained by aggregating the information of the attack path analysis
in the subgraph to improve the time and space efficiency. Then, the actual threat features of the
vulnerability nodes are extracted from the analysis results, and the threat features of the vulnerability
itself in the common vulnerability scoring standard are considered to form the clustering features
together. Next, the optimal number of clusters is adaptively adjusted according to the variance
idea, and fuzzy clustering is performed based on the extracted clustering features. Finally, the key
vulnerable nodes are determined by setting the feature priority. Experiments show that the proposed
method can optimize the time and space efficiency of analysis, and the fuzzy clustering considering
multiple features can improve the accuracy of analysis results.

Keywords: Bayesian attack graphs; key vulnerability discovery; community division; fuzzy clustering

MSC: 93C42

1. Introduction

With the continuous progress of science and technology, the network has become an
indispensable part of modern society. The development of the network has broken the
restrictions of time and space and promoted the dissemination and sharing of information.
Attackers penetrate and hijack data through device vulnerabilities, causing economic
losses to individuals, institutions, large companies, and even countries [1]. Therefore, it
is necessary to analyze the vulnerabilities in network systems and take corresponding
defensive measures to prevent hacker attacks.

The large number and complex types of vulnerabilities in network systems always
threaten the security and stability of the system. Many scholars have applied various
methods to study system vulnerability analysis. Some methods evaluate the vulnerability
threat in the network system by considering the threat characteristics of the vulnerability
itself and the threat of its associated assets [2–5]. However, these methods only evaluate the
stable vulnerability threat influencing factors, and do not take the actual changing network
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environment into account, so the factors considered are not comprehensive enough. In
order to take various factors into account, some scholars use machine learning to evaluate
the threat degree of vulnerabilities [6–10]. These studies combine various characteristic
information of vulnerabilities and train various models to improve the effect of vulnerability
detection. However, these methods only detect the vulnerability of a single device, and
the correlation between the detection results and other vulnerabilities in the network and
the whole attack process is not strong. The attack graph is a graphical security assessment
technique that contains various network configurations and vulnerability information.
It reveals all potential vulnerability combinations and their relationships and lists all
potential attack paths from the perspective of the attacker to reflect the security state of the
network, such as the number of attack paths, the length of the shortest attack path, and
the key vulnerability. Multi-step attacks can be effectively prevented based on the attack
graph [11,12]. To enhance the relevance between vulnerability assessment and network
systems, many studies have conducted network vulnerability analysis based on attack
graphs. They realized the association analysis of key vulnerabilities in network systems by
studying attack graph construction techniques [13,14], node analysis techniques [15–17]
and attack path analysis [18,19]. However, the attack graph does not have the ability of
quantitative analysis. The Bayesian theory is a statistical method to deal with uncertainty
through observation data. The key of Bayesian theory is to predict possible risks in advance
by mathematical methods, and it does not focus on the random attack itself [20]. Many
risk analysis methods based on attack graphs combine Bayesian theory to realize risk
quantification and prediction analysis [21–23]. In the network attack graph with a large
number of nodes, the existing studies have problems such as low efficiency and single
consideration when searching for key vulnerable nodes. These problems coincide with the
advantages of fuzzy C-means (FCM) clustering, which can integrate various characteristics
of vulnerabilities and classify them spontaneously. Thus, a set of key vulnerable nodes
with similar threat degrees can be effectively obtained.

To sum up, the temporal and spatial efficiency of attack graph analysis in large-
scale networks needs to be improved, and the factors taken into account in searching key
vulnerable nodes in network systems are not comprehensive enough. This paper uses the
attack graph combined with the network division to divide the attack graph into multiple
subgraphs for correlation analysis. Based on the analysis results, the actual threat features
of vulnerability nodes are extracted. The actual threat features and inherent threat features
of vulnerabilities are taken as FCM clustering indicators. The main contributions of this
paper are as follows:

1. An analysis method based on Bayesian attack subgraphs is proposed. It divides
the attack graph based on the idea of community division, quantifies the threat of
nodes, constructs and analyzes Bayesian attack subgraphs to form the subgraph
analysis information group, and aggregates information groups to quickly obtain the
final analysis results of all paths so as to improve the spatiotemporal efficiency of
the results;

2. A method based on improved FCM to discover key vulnerable nodes is proposed.
It uses variance to design the total difference value between classes (TDVC) and
determines the optimal number of FCM by maximizing the TDVC. Then, the actual
threat features and inherent threat features of vulnerabilities are extracted based on
the Common Vulnerability Scoring System (CVSS) and the analysis results of the
attack graph. Next, FCM is used to cluster the vulnerability nodes based on the
extracted features so as to improve the accuracy of the results. Finally, the feature
priority is set, and the key vulnerability node cluster with the highest threat level is
found according to the results.

3. The experimental scenario is designed and the data from the National Vulnerability
Database (NVD) are collected for the experiment. The temporal and spatial effi-
ciency improvement of attack graph analysis and the accuracy improvement of key
vulnerability nodes search results are verified by comparing with other methods.
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2. Related Works

At present, there is much research on key vulnerability search. Hao et al. [24] and Tang
et al. [25] train neural network models to identify key vulnerabilities on network devices
using static analysis, but this method is only applicable to a single device and cannot be
dynamically combined with other devices in the network. Li et al. [26] use the Kemeny
constant as a global connectivity measure to identify network key connections and network
decomposition is used to cut off connections to minimize global connectivity measures,
thereby obtaining key vulnerabilities. However, this method is not intuitive enough and
only considers a single influencing factor. Huang et al. [27] build an attack tree and conduct
Bayesian inference to find key vulnerable nodes by tracing the attack path. However, the
application scope of the attack tree is limited and vulnerabilities could not be associated.

