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1. Introduction

Begining with Blum and Oettli [1], who introduced an equilibrium problem as a
generalization for the well-known Ky Fan inequalities, some vector equilibrium problems
(VEPs) have been studied in the literature (see for instance [2–9]) as a tool which unifies the
vector variational problem, vector complementary problem, vector optimization problem,
vector saddle points problem, Nash equilibrium problem, and fixed point problem.

These problems was formulated with real or vector functions and multifunctions under
various assumptions (concerning for example the presence or the absence of the convexity,
the monotonicity, or the lower semicontinuity) and interesting results are obtained for the
nonemptiness of the solutions set and its properties (see [10–16]).

Often, for the vector case, the results for VEPs are presented in spaces ordered by a
nonempty, convex, pointed cone with a nonempty interior (see [7,17,18]). The framework
considered here is a general one which includes both the case of cones with a nonempty
and empty interior. In this context, some properties for VEPs with functions are given
in [3,19,20] and some of these results can be found as particular cases of those in this paper
for VEPs with set valued maps.

It is a theoretical approach to these problems that will be used as a mathematical
support for the study of applications from the final sections.

We present in this paper a unified study for some vector equilibrium problems pre-
sented in Section 2 for set-valued functions (or multifunctions) with values in a vector space
ordered by a cone with some “interiority property” (such as a nonempty interior or quasi
interior or relative quasi interior). Section 3 presents some existence results for the solutions
set of this problem. Section 4 gives properties for these solutions sets, such as the connected-
ness and the continuity. The Sections 5 and 6 provide some applications of VEPs regarding
the existence of equilibrium in abstract economies and the vector optimization problems.

2. Preliminaries

Let (X, τX, (Y, τY), (Z, τZ) be locally convex spaces, A ⊂ X, B ⊂ Y be nonempty
convex compact sets, W ⊂ Z be a convex set, and let K, Z+ ⊂ Z be nonempty, convex,
pointed cones. We denote by Z∗ the topological dual space of Z, Z∗

+ is the dual cone,
i.e., Z∗

+ = {z∗ ∈ Z∗ | z∗(z) ≥ 0, ∀z ∈ Z+} and Z# = {z∗ ∈ Z∗
+ | z∗(z) > 0, ∀z ∈ Z+ \ {0}}
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is the quasi-interior of the dual cone. A base for the cone Z+ is a subset B ⊂ Z+ such that
for each z ∈ Z+, there exists λ ∈ IR+ and b ∈ B such that z = λb. For example, if the
interior of Z+ is nonempty, the set {z∗ ∈ Z∗

+ | z∗(z) = 1} is a w∗-compact base for the dual
cone, where z is an element from the interior of Z+.

The interior (respectively, the closure, the boundary, and the complementary) of a
set A will be denoted by int A (respectively, cl A, Fr A and Ac). We write xn

τ−→ x if
the sequence (xn)n∈IN is convergent to x for the τ locally convex topology of the spaces.
If there is no confusion, we omit τ. Furthermore, conv A and cone A will denote the
convex, respectively, the conic hull of A. The relative interior of Z+ denoted ri Z+ is the
interior of Z+ relative to the closed affine hull of Z+. The quasi (respectively, the intrinsec)
relative interior of Z+ denoted qri Z+ (respectively, iri Z+) is the set of z ∈ Z+ for which
cl cone (Z+ − z) (respectively, cone (Z+ − z)) is a linear subspace of Z. P(Z) ( respectively,
Pc(Z)) will denote the family of all nonempty subsets of Z (respectively, the family of all
nonempty convex subsets of Z). For an element x ∈ X, V(x) will denote a fundamental
system of neighborhoods for x.

Let F : X → P(Z) be a set valued map (or multifunction, also denoted by F : A −→−→ Z).
The domain of F (denoted dom F) is dom F = {x ∈ X | F(x) ̸= ∅} and the graph of F
(denoted Gr F) is the set Gr F = {(x, z) ∈ X × Z | x ∈ dom F, z ∈ F(x)}. A multifunction
F : A −→−→ Z (A ⊆ dom F) is lower semicontinuous (l.s.c.) at x0 ∈ A if for all z ∈ F(x0)
and V ∈ V(z), ∃ U ∈ V(x0), such that F(U ∩ A) ∩ V ̸= ∅. The multifunction F is upper
semicontinuous (u.s.c.) at x0 ∈ A if for any neighborhood V ∈ V(0), there is U ∈ V(x0)
such that F(U ∩ A) ⊆ F(x0) + V. The multifunction F is Z+-lower semicontinuous at
x0 ∈ A if for all V ∈ V(0) there exists U ∈ V(x0) such that F(U ∩ A) ⊆ F(x0) + V − Z+.
The multifunction F is quasi-lower semicontinuous (respectively quasi-convex) if the level
sets Nα = {x ∈ A | F(x) ⊆ α − Z+} are closed (respectively, convex).

We say that the multifunction F is K-concave if for each x1, x2 ∈ A and λ ∈ [0, 1]
we have F(λx1 + (1 − λ)x2) ⊆ λF(x1) + (1 − λ)F(x2) + K and λF(x1) + (1 − λ)F(x2) ⊆
F(λx1 + (1 − λ)x2)− K. The multifunction F is K-convex if and only if F is −K concave.
We say F is K-convexlike if F(A) + K is convex and F has K-closed values if F(x) + K is
closed for each x ∈ A. The multifunction F is closed if the graph Gr F is closed. We note by
cl F the multifunction defined by cl F(x) = cl(F(x)), ∀x ∈ X and by co F the multifunction
defined by co F(x) = conv(F(x)), ∀x ∈ X.