To conduct association analysis of network nodes and make the analysis results more
accurate and intuitive, many studies use the attack graph as the basic analysis method to
search for key vulnerabilities. Yang et al. [28] quantify the asset value of the host through the
attribute value and topology perspective on the attack graph and search for key vulnerable
nodes in combination with attack probability. However, this method does not consider
the influence of the location of the vulnerability in the attack path. Li et al. [29] use attack
distance and atomic weight to optimize the complexity of the attack graph and improve
the ant colony algorithm to solve the minimum key attack set through the pheromone
adaptive update principle and local search strategy so as to obtain the key vulnerable
nodes, but this method does not consider the threat characteristics of vulnerability nodes
themselves. Qian et al. [30] optimize the attack graph with maximum hop count and
reachability probability and quantify the reachability probability of vulnerable nodes.
According to the vulnerability measurement value of nodes and paths, the key vulnerable
nodes in the network are found, but this method only considers the attack path with the
highest vulnerability measurement value. Xie et al. [31] use the Bayesian attack graph
model to continuously carry out probabilistic correction learning according to the attack
data, quantify the dynamic risk, and evaluate the risk value of key nodes according
to the quantitative results. However, this method analyzes the complete attack graph
and dynamically adjusts the attack graph model, which reduces the time efficiency of
analysis. Li et al. [32] combine particle the swarm optimization algorithm and a grey wolf
optimization algorithm to find the maximum weight spanning tree from the attack graph,
evaluate the key nodes in the spanning tree based on interpretable structure modeling, and
improve the simulated annealing algorithm. This method optimizes the time efficiency
through heuristic ideas but reduces the accuracy of the result due to the pruning of part of
the edges.

Previous studies have some problems when using the Bayesian attack graph to search
for key vulnerable nodes. Many studies do not consider the threat characteristics of the
vulnerability itself and the threat characteristics in the actual network at the same time,
which leads to the accuracy of the search results of key vulnerable nodes needing to be
improved. Some studies will lead to low search efficiency when they are applied to large-
scale attack graphs, and large-scale attack graphs also need a lot of storage space. Therefore,
this paper proposes a key vulnerable node discovery method based on Bayesian attack
subgraphs and improved FCM. The large-scale network is divided by community division
and the Bayesian attack subgraphs are constructed. The analysis result of the complete
attack graph is formed by aggregating the attack path analysis information inside the attack
subgraphs, and the threat characteristics of nodes are extracted from the result. Then, the
TDVC is designed to adaptively determine the optimal number of clusters, and the FCM is
used to cluster the nodes. Finally, the clustering results are analyzed based on the designed
feature priority to obtain the key vulnerable nodes so as to improve the accuracy of results
and the spatiotemporal efficiency of search analysis.
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3. Key Nodes Discovery Model Based on Attack Subgraph Aggregation Search and
Fuzzy C-Means Clustering

The key vulnerable nodes discovery model based on attack subgraph aggregation
search and fuzzy C-means clustering is mainly divided into three steps: data preprocessing,
attack path aggregation search based on Bayesian attack subgraph, and key vulnerable
nodes discovery based on fuzzy C-means clustering. The overall process of the key node dis-
covery model based on attack subgraph aggregation search and fuzzy C-means clustering
is shown in Figure 1.
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C-means clustering.

In the data preprocessing stage, the topology graph of the network system is con-
structed, and vulnerability scanning tools such as Nessus are used to obtain the vulnerabil-
ity list existing on the device. At the same time, the vulnerability exploit relationship is
analyzed for the subsequent construction of the attack graph. Since the current attack graph
construction technology generally uses a manual analysis method to obtain the exploitation
relationship between vulnerabilities, this method cannot be effectively implemented when
there are a large number of vulnerabilities, and manual analysis has a strong subjective
will. To make the construction of vulnerability exploitation relationships more accurate, the
model in this paper uses the method based on Word2Vec and TextCNN in reference [33] to
obtain the exploitation relationship between vulnerabilities. Firstly, the basic information
such as permission requirements and description of vulnerabilities is obtained through
the interface provided by the NVD, and then the description information is organized into
a corpus to train the Word2Vec model. The output of the Word2Vec model is used as the
input of TextCNN to train the text classification model. Finally, the permissions obtained
after the vulnerability has been attacked are divided into three categories: other, user, and
root through the text classification model, and the exploitation relationship between the vul-
nerabilities is obtained according to the comparison results of the permissions requirements
of the vulnerability and the permissions obtained after the attack.

In the attack path aggregation search phase based on the Bayesian attack subgraph,
the large-scale network is first divided into multiple communities with close internal
connections by the community division algorithm. Then, the Bayesian attack subgraph
is constructed in each community based on CVSS, network connection relationship, and
vulnerability utilization relationship. Next, the attack path is searched in each subgraph,
and the attack probability and other related information of each path are recorded for the
aggregation of subsequent paths. Finally, the attack path and its information are aggregated
based on the connection relationship between subgraphs to obtain the complete attack
path information. Compared with the search of attack paths on the whole attack graph
directly, the search of attack paths based on the subgraph can not only save the storage
consumption of the attack graph but also improve the search efficiency of attack paths.

In the discovery stage of key vulnerable nodes based on fuzzy C-means clustering, the
sample characteristics during clustering are determined first. Two inherent threat features
and two actual threat features of the vulnerability are selected as sample features in this
method. Inherent threat features include exploitability score and impact score, which
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can be directly obtained according to CVSS. The exploitability index of a vulnerability in
CVSS reflects the difficulty of exploiting the vulnerability, and the impact index reflects
the severity of the consequence of exploiting the vulnerability. Both of them are related to
the severity of the vulnerability, but both of them are fixed characteristics of the vulnera-
bility itself, so their applicability is weak. Therefore, this paper extracts two actual threat
features of vulnerability attack probability and vulnerability occurrence frequency from
the relevant information on attack paths. These two features can reflect the threat degree
of vulnerabilities combined with specific attack paths in different networks and improve
the accuracy of discovering key vulnerable nodes. Then, the optimal number of clusters
is determined by maximizing the difference between the clustering results, and the fuzzy
C-means clustering is realized by setting the membership degree, the maximum number of
iterations, and other parameters. Finally, the feature priority is set to classify the clustering
results so as to obtain the final set of key vulnerable nodes.