For An, A ⊆ Z we set Li An = {x ∈ Z | ∀n ∈ IN, ∃xn ∈ An, xn
τ−→ x} and

Ls An = {x ∈ Z | ∃(nk)k ⊆ IN xnk ∈ Ank , ∀k ∈ IN xnk
τ−→ x}. We say that A is the

τ-Painlevé–Kuratowski limit of An (and we write An
τPK−→ A) if Ls An ⊆ A ⊆ Li An.

Let us consider K : A−→−→ X, T : A−→−→ B, F : A× X × T(A)−→−→ Z with nonempty values.
We adopt the notations from [5]:

r1(U, V) ⇐⇒ U
⋂

V ̸= ∅ r̄1(U, V) ⇐⇒ U ∩ V = ∅

r2(U, V) ⇐⇒ U ⊆ V r̄2(U, V) ⇐⇒ U ̸⊆ V

Let us remark that r̄1(U, V) ⇐⇒ r2(U, Vc) and r1(U, V) ⇐⇒ r̄2(U, Vc).
The vector equilibrium problem (VEP1)

W
ri

, i = 1, 2 will be:

(VEP1)
W
ri

find x̄ ∈ A ∩ K(x̄) such that ∀y ∈ K(x̄), ∃t̄ ∈ T(x̄); ri(F(x̄, y, t̄), W).

The vector equilibrium problem (VEP2)
W
ri

, i = 1, 2 will be:

(VEP2)
W
ri

find x̄ ∈ A ∩ K(x̄) such that ∃t̄ ∈ T(x̄), ∀y ∈ K(x̄); ri(F(x̄, y, t̄), W).

Let X = Y, K(x̄) = A, T(x) = {x}. For different types of W, we get some vector
equilibrium problems studied in the literature:

• W = −int Z+, then (VEP)W
r1

is (WVEP) from [6];
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• W = Z \ int Z+, then (VEP)W
r̄1

is (SVEP) from [9].
• W = −qri Z+, then (VEP)W

r1
is (QVEP) from [3]

• W = comp (−int Z+)ε
i , then (VEP)W

ri
is (QEP)ε

ri
from [5].

• W = εe + int Z+, then (VEP)W
r1

is (WVEP)ε from [21] and (VEP)W
r̄2

is (GVEP)
from [22].

3. The Existence of the Solutions Set

For the existence of the solutions for (VEP1)
W
ri

, let us denote:

Ei,W
y = {(x, t) | x ∈ A, t ∈ T(x), ri(F(x, y, t), W)}

Ni,W
y = {x ∈ A | ∃t ∈ T(x), ri(F(x, y, t), W)} = PrXEi,W

y

N̄i,W
t,x = {y ∈ K(x) | r̄i(F(x, y, t), W)}

Theorem 1 ([23]). Let X be a Hausdorff topological space, A ⊆ X be a nonempty compact convex
set and ϕ : A −→−→ X be a multifunction with nonempty convex values. Assume that for each x ∈ A,
ϕ−1(x) is open in A. Then, there exists x̄ ∈ A, x̄ ∈ ϕ(x̄).

The following theorem generalizes Theorem 2.1 [5] and Theorem 13 [3], which may be
reobtained as particular cases from the theorem, as is specified in Remark 1.

Theorem 2. Let us suppose:

(i) ∀x ∈ A, ∀t ∈ T(x), N̄i,W
t,x is convex and x /∈ ⋂

t∈T(x)
N̄i,W

t,x ;

(ii) ∀y ∈ A, Ni,W
y is closed;

(iii) cl K(·) is u.s.c. and K(x) is convex ∀x ∈ A, A ∩ K(x) ̸= ∅.
Furthermore, ∀y ∈ A, K−1(y) is open in A.

Then, (VEP1)
W
ri

has a solution.

Proof. For x ∈ A set:

P(x) = {y ∈ A | ∀t ∈ T(x), r̄i(F(x, y, t), W)}

E = {y ∈ A | y ∈ cl K(y)}

For each x ∈ A, (i) implies that P(x) is convex and (iii) implies that E is a closed
set. For all y ∈ A, A \ P−1(y) = {x ∈ A | ∃t ∈ T(x), ri(F(x, y, t), W)} and following (ii)
P−1(y) is open in A. Let Q : A −→−→ A, Q(x) = K(x) ∩ P(x) if x ∈ E and Q(x) = A ∩ K(x)
if x ∈ A \ E. We observe that Q(x) is convex for all x ∈ A. Furthermore, for all y ∈ A:

Q−1(y) = {x ∈ E | x ∈ K−1(y) ∪ P−1(y)}
⋃
{x ∈ A \ E | x ∈ K−1(y)} =

= K−1(y) ∩ [P−1 ∪ (A \ E)]

Therefore, A \ Q−1(y) = A \ K−1(y)
⋃
[(A \ P−1(y)) ∩ E]. Since K−1(y) and P−1(y)

are open in A, this implies that Q−1(y)is open in A for all y ∈ A. Hypothesis (i) implies that
x /∈ P(x), and thus, x /∈ Q(x) for all x ∈ A. Theorem 1 gives us x̄ ∈ A such that Q(x̄) = ∅.
Since A ∩ K(x̄) ̸= ∅, x̄ ∈ E, K(x̄) ∩ P(x̄) = ∅. Thus, x̄ ∈ A ∩ clK(x̄), y /∈ P(x̄), y ∈
K(x̄), i.e, there exists t̄ ∈ T(x̄) such that ri(F(x̄, y, t̄), W). We conclude that (VEP1)

W
ri

has
a solution.

Remark 1. If F is a real single valued map, W = ε + IR+, K(x) = A and T(x) = {x}, then N̄i,W
t,x

is Nx, the ε-set level, which (i) means that f (x, ·) is quasi-convex and (ii) means that f (·, y) is quasi
upper semicontinuous.
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For the existence of the solutions for (VEP2)
W
ri

, we denote:

Ei,W
y = {(x, t) | x ∈ A, t ∈ T(x), ri(F(x, y, t), W)}

N̄i,W
t,x = {y ∈ K(x) | r̄i(F(x, y, t), W)}

Theorem 3. Let us suppose:

(i) ∀x ∈ A, ∀t ∈ T(x), N̄i,W
t,x is convex and x /∈ ⋂

(x,t)∈A×T(x)
N̄i,W

t,x ;

(ii) ∀y ∈ A, Ei,W
y is closed and

⋃
y∈A

Ei,W
y is closed;

(iii) cl K(·) is u.s.c. and K(x) is convex ∀x ∈ A, A ∩ K(x) ̸= ∅.
Furthermore, ∀y ∈ A, K−1(y) is open in A.

Then, (VEP2)
W
ri

has a solution.

Proof. The proof is similar to Theorem 1.

The following result gives another type of existence theorem that relaxes the requests
concerning the multifunction but impose additional conditions on the cone.

Theorem 4. Let us consider the following conditions:

(i) F(A, b) + Z+ is convex for each b;
(ii) cl (Z+ − Z+) = Z and K = qri Z+ ∪ {0};
(iii) K = qi Z+ ∪ {0};
(iv) W ∩ qri (cone F(A, b) + K) = ∅.

If (i), (ii), (iv) or (i), (iii), (iv) hold, then (VEP)W−K\{0}
r1 and (VEP)W−K\{0}

r̄2
have

a solution.

Proof. Let us suppose that (VEP)W−qri Z+
r1 has no solution. Thus, for each a ∈ A, there

exists b ∈ A such that F(a, b) ∩ W − qri Z+ ̸= ∅. Thus, w ∈ F(A, b) + qri Z+, which
implies that w ∈ cone F(A, b) + qri Z+. Since F(A, b) + Z+ is convex for each b, then
cone F(A, b) + qri Z+ is also convex.

(iii) implies that there exists z∗ ∈ Z∗
+ \ {0} such that z∗( f ) ≥ z∗(w) for all f ∈ F(A, b),

w ∈ W. However, there exists w ∈ W, f ∈ F(a, b) ∩ (w − qri Z+) ̸= ∅ and follows (ii) we
have z∗( f ) > z∗(w), which is false. Similarly, we obtain the other conclusion.

4. Properties for the Solutions Set

In what follows, we consider K(x) = A, K = qi Z+ ∪ {0} or K = qri Z+ ∪ {0}, where
W is a convex set and F has K-convex values. For z∗ ∈ Z∗

+ \ {0}, z∗(qi Z+) = IR+ \ {0}
and for z∗ ∈ Z#

+, z∗(qri Z+) = IR+ \ {0}.
We denote:

SF(VEP)W−K
r̄1

= {x ∈ A | x is solution for(VEP)W−K
r̄1

};

SF(VEP)W−K
z∗ ,r̄1

= {x ∈ A | ∀y ∈ A, ∃t ∈ T(x), z∗ ◦ F(x, y, t) ∩ z∗(W − K) = ∅}.

If there is no confusion, we simply denote S(VEP)W−K
r̄1

and S(VEP)W−K
z∗ ,r̄1

.
The following theorem generalizes the similar result for VEP with functions from [6].

Theorem 5. If K = qi Z+ ∪ {0}, then:⋃
z∗∈Z∗

+\{0}
S(VEP)W−K

z∗ ,r̄1
⊆ S(VEP)W−K

r̄1
⊆
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⊆
⋃

z∗∈Z∗
+\{0}

S(VEP)W−K\{0}
z∗ ,r̄1

= S(VEP)W−K\{0}
r̄1

.

If K = qri Z+ ∪ {0} or K = qi Z+ ∪ {0}, W is a convex compact set and F has K-closed
values; moreover, we have ⋃

z∗∈Z∗
+\{0}

S(VEP)W−K
z∗ ,r̄1

= S(VEP)W−K
r̄1

and: ⋃
z∗∈Z∗

+\{0}
S(VEP)W−K\{0}

z∗ ,r̄1
= S(VEP)W−K\{0}

r̄1
.

Proof. The first inclusion does hold obviously.
Let x ∈ S; this implies that ∀y ∈ A, ∃t ∈ T(x), F(x, y, t) ∩ (W − K) = ∅. Since

F(x, y, t) + K and W −K are convex sets, there exists z∗ ∈ Z∗ such that inf z∗(u) ≥ sup z∗(v)
for u ∈ F + K and v ∈ W −K. Obviously, z∗ ∈ Z∗

+ \ {0}, and thus, z∗ ◦ F(x, y, t)∩ (z∗(W)−
IR+ \ {0}) = ∅. We deduce that z∗ ◦ F(x, y, t) ∩ z∗(W − K \ {0}) = ∅, which implies:

S(VEP)W−K
r̄1

⊆
⋃

z∗∈Z∗
+\{0}

S(VEP)W−K\{0}
z∗ ,r̄1

.

The converse is obvious, and thus, the last equality from the conclusion follows.
For the case when W is compact, the inequality from the separation theorem is strict and
the conclusion follows similar.

We denote:

SF(VEP)W−K
r1

= {x ∈ A | x is solution for(VEP)W−K
r1

}

SF(VEP)W−K
z∗ ,r1

= {x ∈ A | ∀y ∈ A, ∃t ∈ T(x), z∗ ◦ F(x, y, t) ∩ z∗(W − K) ̸= ∅}.

If there is no confusion, we denote simply: S(VEP)W−K
r1

and S(VEP)W−K
z∗ ,r1

.