4. Attack Path Aggregation Search Based on Bayesian Attack Subgraph

At present, the attack graph analysis scheme involving the attack path is difficult to
implement in large-scale network systems due to its space-time complexity. Therefore, an
attack path aggregation search method based on a Bayesian attack subgraph is proposed
in this paper to improve the spatiotemporal efficiency of this attack graph analysis. The
information obtained based on this method will be used as the key features of subse-
quent clustering algorithms to find key vulnerable nodes. The process of the attack path
aggregation search based on attack subgraphs is shown in Figure 2.
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In this method, the large-scale network is divided into multiple subnetworks using
the network community partitioning algorithm, and the Bayesian attack subgraphs are
constructed in the subnetworks first. All Bayesian attack subgraphs form the whole
Bayesian attack graph. Then, the attack path is searched in each Bayesian attack subgraph,
and the related information of the attack path is recorded. Finally, according to the attack
paths in different attack subgraphs and the related information recorded, the attack paths
and related information of the whole Bayesian attack graph are obtained.
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4.1. Bayesian Attack Subgraph Construction

Definition 1 (The Bayesian attack graph BAG). The BAG is a directed acyclic graph defined as a
quintuple < N, E, R, Pa, Ps, Pc >.

1. N is the set of nodes. N =
{

Nbegin ∪ Nmiddle ∪ Ntarget

}
. Nbegin is the set of nodes where

the attacker is located in the Bayesian attack graph. Ntarget is the node set of the attack
target. Nmiddle is the set of the remaining nodes. The value of Ni can be 0 or 1. Ni = 1 means
that the node i has been compromised. Ni = 0 means that the node i is not compromised;

2. E is the set of directed edges between nodes. E = {Ei|i = 1, 2 . . .}. Ek =< i, j > means that
an attacker at node i can attack node j after having sufficient privileges;

3. R is the set of parent–child node relationships in the attack graph. R =
{

ri,par(i)

∣∣∣i = 1, 2, . . .
}

.
par(i) is the set of parents of node i. ri,par(i) = or means that node i can be attacked when any
of its parents has been compromised. ri,par(i) = and means that node i can only be attacked
after all its parents have been compromised;

4. Pa is the set of node breach probabilities. Pa = {Pa(i)|i = 1, 2 . . .}. Pa(i) means the probability
that node i is successfully attacked;

5. Ps is the set of node selection probabilities. Ps = {Ps(i)|i = 1, 2 . . .}. Ps(i) means the proba-
bility that node i is selected by the attacker as an attack target;

6. Pc is the set of conditional probabilities of nodes. Pc = {Pc(i|Parent(i))|i = 1, 2 . . .}.
Pc(i|Parent(i)) means the conditional probability that the node i will be attacked after its
parent is compromised.

Aiming at the problem of efficiency caused by searching the attack path on the whole
attack graph in traditional methods, this paper adopts the method of attack path analysis
based on Bayesian attack subgraphs. The first step is to partition the network to form
Bayesian attack subgraphs. The construction of Bayesian attack subgraphs includes three
parts: network partition, attack subgraph construction, and node quantification.

Partitioning a large-scale network into multiple subnetworks is the basis for generating
Bayesian attack subgraphs. In this paper, the Lovain algorithm based on modularity
evaluation is used to divide the network. Modularity is used to evaluate the closeness of
the community structure. The modularity gain reflects the comparison of the modularity
of the whole graph when a node is merged from one community to another. The goal of
Lovain algorithm partitioning is to maximize the modularity increment. The calculation
formula of the modularity increment ∆Q is given in Equation (1).

∆Q =
1

2ϖ
(κi,in −

∑tot κi
ϖ

), (1)

where κi,in is the sum of edge weights between node i and all nodes in the merged target
community. ∑ tot is the sum of edge weights related to nodes in the target community. κi
is the sum of edge weights of node i. ϖ is the sum of all edge weights. In the directed
unweighted graph, the weight of each edge can be regarded as one.

The attack subgraph is constructed based on subnetworks formed by community
division. For each community network, the vulnerabilities of each host are obtained
first. Then, it determines whether there is an exploitation relationship between any two
vulnerabilities i and j on any two connected hosts; if there is, a directed edge Ek =< i, j >
is added between i and j to represent the attack relationship. After all the vulnerabilities
are processed, the vulnerabilities in the subnetwork form N in the corresponding attack
subgraph, and the attack relationship between the vulnerabilities form E.

To use Bayesian theory for analysis in attack subgraphs, vulnerability nodes in each
attack subgraph need to be quantified to form a Bayesian attack subgraph. Each node i
needs to quantify Pa(i) and Ps(i) based on CVSS. Pa(i) is related to the difficulty of the
node i being exploited, and the lower the difficulty, the easier it is to be compromised. Ps(i)
is related to the attack cost of the node i, and the lower the attack cost, the easier it is to be
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selected as an attack object. In CVSS, the attack vector score SAV and the attack complexity
score SAC can measure the difficulty of exploiting the vulnerability, while the privileges
required score SPR and user interaction score SUI can measure the exploitation cost of the
vulnerability. Therefore, Pa(i) and Ps(i) are calculated by Equations (2) and (3), respectively.

Pa(i) = SAV × SAC, (2)

Ps(i) = SPR × SUI , (3)

According to the different relationship ri,par(i) between the node i and its parent node
par(i), the conditional probability Pc(i|Par(i)) will be quantized by different methods based
on Pa and Ps. When ri,par(i) = and, the conditional probability of node i is the probability
that each parent node is compromised multiplied by the probability that node i is also
compromised. When ri,par(i) = or, the conditional probability of node i is the probability
that any parent node is compromised multiplied by the probability that node i is also
compromised. The calculation formulas of Pc(i|Par(i)) in the above two cases are shown
as Equations (4) and (5), respectively. In particular, for the node j that has no parent node
in the entire attack graph, its conditional probability is calculated as Equation (6).

Pc(i|Parent(i)) =
{

0, Nk ∈ Parent(i), Nk = 0
∏ Pa(Parent(i))× Ps(i)× Pa(i)

, (4)

Pc(i|Parent(i)) =
{

0, Nk ∈ Parent(i), Nk = 0
{1 − ∏[1 − Pa(Parent(i))]} × Ps(i)× Pa(i)

, (5)

Pc(j|Parent(j)) = Ps(j)× Pa(j), (6)

4.2. Attack Subgraph Paths Search

Definition 2 (The basic attack path L). L is an attack path inside the Bayesian attack subgraph,
which consists of nodes with an attack relationship. L = (N0, N1, . . . Nn). Ni is the node inside the
Bayesian attack subgraph.

Definition 3 (The attack path information group I). I is the matrix used to record the node
information that appears in the corresponding attack path. I = (i1, . . . in). ik is a two-dimensional
column vector where the first row is the node number and the second row is the depth of the node.

Definition 4 (The path reachability probability P). P describes the possibility of an attacker
attacking through a certain path.

The second step of attack path analysis based on the Bayesian attack subgraph is to
search the basic attack path and its corresponding attack path information group inside
each attack subgraph, which will be used for subsequent path aggregation and then used
as indicators for clustering. Since the analysis speed inside the attack subgraph is better
than the analysis speed in the whole attack graph, and the storage space requirement of the
attack subgraph is lower than that of the whole attack graph, the purpose of improving
the time and space efficiency of the analysis can be achieved. This section will introduce
how to search the attack path and record the attack path information inside the established
Bayesian attack subgraph.

For each attack subgraph, firstly, the set of nodes whose out-degree value and in-
degree value are both 0 are obtained, respectively. Then, the search starts from the node
with in-degree 0 as the initial node, and the node connected to the current node is the next
node on the attack path. The conditional probability of the nodes on the path is multiplied
to calculate the reachability probability P of the basic attack path. After that, the search
continues from the next node until the node with out-degree 0 is reached. Finally, a basic
attack path is formed, and the information group I corresponding to the basic attack path
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is recorded during the search process for subsequent attack path aggregation. The formula
for calculating P is shown as Equation (7).

P = ∏ Pc(i|Parent(i)), (7)

The attack subgraph path search algorithm is shown in Algorithm 1.

Algorithm 1: BasicPathSearch

Input: The Bayesian attack subgraph set BAGs
Output: The basic path set Ls in the Bayesian attack subgraph, the information group set Is, and
the basic path reachability probability set Probs

1. FOR each attack subgraph BAG in BAGs
2. The set Nout of nodes whose out-degree is 0 and the set Nin of nodes whose in- degree is 0

in BAG are counted
3. FOR each node n in Nin
4. Add n to L, store the information of n to I, Prob = Pc(n|Parent(n))
5. FOR n′s each neighbor node n′

6. Add n′ to L, store the information of n′ to I, Prob = Pc(n′|Parent(n′))
7. IF n′ ∈ Nout
8. Add L, I, Prob to the result sets Ls, Is, and Probs, respectively
9. ELSE
10. n = n′

4.3. Attack Paths and Its Information Aggregation

The reachability probability of the attack path in the Bayesian attack graph describes
the possibility of the attacker attacking along the vulnerable nodes on the path. The
larger the reachability probability is, the higher the threat degree of the nodes on the
path is. Therefore, the reachability probability of the attack path is used as an evaluation
index for the subsequent clustering algorithm. This method considers the influence of the
node’s position in the attack path on its threat degree and makes the search results of key
vulnerable nodes more accurate. However, the attack probability is for the attack path, and
cannot be used as the vulnerability node feature for clustering. It needs to combine the
node depth information in the information group to convert it into the characteristics of the
vulnerability node.

The attack path and its information group in the Bayesian attack graph are aggregated
based on the basic attack path L in each attack subgraph, the corresponding path informa-
tion group I and the basic path reachability probability P. Firstly, a directed path from the
subgraph of the attacker to the subgraph of the attack target is selected according to the
connectivity of attack subgraphs. Let the length of the path be L′. Then, a basic path Lk is
selected in each attack subgraph, and the path reachability probability vector P̂ and the
attack relation vector ÂR between paths are constructed based on these paths according to
Equations (8) and (9).

P̂ = (PLk1
, PLk2

, . . . , PLkL′−1
, P

LkL′

), (8)

ÂR =
(

1, arLk1
Lk2

, . . . , arLkL′−1
LkL′

)
, arLkL′−1

LkL′
= 0 or 1, (9)

where PLk1 , PLk2 and so on are the reachability probabilities of the selected basic paths. L′ is
the number of subgraphs in the path between subgraphs. arLk1

Lk2
= 1 indicates that the

tail node of the basic path Lk1 can utilize the head node of the basic path Lk2 . arLk1
Lk2

= 0
indicates that the tail node of the basic path Lk1 can not utilize the head node of the
basic path Lk2 . ψ is the control variable of the attack path, which is used to control the
effectiveness of the obtained attack path. When ψ = 0, it means that some selected basic
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paths are not connected, that is, the corresponding attack path is invalid. Only valid paths
are taken into account. The calculation formula of ψ is given in Equation (10).

ψ = ∏ ÂR = ∏L′−1
i=0 arLki

Lki+1
, (10)

Finally, the reachability probability P′ of the aggregated attack path is obtained through
Equation (11), and the corresponding information group I′ is obtained by merging the
information groups of each basic path according to Equation (12).