Theorem 6. If K = qi Z+, then:

S(VEP)W−K\{0}
r1 =

⋂
z∗∈Z∗

+\{0}
S(VEP)W−K\{0}

z∗ ,r1
⊆

⊆ S(VEP)W−K
r1

⊆
⋂

z∗∈Z∗
+\{0}

S(VEP)W−K
z∗ ,r1

If K = qri Z+, or K = qi Z+, W is a convex compact set and F has K-closed values, we have:

S(VEP)W−K\{0}
r1 =

⋂
z∗∈Z∗

+\{0}
S(VEP)W−K\{0}

z∗ ,r1
and

S(VEP)W−K
r1

=
⋂

z∗∈Z∗
+\{0}

S(VEP)W−K
z∗ ,r1

.

Proof. Let x ∈ S. For all y ∈ B, there exists t ∈ T(x) such that F(x, y, t) ∩ (W − K \ {0}) ̸=
∅. This fact implies that for all z∗ ∈ Z∗

+ \ {0}, we have z∗ ◦ F(x, y, t)∩ z∗(W −K \ {0}) ̸= ∅.
For the converse, let us suppose that z∗ ◦ F(x, y, t) ∩ z∗(W − K \ {0}) ̸= ∅ and

F(x, y, t) ∩ (W − K \ {0}) = ∅. We find z∗ ∈ Z∗
+ \ {0} such that inf z∗(u) ≥ sup z∗(v)

for u ∈ F + K and v ∈ W − K. Since (z∗ ◦ F(x, y, t)) ∩ z∗(W − K) ̸= ∅ will exists v ∈
W − K \ {0}, u ∈ F(x, y, t), w ∈ W such that z∗(u) = z∗(v) < z∗(w) ≤ sup z∗(W − K) ≤
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inf z∗ ◦ F(x, y, t) is false. The other inclusion does hold obviously. The case when W is
compact follows similar to the previous theorem.

We denote:

SF(VEP)W−K
r2

= {x ∈ A | x is solution for(VEP)W−K
r2

}

SF(VEP)W−K
z∗ ,r2

= {x ∈ A | ∀y ∈ A, ∃t ∈ T(x), z∗ ◦ F(x, y, t) ⊆ z∗(W − K)}.

If there is no confusion, we denote simply S(VEP)W−K
r2

and S(VEP)W−K
z∗ ,r2

.

Theorem 7. If K = qi Z+; qri Z+, then:

S(VEP)cl (W−K)
r2 =

⋂
z∗∈Z∗

+\{0}
S(VEP)cl (W−K)

z∗ ,r2

Proof. Let x ∈ S. For all y ∈ A, there exists t ∈ T(x), such that F(x, y, t) ⊆ cl (W − K).
Obviously, z∗ ◦ F(x, y, t) ⊆ z∗(cl (W − K)) for all z∗ ∈ Z∗

+ \ {0}. Now, let us suppose
that there exists α ∈ F(x, y, t) and α /∈ cl (W − K). We find z∗ ∈ Z∗

+ \ {0} such that
sup{z∗(v), v ∈ W − K} < z∗(α) ≤ sup{z∗(v), v ∈ W − K} is false.

We denote:

SF(VEP)W−K
r̄2

= {x ∈ A | x is solution for(VEP)W−K
r̄2

}

SF(VEP)W−K
z∗ ,r̄2

= {x ∈ A | ∀y ∈ A, ∃t ∈ T(x), z∗ ◦ F(x, y, t) ̸⊆ z∗(W − K)}.

If there is no confusion, we denote simply S(VEP)W−K
r̄2

and S(VEP)W−K
z∗ ,r̄2

.

Theorem 8. If K = qi Z+; qri Z+, then:

S(VEP)cl (W−K)
r̄2

=
⋃

z∗∈Z∗
+\{0}

Sz∗(VEP)cl (W−K)
r̄2

Proof. Let x ∈ S. For all y ∈ A, there exists t ∈ T(x), such that F(x, y, t) ̸⊆ cl (W − K).
Thus, there exists α ∈ F(x, y, t) and α /∈ cl (W − K). We find z∗ ∈ Z∗

+ \ {0} such that
z∗(α) > sup{z∗(v), v ∈ W − K}, which implies z∗ ◦ F(x, y, t) ̸⊆ z∗(W − K). The converse
follows obviously and the equality does hold.

Connectedness for the solutions sets. In the following, we consider K(x) = A, ∀x ∈ A,
and T(x) = {x}.

Theorem 9. Let us suppose that K = qi Z+ ∪ {0} or K = qri Z+ ∪ {0}, F(x, ·) has K-convex
values for each x ∈ A and F(·, y) is K-concave, for each y ∈ A. Then, for all z∗ ∈ Z∗

+ \ {0},
S(VEP)W−K

z∗ ,r̄1
and S(VEP)W−K\{0}

z∗ ,r̄1
are convex.

If K = qi Z+ ∪ {0} and in addition we suppose that there exists α ∈ W such that cl (W −
K) = cl (α − K) and S((VEP)(α+qi Z+)

c

r̄1
) ̸= ∅, then the solutions set S((VEP)W−K\{0}

r̄1
) is con-

nected.
If W is a convex compact set and F has K-closed values, then S((VEP)W−K

r̄1
) is connected.

Proof. Let x1, x2 ∈ S(VEP)W−K
z∗ ,r̄1

. We have:

z∗ ◦ F(x1, y) ∩ (z∗(W)− IR+) = ∅, ∀y ∈ A,

z∗ ◦ F(x2, y) ∩ (z∗(W)− IR+) = ∅, ∀y ∈ A.
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These relations are equivalent with

z∗ ◦ F(x1, y) ⊆ sup z∗(W) + IR+ \ {0}, , respectively

z∗ ◦ F(x2, y) ⊆ sup z∗(W) + IR+ \ {0}.

Since F is K-concave, for each λ ∈ [0, 1] we have:

F(λx1 + (1 − λ)x2, y) ⊆ λF(x1, y) + (1 − λ)F(x2, y) + K.

Also, we have z∗ ◦ F(λx1 + (1 − λ)x2, y) ⊆ λz∗ ◦ F(x1, y) + (1 − λ)z∗ ◦ F(x2, y) +
IR+ ⊆ sup z∗(W) + IR+ \ {0} for z∗ ∈ Z∗

+ \ {0}, which means that λx1 + (1 − λ)x2 ∈
S(VEP)W−K

z∗ ,r̄1
, and thus, S(VEP)W−K

z∗ ,r̄1
is convex.

In the additional hypothesis, for all z∗ ∈ Z∗
+ \ {0}, we have sup z∗(W) = z∗(α) and

S(VEP)(α+qi Z+)
c

z∗ ,r̄1
⊆ S(VEP)W−K

z∗ ,r̄1
⊆ S(VEP)W−K\{0}

z∗ ,r̄1
. We deduce that S((VEP)W−K\{0}

r̄1
) is

connected. Similarly, we get the conclusion for the case when W is compact.

Corollary 1. Let us suppose that K = qi Z+ ∪ {0}, W is a convex compact set such that there
exists α ∈ W, which satisfies cl (W − K) = cl (α − K), F(x, ·) has K-convex values for each
x ∈ A, F(·, y) is K-concave, for each y ∈ A, F has K-closed values, and F(x, y) ⊆ α + qi Z+ for
all y ∈ A; then, S((VEP)W−K

r̄1
) is connected.

The following theorem is similar.

Theorem 10. Let us suppose that K = qi Z+ ∪ {0} or K = qri Z+ ∪ {0}, F(x, ·) has K-convex
values for each x ∈ A and F(·, y) is K-convex, for each y ∈ A. Then, for all z∗ ∈ Z∗

+, S(VEP)W−K
z∗ ,r1

and S(VEP)W−K\{0}
z∗ ,r1

are convex.

If K = qi Z+ ∪ {0} and S(VEP)W−K\{0}
r1 is nonempty, then S(VEP)W−K\{0}

r1 is connected.
If, in addition, we consider W a convex compact set and F has K-closed values, then S(VEP)W−K

r1
is connected.

Using Theorems 29 and 35, we get the following two theorems.

Theorem 11. Let K = qi Z+ ∪ {0} or K = qri Z+ ∪ {0} and suppose that F(x, ·) has K-
convex values, for each x ∈ A and F(·, y) is K-convex, for each y ∈ A. Then, for all z∗ ∈ Z∗

+,

S(VEP)cl (W−K)
z∗ ,r2

are convex. If S(VEP)cl (W−K)
r2 is nonempty, then S(VEP)cl (W−K)

r2 is connected.

Theorem 12. Let us suppose that K = qi Z+ ∪ {0} or K = qri Z+ ∪ {0}, F(x, ·) has K-convex
values, for each x ∈ A and F(·, y) is K-concave, for each y ∈ A. Then, for all z∗ ∈ Z∗

+,

S(VEP)cl (W−K)
z∗ ,r̄2

are convex.
If K = qi Z+ ∪ {0} and in addition we suppose that ∃α ∈ W such that cl (W − K) =

cl (α − K) and S(VEP)(α+qi Z+)
c

r̄2
̸= ∅, then S((VEP)cl (W−K)

r̄2
) is connected.

For K = qi Z+ ∪ {0}, the following theorem gives the link between the solutions set
S(VEP)W−Z+\{0}

ri and the solutions set S(VEP)W−K\{0}
z∗ ,ri

. Let us remark that if z∗ ∈ Z#
+,

the scalar problem (VEP)W−K\{0}
z∗ ,ri

is equivalent to the scalar problem (VEP)W−Z+\{0}
z∗ ,ri

.

Theorem 13. Let us suppose that K = qi Z+ ∪ {0}, Z#
+ ̸= ∅ and F(x, ·) has K-convex values,

for each x ∈ A. Then:⋃
z∗∈Z#

+

S(VEP)W−K\{0}
z∗ ,r̄1

⊆ S(VEP)W−Z+\{0}
r̄1

⊆
⋃

z∗∈Z∗
+\{0}

S(VEP)W−K\{0}
z∗ ,r̄1
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⋂
z∗∈Z∗

+\{0}
S(VEP)W−Z+\{0}

z∗ ,r1
⊆ S(VEP)W−Z+\{0} ⊆

⋂
z∗∈Z#

+

S(VEP)W−K\{0}
z∗ ,r1

.

For the following relations, we may have K = qi Z+ ∪ {0} or K = qri Z+ ∪ {0}.

⋂
z∗∈Z∗

+\{0}
S(VEP)W−K\{0}

z∗ ,r2
⊆ S(VEP)W−Z+\{0}

r2 ⊆
⋂

z∗∈Z#
+

S(VEP)W−K\{0}
z∗ ,r2

⋃
z∗∈Z#

+

S(VEP)cl (W−K\{0})
z∗ ,r̄2

⊆S(VEP)cl (W−Z+\{0})
r̄2

⊆
⋃

z∗∈Z∗
+\{0}

S(VEP)cl (W−K\{0})
z∗ ,r̄2

.

Continuity properties for the solutions sets.
In the following, we generalize the corresponding results from [22] given for VEP

with functions. Then, we say that a set sequence (Wn)n∈IN ⊂ Pc(X) is weakly Painlevé–

Kuratowski convergent to W (and we write Wn
wPK−→ W) if lim

n→+∞
sup z∗(Wn) = sup z∗(W),

∀z∗ ∈ Z∗
+ \ {0}.

I. The continuity with respect to “W”.

Theorem 14. Let z∗ ∈ Z∗
+ \ {0} and suppose that F(·, y) is K-concave for each y ∈ A and

S(VEP){0}−K
z∗ ,r1

̸= ∅. Then, the following multifunction:

F : {W − K | W ∈ Pc(X), sup z∗(W) > 0} −→−→ S(VEP)W−K
z∗ ,r1

is l.s.c. with respect to the weak Painlevé–Kuratowski convergence.