P′ = P̂ × ÂR
T

, (11)

I′ =
[
ILk1

, ILk2
, . . . , ILkL′

]
, (12)

The set of all effective attack paths, the set of corresponding attack path reachability
probabilities, and the set of corresponding information groups of the whole attack graph
formed by the aggregation will be used as the indicators of the subsequent clustering algo-
rithm. The attack path aggregation algorithm based on the basic path and its information
group is shown in Algorithm 2.

Algorithm 2: AttackPathAggregation

Input: The attack connection information C between subgraphs, the utilization relation U of
nodes, the basic path reachability probability P, the basic path information group I
Output: The aggregated reachability probability P′ of the attack path and its corresponding
information group I′

1. Select an inter-subgraph path SubBAGPath from the subgraph where the attacker is located
to the subgraph where the attack target is located according to C.

2. ÂR = [1], P̂ = [], ψ = 1, I′ = []
3. FOR each attack subgraph BAG′ in SubBAGPath
4. Select a basic path Lk from BAG′, whose tail node is tail and head node is head, and add

PLk to P̂
5. IF BAG′ is not the attack subgraph where the attacker is located
6. IF U(lastTail, head) = 1
7. arLlast Lk = 1, update ÂR and ψ

8. ELSE
9. BREAK
10. ELSE
11. Llast = Lk
12. lastTail = tail, add ILk to I′

13. P′ = P̂ ∗ ÂR
T

5. Discovery of Key Vulnerable Nodes Based on Improved FCM

When the attack graph is used for security analysis, the threat degree of the vulnera-
bility node is related to various factors, such as the exploitability score and impact score
of the vulnerability node in CVSS, the position of the vulnerability node in the attack
graph, and the occurrence times of the vulnerability node. Only one factor will lead to
inaccurate search results for key vulnerability nodes. Therefore, this paper takes a variety
of factors that affect the vulnerability threat degree as the characteristics of vulnerability
nodes and uses FCM to cluster them. Then, the feature priority is set to find out the set of
key vulnerability nodes with the highest priority. The discovery process of key vulnerable
nodes based on improved FCM is shown in Figure 3.
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Firstly, it is necessary to determine the features of the participating clustering samples,
which are considered from two aspects in this paper. The first is the inherent threat features
of the vulnerability node, including the exploitability score and impact score. The inherent
threat is the threat evaluation standard set by the National Vulnerability Database of the
United States based on CVSS, combined with the damage degree of the vulnerability in
various scenarios. It represents the comprehensive threat degree of the vulnerability. These
two values do not change with the actual network environment of the vulnerability. The
second is the actual threat features of the vulnerable nodes. Due to the vulnerability in
different network environments, the threat degree is different. Its inherent threat cannot
accurately reflect the threat of vulnerabilities in the actual situation. In this paper, an attack
graph is constructed based on the actual network environment to realize the search for
attack path information, which can reflect the actual threat situation of the vulnerability
node in the current network environment. Therefore, this section will extract the actual
threat features of the vulnerability node based on the attack path information, including
the occurrence frequency and attack probability of the vulnerability node.

The occurrence frequency Ocr of the vulnerability node is the total number of occur-
rences of each node in all attack paths, which reflects the possibility that the attacker uses
the node as the entry point to carry out the attack. It can be directly counted in the search
process. The calculation formula of Ocr is shown in Equation (13).

Ocrn =
tot

∑
p=1

Np−1

∑
i=0

Ip
0,i, Ip

0,i =

{
1, Ip

0,i = n
0, Ip

0,i ̸= n
, (13)

where Ocrn is the occurrence frequency of node n, tot is the total number of attack paths, Np

is the total number of nodes in the p-th attack path, Ip
0,i is the value of row 0 and column i

in the p-th attack path information group. The attack probability Pb of the vulnerable node
reflects the probability that the node is compromised, which is obtained from the attack
probability of its attack path and the corresponding information group. The calculation
formula of Pb is shown in Equation (14).

Pbn =
∑p

Ip
1,m−d

Ip
1,m

× P′
p

number
, (d = Ip

1,i, Ip
0,i = n) and (∀p, ∃j, Ip

0,j = n), (14)

where Pbn is the attack probability of node n, Ip
1,m is the maximum depth of the p-th attack

path, d is the depth of n in the p-th attack path, P′
p is the attack probability of the p-th attack

path, number is the number of attack paths including n.
Secondly, the traditional FCM algorithm has no means to determine the optimal

number of clusters, but determining the number of clusters only by subjective methods
will reduce the accuracy of clustering results, making the difference between classes not
obvious, and it is difficult to determine the key vulnerability nodes. To make the difference
in the degree of clustering results obvious, combined with the demand characteristics of this
method, this paper determines the optimal number of clusters based on the discrimination
degree between clusters. For the current clustering results, this method first sets a cluster
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number, calculates the intra-class average vector mj of each class, and obtains the total
average vector m through the intra-class average vector. The calculation formula of m is
shown in Equation (15).

mj =
∑i Fi

dj
, i = 1, 2, . . . , dj, m =

∑C
j=1 mj

C
, (15)

where Fi is the feature vector of the i-th sample in the j-th class, C is the total number of
clusters, and dj is the total number of samples of the j-th class. Then, the optimization
objective is to maximize the sum of the squared Euclidean distance between the average
vector within each class and the total average vector. This value is called the total difference
value between classes (TDVC). Thus, the optimal number of clusters can be obtained. The
optimization objective is shown in Equation (16).

max f (c) =
∑c

j=1
(
mj − m

)2

c
, c ∈ [2, N], (16)

where c is the number of clusters currently set, N is the total number of vulnerability nodes,
and f (c) is the TDVC corresponding to c.

Finally, FCM clustering is carried out after determining the sample features and
the optimal number of clusters. FCM uses membership degree to assign uncertainty to
classification. It allows a data point to belong to more than one class and assigns each
sample to the class with the largest membership degree. This ability makes it better reflect
the fuzziness and complexity of data in the real world. Therefore, the key of FCM is to
determine the cluster center V and the membership degree matrix U. The objective function
of FCM is shown in Equation (17).

Jm =
D

∑
i=1

C

∑
j=1

uα
ij
∥∥xi − vj

∥∥2,
C

∑
j=1

uij = 1, i = 1, 2, . . . D, (17)

where α is the membership factor, i is the sample number, j is the class number, uij is the
membership degree of sample i for class j, xi is the i-th sample, C is the total cluster number,
vj is the j-th cluster center, and D is the total number of samples. FCM constantly updates
U and V to minimize the objective function, thus completing the clustering. Constraints
are added to the objective function by Lagrange multiplier method. Based on this formula,
the partial derivatives of variables u and v are obtained, respectively. Then, the updated
formula for U and V are obtained by setting the derivative to 0. These two formulas are
shown in Equation (18).

uij =
1

∑C
k=1 (

∥xi−vj∥
∥xi−vk∥

)

2
α−1

, vj =
∑D

i=1 uα
ij·xi

∑D
i=1 uα

ij
, (18)

The vulnerability nodes clustering algorithm based on improved FCM is shown in
Algorithm 3.

After the clustering is completed, the priority among features is set according to the
feature characteristics. The clustering results are compared according to priority, and the
nodes in the category ranked first are selected as the key vulnerable node set. Since the
vulnerability impact score and exploitability score are authoritative indicators in CVSS, they
should be considered first, and they have the same importance in CVSS calculation formula.
For the node occurrence frequency and the node attack probability, the attack probability
takes more factors into account, including the path location of the node and the attack path
probability. It can divide the threat degree of the vulnerability node more fine-grained, so
the attack probability is considered when the first three are close. To sum up, the order of
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feature priority is the impact score, exploitability score, occurrence frequency, and attack
probability of the vulnerability.

Algorithm 3: VulnerabilityClusteringByImprovedFCM

Input: The vulnerability node samples samples, the total number of samples D
Output: The number of optimal clusters number, and the corresponding clustering result result

1. Initialize number, result, and the corresponding TDVC value = 0.
2. FOR d = 1, 2, . . . , D
3. Initialize U and V, set the membership factor α, set the number of clusters C = d, set the

maximum number of iterations of the cluster to T
4. WHILE(T > 0)
5. Update U and V by Equation (17)
6. T = T − 1
7. FOR i = 1, 2, . . . , D
8. Set the class of sample i to the class to which the maximum membership degree of

sample i belongs in U
9. FOR c = 1, 2, . . . , C
10. Calculate mc by Equation (15)
11. Calculate m by Equation (15), and calculate the current TDVC fC by Equation (16)
12. IF fC > value
13. value = fC, number = C, update result to the current cluster result

6. Results
6.1. Experimental Scenario

This paper constructs an experimental scenario to verify the effectiveness of the
proposed method. The experimental environment includes web servers, ftp servers, smtp
servers, sql servers and multiple user devices. The vulnerabilities of each device can be
obtained by using the vulnerability scanning tool. Information about vulnerabilities comes
from NVD. Vulnerability quantification is based on CVSS. The attacker launched the attack
from an external network, targeting important data on the SQL server. In addition, to obtain
the utilization relationship between vulnerabilities, this paper uses Word2Vec combined
with TextCNN to conduct a semantic analysis of vulnerability description to obtain the
exploitation relationship. All code is written in Java and Python. Finally, in order to fully
verify the effectiveness of the proposed method, this paper also verifies the effectiveness of
the proposed method under different attack graph scales by extending the network.

6.2. Experimental Process

Firstly, the network topology of the experimental environment is abstracted. Use the
vulnerability scanning tool to obtain vulnerabilities on each device to form a vulnerability
set and prepare the information required for constructing Bayesian attack subgraphs. In
order to obtain the unknown utilization relationship of vulnerabilities during the construc-
tion of the attack graph, the experiment uses NVD’s official interface to obtain description
information of common vulnerabilities and forms a corpus after word segmentation to
train Word2Vec+TextCNN model to predict the utilization consequences of vulnerabili-
ties. The basic score, impact score, exploitability score, and utilization conditions of each
vulnerability in the vulnerability set are obtained from NVD. The utilization relation-
ship is constructed according to the utilization conditions and the predicted utilization
consequences. The vulnerability utilization relationship is shown in Equation (19).

other → NONE
user → NONE, LOW

root → NONE, LOW, HIGH
, (19)

where con1 → con2 indicates that the vulnerability with utilization condition con2 can be
attacked after breaching the vulnerability with utilization consequence con1. The vulnera-
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bility information and predicted exploitation consequences for some of the vulnerabilities
in the vulnerability set are shown in Table 1.

Table 1. Information and predicted utilization consequences of partial vulnerabilities in the vulnera-
bility set.

CVEID Base
Score

Exploitability
Score

Impact
Score

Utilization
Condition

Utilization
Consequence

CVE-2022-27502 7.8 5.9 1.8 LOW user
CVE-2022-28704 7.2 5.9 1.2 HIGH root
CVE-2022-29525 9.8 5.9 3.9 NONE root
CVE-2022-29797 9.8 5.9 3.9 NONE user
CVE-2022-20148 6.4 5.9 0.5 HIGH user
CVE-2021-32546 8.8 5.9 2.8 LOW other

The Louvain algorithm is used to divide the network into communities. The vul-
nerability on each device is abstracted as an attack graph node. In each community, an
attack subgraph is constructed according to the attack graph nodes, network topology, and
vulnerability utilization relationship. For each attack graph node, its node selection proba-
bility and breach probability are quantified to form multiple Bayesian attack subgraphs.
In each community, the community connection relationship is constructed according to
the network topology and vulnerability utilization relationship to quickly determine the
connection between communities. The partial Bayesian attack subgraph structure is shown
in Figure 4.
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Then, the method in Section 4 is used to search and aggregate the attack paths and
their information groups in the constructed Bayesian attack subgraphs. The path search
results in the attack subgraph and the aggregated complete path information are shown in
Table 2.