Remark 2. S(VEP){0}−K
z∗ ,r1

̸= ∅ does hold if S(VEP){0}−K
r1 ̸= ∅.

Proof of the Theorem 14. Let us suppose that S is not l.s.c. at W0. Then, there exists

x0 ∈ S(VEP)W0−K
z∗ ,r1

, V ∈ V(0), Wn − K wPK−→ W0 − K such that:

(x0 + V) ∩ S(VEP)Wn−K
z∗ ,r1

= ∅, ∀n ∈ IN.

Let us denote sup z∗(Wn) = εn for n ∈ IN. We observe that εn ≥ ε0 implies that
S(VEP)Wn−K

z∗ ,r1
⊇ S(VEP)W0−K

z∗ ,r1
, which implies that (x0 +V)

⋂
S(VEP)W0−K

z∗ ,r1
is empty, which

is false. Thus, for each n, εn < ε0.
Let x′ ∈ S(VEP)−K

z∗ ,r1
. Since lim εn = ε0, there exists n0 ∈ IN such that ε0 − εn0 > 0

and
εn0
ε0

x0 +
ε0−εn0

ε0
x′ ∈ x0 + V. We have z∗ ◦ F(x0, y) ⊆ sup z∗(W0) + IR+, for all y ∈ A,

z∗ ◦ F(x′, y) ⊆ IR+, ∀y ∈ A and F(·, y) is K-concave, which implies:

z∗ ◦ F(
εn0

ε0
x0 +

ε0 − εn0

ε0
x′, y) ⊆ εn0 + IR+, ∀y ∈ A.

Hence (x0 + V) ∩ S(VEP)
Wn0−K
z∗ ,r1

̸= ∅, which is false.

Similarly, we obtain the following theorems.

Theorem 15. Let z∗ ∈ Z∗
+ \ {0} and suppose that F(·, y) is K-convex for each y ∈ A and

S(VEP){0}−K
z∗ ,r̄1

̸= ∅. Then, the following multifunction:

F : {W − K | W ∈ Pc(X), sup z∗(W) > 0} −→−→ S(VEP)W−K
z∗ ,r̄1

is l.s.c. with respect to the weak Painlevé–Kuratowski convergence.
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Theorem 16. Let z∗ ∈ Z∗
+ \ {0} and suppose that F(·, y) is K-convex for each y ∈ A and

S(VEP){0}−K
z∗ ,r2

̸= ∅. Then, the multifunction:

F : {W − K | W ∈ Pc(X), sup z∗(W) > 0} −→−→ S(VEP)W−K
z∗ ,r2

is l.s.c. with respect to the weak Painlevé–Kuratowski convergence.

Theorem 17. Let z∗ ∈ Z∗
+ \ {0} and suppose that F(·, y) is K-concave for each y ∈ A and

S(VEP){0}−K
z∗ ,r̄2

̸= ∅. Then, the multifunction:

F : {W − K | W ∈ Pc(X), sup z∗(W) > 0} −→−→ S(VEP)W−K
z∗ ,r̄2

is l.s.c. with respect to the weak Painlevé–Kuratowski convergence.

II. The continuity with respect to z∗.

Theorem 18. Let us suppose that A is a convex set, Z is a normed space, F(·, y) is K concave,
F(A, A) is a bounded subset of Z, and S(VEP){0}−K

r1 is nonempty. Then, for a constant c > 0,
the multifunction:

G : {z∗ ∈ Z∗
+ | sup z∗(W0) = c} −→−→ S(VEP)W0−K

z∗ ,r1

is l.s.c. with respect to the norm topology.

Proof. Since S(VEP){0}−K
r1 ̸= ∅, we get S(VEP){0}−K

z∗ ,r1
̸= ∅, ∀z∗∈Z∗

+ \ {0}. Let us suppose

that G is not l.s.c. at z∗0 . Thus, ∃x0 ∈ S(VEP){0}−K
z∗ ,r1

and V ∈ V(0), z∗n → z∗0 , z∗n ∈ Z∗
+

such that:
(x0 + V) ∩ S(VEP)W0−K

z∗n ,r1
= ∅, ∀n ∈ IN.

Since F is l.s.c. at W0, we find W1 ∈ {W ′ | W ′ = W − K; sup z∗(W) > 0} such that:

(x0 + V) ∩ S(VEP)W1−K
z∗0 ,r1

̸= ∅.

Let x′ ∈ (x0 + V) ∩ S(VEP)W1−K
z∗0 ,r1

. We prove that there exists n0 ∈ IN such that

x′ ∈ (x0 + V) ∩ S(VEP)W0−K
z∗n0 ,r1

, which is false.

Let n0 such that ∥z∗n0
− z∗0∥ <

sup z∗0(W1)−sup z∗0(W0)
sup{∥z∥, z∈F(A,A)} = µ. Since x′ ∈ S(VEP)W1−K

z∗0 ,r1
, we

have z∗0 ◦ F(x′, y) ⊆ sup z∗0(W1) + IR+. For each z ∈ F(A, A) we have |zn0(z)− z∗0(z)| ≤
µ sup{∥z∥, z ∈ F(A, A)} = α = sup z∗0(W1) − sup z∗0(W0). We get z∗n0

◦ F(x′, y) ⊆ z∗0 ◦
F(x′, y) + [−α, α] ⊆ sup z∗(W1) + [−α, α] + IR+ ⊆ sup z∗0(W0) + IR+ ⊆ sup z∗n0

(W0) + IR+.

Hence, x′ ∈ (x0 + V) ∩ S(VEP)W0−K
z∗n0 ,r1

, which is false.

In the same manner, we can prove the following theorems.

Theorem 19. Let us suppose that A is a convex set, F(·, y) is K concave, F(A, A) is a bounded
subset of Z, and S(VEP){0}−K

r̄2
̸= ∅. Then, the multifunction G : {z∗ ∈ Z∗

+ | sup z∗(W0) =

c} −→−→ S(VEP)W0−K
z∗ ,r̄2

is l.s.c. with respect to the norm topology.