Four features for FCM are extracted according to the aggregated complete attack paths
and vulnerability information. The features of some samples are shown in Table 3.
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Table 2. Part of the attack paths.

Community Attack Probability Information Group

Attack subgraph paths

0 1.91 × 10−4
(

1 23 49 18 29 52 36
1 2 3 4 5 6 7

)
1 2.36 × 10−2

(
89 100 92 99
1 2 3 4

)
2 7.71 × 10−2

(
155 188 162

1 2 3

)

Aggregated paths

- 8.14 × 10−3
(

226 215 198 217 37 189
1 2 3 4 5 6

)
- 3.34 × 10−4

(
226 215 198 217 49 18 64 160 189

1 2 3 4 5 6 7 8 9

)
- 3.94 × 10−5

(
226 215 198 217 127 71 5 58 189

1 2 3 4 5 6 7 8 9

)

Table 3. Feature information of some samples.

Node Number Exploitability
Score Impact Score Occurrence

Frequency
Attack

Probability

1 5.9 1.0 2146 2.43 × 10−7

18 2.7 2.8 27,762 3.39 × 10−7

49 3.6 2.8 15,500 5.39 × 10−7

160 3.6 2.8 15,186 4.46 × 10−7

215 5.9 3.9 118,313 2.51 × 10−6

Next, the improved FCM in Section 5 is used to determine the optimal number of
clusters. According to the optimal cluster number, fuzzy C-means clustering is performed
on the samples, and the result vulnerability set is obtained by analyzing the clustering
results. The experimental results show that when the number of clusters is set to 14, the
total value of the difference degree between classes reaches the maximum, that is, the
optimal cluster number is 14. Some of the results of FCM clustering under the optimal
number of clusters are shown in Table 4.

Table 4. Partial FCM clustering results under the optimal number of clusters.

Class Number Node Number Contained in This Class

1 (141,189,215,217)
2 (1,2,3,8,11,26,51,71,74,121,136)
7 (4,14,28,52,55,63,116,117,120,124,140,182,183,192)
11 (6,9,12,21,30,32,72,78,80,83,87,185)
14 (18,29,39,46,47,155)

Finally, the average value of each feature in each class is calculated, and the clustering
results are compared according to the set feature priority. Firstly, the exploitability score
and the impact score are compared, and the comparison results are shown in Figure 5. It
can be seen that the set of class numbers for which both features take the maximum mean
value at the same time is (1,5,8,13).

After that, the node occurrence frequency and the node attack probability of these four
types of nodes are compared. The comparison results are shown in Figure 6a,b, respectively.
It can be seen from the comparison results that the mean value of each feature of Category
1 is the maximum value, so the key vulnerable node set obtained is (141,189,215,217).
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6.3. Experiment Results Analysis

Firstly, in order to verify the effectiveness of the optimization time efficiency of the
attack path aggregation search method based on Bayesian attack subgraphs in this paper,
this section makes an analysis with reference [34] from both theoretical and practical aspects.
Reference [34] uses the method of searching and storing the complete attack graph. Since
we cannot determine the attack graph storage strategy and search strategy of refs. [35,36],
we can not check their time/space consumption.

Suppose that breadth-first search is selected as the basic search algorithm, the graph
structure is stored by the adjacency matrix, and the number of nodes in the attack graph is
N. When the method of reference [34] is used to search, in the worst case, each node and its
neighbors need to be traversed, and the time consumption is N2. When the method in this
paper is used, it is assumed that the attack graph is evenly divided into m subgraphs, and
each subgraph has N/m nodes. Then, the path search efficiency in the subgraph is (N/m)2.
The number of paths in each subgraph is no more than N/m and the aggregation times of
each complete path are no more than m. In the worst case, the number of traversal times to
obtain all complete paths is N, and the total time is (N/m)2 +N. Since m2 > N/(N− 1) > 1,
N/m2 < N− 1, that is (N/m)2 +N < N2. Therefore, the efficiency of the search method
proposed in this paper is theoretically better than the efficiency of the search on the complete
attack graph. Figure 7a,b show the effect of different N on the search efficiency of the two
methods in theory and experiment, respectively.
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Because the attack graph is divided into four subgraphs in the experiment, m = 4
is taken. It can be seen from Figure 7 that with the increase in the graph scale, the time
consumed by the proposed method increases slightly both in theory and experiment, which
can optimize the search time. The optimization effect of the proposed method on time
efficiency becomes more and more obvious with the increase in the graph scale.

Then, from the perspective of space efficiency, this paper adopts the method of storing
the attack graph based on subgraphs rather than the complete attack graph. Suppose that
the total number of nodes in the attack graph is N, and it is evenly divided into m attack
subgraphs, each subgraph contains N/m nodes. Theoretically, the space consumption of
storing the complete attack graph using the adjacency matrix is N2, and the storage method
based on subgraphs consumes (N/m)2 × m. Since m > 1, obviously (N/m)2 × m < N2.
Figure 8 shows the comparison of the space consumed by the two methods under different
attack graph scales in the experiment.
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It can be seen from Figure 8 that when the attack graph scale is small, the space
consumption of the two methods is similar. However, with the increase in the graph scale,
the storage method based on subgraphs has a more and more obvious effect on storage
space optimization. When the attack graph has 500 nodes, the space optimization has
reached 75%, so the latter can effectively improve the utilization efficiency of space.
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After that, in order to verify the effectiveness of the method of determining the optimal
cluster number in this paper and the superiority of improved FCM over other clustering
methods, the clustering results of different clustering methods are analyzed. When only
FCM is used for longitudinal analysis, the changes in the TDVC of different cluster numbers
are shown in Figure 9.
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It can be seen from Figure 9 that when the number of clusters is 14, the TDVC of clustering
results is the largest. At this time, the difference between classes is the largest, and it is easy to
distinguish the characteristics of various types, and the clustering effect is optimal.

Next, in the experiment, different clustering methods are selected for horizontal
analysis, such as the common k-means clustering, hierarchical clustering and Density-
Based Spatial Clustering of Applications with Noise (DBSCAN). The changes in TDVC for
K-means clustering and hierarchical clustering are shown in Figure 10a,b, respectively.
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DBSCAN, as a density clustering algorithm, does not need to specify the number of
clusters in advance to complete clustering. The comparison results of the maximum TDVC
of the three methods and the cluster number corresponding to the maximum TDVC are
shown in Table 5.
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Table 5. Comparison results of the maximum TDVC of the three methods.

Methods FCM (This
Method) K-Means Hierarchical

Clustering DBSCAN

Maximum TDVC 2.6692 × 109 2.2973 × 109 2.5907 × 109 5.3945 × 107

Corresponding cluster
number 14 3 2 -

It can be seen from Table 5 that the maximum value of the TDVC obtained by the other
clustering methods is lower than the maximum value of FCM. It shows that compared with
other clustering results, the difference between the clusters in the clustering results of FCM
is larger, which is more in line with the requirements of the proposed method. So using
FCM as the clustering method is the optimal choice.

Finally, in order to verify the accuracy of the collection results of key vulnerability
nodes in the proposed method, this experiment compares the results of this paper with
the search results of [35–37], respectively. The search results of key vulnerable nodes, the
reachability of target nodes, and the changes in the number of attack paths after repairing
the four methods are shown in Table 6.

Table 6. Comparison of effectiveness of search results of four methods.

Methods Key Vulnerability
Node

Target Nodes
Reachability

Number of Remaining
Attack Paths

This paper (92,141,152,189,215,217) unreachable 0
[35] (32,37,130,190,215) reachable 79,983
[36] (141,189,217) reachable 635
[37] (92,141,189,215,217) reachable 13

Reference [35] only considers the CVSS score threat characteristics of vulnerabilities
and takes the node with the highest score as the key vulnerable node. The attack probability
of the attack path of nodes 32, 37, and 30 is only 3.1615 × 10−9. In practice, it can be
regarded as an impossible event that the attacker attacks along this path. Therefore, after
repairing the nodes, the target node is still reachable, and the key vulnerable nodes are
not accurately obtained. Reference [36] considers both the threat of vulnerability itself
and the actual threat and removes part of the attack paths by pruning to improve the
analysis efficiency in large-scale attack graphs. However, the removed attack paths affect
the search accuracy of key vulnerable nodes, and there are 92,152,215 missing nodes. This
results in that although the number of remaining attack paths is greatly reduced after
repairing the key vulnerable nodes, the target nodes are still reachable. After analysis, the
remaining 635 paths all contain one or more of the 92,152,215 nodes. Reference [37] adopts
the current advanced neural network method. The results obtained in the set experimental
environment are (92,141,189,215,217). However, like reference [36], partial pruning paths
reduce the accuracy of search results. This results in a missing node 152 in the search results.
After the key vulnerable nodes obtained by the proposed method are repaired, the target
node is unreachable, which shows the accuracy and effectiveness of the search results.
Because the method in this paper not only considers all attack paths but also considers the
inherent and actual threat characteristics of the vulnerability. The characteristics of this
paper compared with other reference methods are summarized in Table 7.
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Table 7. Comparison of the characteristics of this paper with other references.

Methods Time
Optimization

Space
Optimization

Consider
Vulnerability

Features

Consider
Actual

Features

Consider All
Paths

Adaptive
Adjustment of

Cluster
Number

Get Key
Vulnerabilities

[19] Yes No Yes Yes Yes No No
[29] Yes No Yes No No No Yes
[31] No No Yes No Yes No Yes
[35] No No Yes No No No Yes
[36] Yes No Yes Yes No No Yes

This paper Yes Yes Yes Yes Yes Yes Yes

7. Conclusions

It is an important problem in network security analysis to obtain the key vulnerable
nodes in large-scale networks quickly and accurately. In this paper, the large-scale network
is divided into multiple subnetworks by the idea of community division, and the Bayesian
attack subgraphs are constructed by quantifying the subgraph nodes. Then, the analysis
results of the attack path information in the subgraph are aggregated to quickly obtain the
analysis results of the complete attack graph. The experimental results show that under
the attack graph scale of 500 nodes, the time consumption of the analysis method based on
subgraphs is only 10% of that of the analysis method based on the complete attack graph,
and the space consumption is only 25% of the latter, which has a great improvement in
time and space efficiency. Next, the optimal number of clusters is adaptively determined by
using the idea of variance, and the actual threat features of the vulnerability nodes in the
network are extracted from the analysis results of the attack graph. The threat features of
the vulnerability themselves proposed in CVSS are combined for fuzzy C-means clustering,
and the key vulnerable nodes are obtained by setting feature priorities according to the
clustering results. Fuzzy clustering can take into account a variety of features that affect the
threat of vulnerabilities, and improve the accuracy of the search results of key vulnerable
nodes. The experimental results confirm the effectiveness of the method in this paper.
However, the method of quantifying the threat value of vulnerable nodes in this paper is
relatively simple, and only CVSS is used as a single quantification standard. In addition,
there is no pruning method in the aggregation process of attack subgraph paths, and the
amount of attack path information in the aggregation process is small, so the accuracy of
the results needs to be improved. In the future, the quantization scheme of node attack
probability will be optimized by Bayesian theory, and the accuracy of key node search
results will be improved by increasing the amount of information in path aggregation.
For the obtained key vulnerable nodes, game theory can also be used to lay out the node
defense scheme.
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