Theorem 20. Let us suppose that A is a convex set, F(·, y) is K convex, F(A, A) is a bounded
subset of Z, and S(VEP){0}−K

r̄1
̸= ∅. Then, the multifunction G : {z∗ ∈ Z∗

+ | sup z∗(W0) =

c} −→−→ S(VEP)W0−K
z∗ ,r̄1

is l.s.c. with respect to the norm topology.
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Theorem 21. Let us suppose that A is a convex set, F(·, y) is K convex, F(A, A) is a bounded subset of Z,
and S(VEP){0}−K

r2 ≠ ∅. Then, the multifunctionG : {z∗ ∈ Z∗
+ | sup z∗(W0) = c} −−→−→ S(VEP)W0−K

z∗,r2
is l.s.c. with respect to the norm topology.

Remark 3. The assumptions from the previous theorems provide the following proprieties:

(i) If Wn − K wPK−→ W0 − K, then S(VEP)W0−K
z∗ ,ri

⊆ Li S(VEP)Wn−K
z∗ ,ri

;

(ii) If Wn − K wPK−→ W0 − K, then S(VEP)W0−K
z∗ ,r̄i

⊆ Li S(VEP)Wn−K
z∗ ,r̄i

;

(iii) If ∥z∗n − z∗0∥ → 0, then S(VEP)W0−K
z∗0 ,ri

⊆ Li S(VEP)W0−K
z∗n ,ri

;

(iv) If ∥z∗n − z∗0∥ → 0, then S(VEP)W0−K
z∗0 ,r̄i

⊆ Li S(VEP)W0−K
z∗n ,r̄i

.

Now, we are able to present the connectedness result for the solutions
set S(VEP)cl (W−Z+\{0})

r̄1
. Let us denote M∗ = {z∗ ∈ Z∗

+ | sup z∗(W0) = c > 0} and
M# = {z∗ ∈ Z#

+ | sup z∗(W0) = c > 0}.

Theorem 22. Let us suppose that A is a convex set, Z#
+ ̸= ∅ and F(x, ·) has K-convex values for each

x ∈ A, F(·, y) is K concave for each y ∈ A, F(A, A) ⊂ Z is bounded and S(VEP){0}−K
r1 ̸= ∅. Then,

S(VEP)W−K\{0}
r̄1

and S(VEP)cl (W−K\{0})
r̄2

are connected sets for K = Z+ or K = qri Z+ ∪ {0}.

Proof. Following Theorem 13, we have:

⋃
z∗∈Z#

+

S(VEP)W−K\{0}
z∗ ,r̄1

⊆ S(VEP)W−Z+\{0}
r̄1

⊆
⋃

z∗∈Z∗
+\{0}

S(VEP)W−K\{0}
z∗ ,r̄1

.

Let x be an element in S(VEP)W−Z+\{0}
r̄1

; there exists z∗ ∈ Z∗
+ \ {0} such that

x ∈ S(VEP)W−K\{0}
z∗ ,r̄1

. If we consider u∗ = cz∗
sup z∗(W)

we have sup u∗(W) = c and

x ∈ S(VEP)W−K\{0}
u∗ ,r̄1

. Thus:

⋃
z∗∈M#

S(VEP)W−K\{0}
z∗ ,r̄1

⊆ S(VEP)W−Z+\{0}
r̄1

⊆
⋃

z∗∈M∗
S(VEP)W−K\{0}

z∗ ,r̄1

Following Theorem 18, we have:

⋃
z∗∈M∗

S(VEP)W−K\{0}
z∗ ,r̄1

= cl (
⋃

z∗∈M#

S(VEP)W−K\{0}
z∗ ,r̄1

).

Since S(VEP)W−K\{0}
z∗ ,r̄1

is convex and S(VEP){0}−K
r1 ⊆ S(VEP)W−K\{0}

z∗ ,r̄1
for each z∗, we

obtain that
⋃

z∗∈M#
S(VEP)W−K\{0}

z∗ ,r̄1
and S(VEP)W−Z+\{0}

r̄1
are connected sets. Similarly, we

obtain the connectedness of S(VEP)cl (W−Z+\{0})
r̄2

.

Using the results from this section, the following theorems give the link between the
sequence of the solutions sets for a sequence of multifunctions and the solutions set for
the limit of this sequence. Let Fn, F : A × A −→−→ Z; we say that Fn is weakly continuous

Painlevé–Kuratowski convergent to F and we write Fn
wcPK−→ F if for xn → x, z∗ ◦ Fn(xn, A)

is Painlevé–Kuratowski convergent to z∗ ◦ F(x, A) for each z∗ ∈ Z∗
+ \ {0}.

Theorem 23. For n ∈ IN, let Fn
wcPK−→ F and Wn − K \ {0} is weakly Painlevé–Kuratowski

convergent to W − \{0}. Then, the following inclusion:

Li SFn(VEP)Wn−K\{0}
z∗ ,r̄1

⊆ SF(VEP)W−K\{0}
z∗ ,r̄1
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does hold for K \ {0} ∈ {qi Z+, int Z+} (if nonempty) and z∗ ∈ Z∗
+ \ {0}, respectively, for K \

{0} ∈ {qri Z+, Z+} and z∗ ∈ Z#
+ \ {0}.

If in addition we have K = qi Z+ ∪ {0}, Z#
+ ̸= ∅, and F(x, ·) is K-convexlike on A, for

each x ∈ A, F(·, y) is K concave and for each y ∈ A, F(A, A) is a bounded subset of Z and
S(VEP)−K

r1
̸= ∅, then we have:

Li SFn(VEP)Wn−C\{0} ⊆ SF(VEP)W−K\{0}
r̄1

,

for C ∈ {qi Z+ ∪ {0}, qri Z+ ∪ {0}, Z+}.

Proof. Obviously, if K \ {0} = qi Z+ or K \ {0} = int Z+ and z∗ ∈ Z∗
+ \ {0} (respec-

tively, if K \ {0} = qri Z+, or Z+ and z∗ ∈ Z#
+) and x ∈ SF(VEP)W−K\{0}

z∗ ,r̄1
, then

0 ∈ MINsup z∗(W)z∗ ◦ F(x, A).
The hypothesis from the theorem and Proposition 3.1 [21] ensure that if xn ∈

SFn(VEP)Wn−K\{0}
z∗ ,r̄1

and xn → x, then:

Ls MINsup z∗(Wn)z∗ ◦ Fn(xn, A) ⊆ MINsup z∗(W)z∗ ◦ F(x, A)

which implies that 0 ∈ MINsup z∗(W)z∗ ◦ F(x, A) and x ∈ SF(VEP)W−K\{0}
z∗ ,r̄1

. Thus:

Li SFn(VEP)Wn−K\{0}
z∗ ,r̄1

⊆ SF(VEP)W−K\{0}
z∗ ,r̄1

.

For the second part of the theorem, let us remark that we also have:

Ls SFn(VEP)Wn−K\{0}
z∗ ,r̄1

⊆ SF(VEP)W−K\{0}
z∗ ,r̄1

and
Li

⋃
z∗∈Z∗

+\{0}
SFn(VEP)Wn−K\{0}

z∗ ,r̄1
⊆

⋃
z∗∈Z∗

+\{0}
Ls SFn(VEP)Wn−K\{0}

z∗ ,r̄1
⊆

⊆
⋃

z∗∈Z∗
+\{0}

SF(VEP)W−K\{0}
z∗ ,r̄1

.

Thus, for K \ {0} = qi Z+ or K \ {0} = int Z+, we have:

Li SFn(VEP)Wn−K\{0} ⊆ SF(VEP)W−K\{0}
r̄1

.

Since Li An = Li cl (An), the inclusions An ⊆ Bn ⊆ cl (An) implies that Li An =
Li Bn. Following Theorem 22 and the inclusion:

Li
⋃

z∗∈M#

SFn(VEP)Wn−K\{0}
z∗ ,r̄1

⊆
⋃

z∗∈M#

SF(VEP)W−K\{0}
z∗ ,r̄1

we get:
Li SFn(VEP)Wn−Z+\{0} ⊆ SF(VEP)W−Z+\{0}

r̄1

and:
Li SFn(VEP)Wn−qri Z+ ⊆ SF(VEP)W−qri Z+

r̄1
.

Remark 4. Similarly, we obtain the previous theorem for the solutions set with respect to
r̄2. Furthermore, if we take Fn = F, Theorems 14 and 23 give that if F(·, y) is K-concave for
each y ∈ A and S(VEP){0}−K

z∗ ,r1
̸= ∅ for K = qi Z+ ∪ {0}, z∗ ∈ Z∗

+ \ {0} then:

Li SF(VEP)Wn−K\{0}
z∗ ,r̄1

= SF(VEP)W−K\{0}
z∗ ,r̄1

.
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This equality also holds if K = qri Z+ ∪ {0} or K = Z+ and z∗ ∈ Z#
+.

Closing conditions for the solutions set.

Theorem 24. Let F : A × A −→−→ Z and let W ⊂ Z and K such that (W − K \ {0})c is closed.
If F is lower semicontinuous then S(VEP)W−K\{0}

r̄1
is closed. If F is upper semicontinuous and F

has compact values then S(VEP)W−K\{0}
r̄2

is closed.

Proof. Let (xn)n ⊂ S(VEP)W−K\{0}
r̄1

and xn → x. If F is lower semicontinuous, since

F(x, y, t) ⊆ Li F(xn, y, t) ⊆ (W − K \ {0})c, we get that x ∈ S(VEP)W−K\{0}
r̄1

.
If F is upper semicontinuous, for all αn ∈ F(xn, y, t) ∩ (W − K \ {0})c ̸= ∅ there

exists α ∈ F(x, y, t) and (αnk )k a subsequence of αn such that αnk → α. Since (W −
K \ {0})c is closed we get α ∈ F(x, y, t) ∩ (W − K \ {0})c ̸= ∅, which implies that x ∈
S(VEP)W−K\{0}

r̄2
.

5. Applications for Abstract Economies

An abstract economy is a family of ordered triples Γ = (Xi, Ai, Pi)i∈I where:

• I is countable set of agents;
• Xi ⊂ Z is a nonempty set of actions for agent i, X = ∏

i∈I
Xi;

• Ai : X −→−→ Xi is the constraint correspondence of agent i;
• Pi : X −→−→ Xi is the preference correspondence of agent i.

An equilibrium of Γ is a point x∗ ∈ X such that ∀i ∈ I, x∗i ∈ cl Ai(x∗) and
Pi(x∗) ∩ Ai(x∗) = ∅. Let us denote ψi(x) = Ai(x) ∩ Pi(x) for all x ∈ X.

Let us recall some notions which will be useful for our results.

Definition 1.

(i) A multifunction F : X −→−→ Z has lower open section (shortly los), if for any z ∈ Z, the set
{x ∈ X | z ∈ F(x)} is open in Z. The multifunction F has upper open section (uos) if for all
x ∈ X, the set F(x) is open in Z.

(ii) The multifunction F is L-majorized if there exists a multifunction F̃ such that F̃ has los,
x /∈ conv F̃(x) and F(x) ⊆ F̃(x), ∀x ∈ X.

The following notions generalize the “open lower sections” (ols) multifunctions and
are motivated by the equilibrium existence theorem for abstract economies where the
preference and the constraint multifunctions are not continuous.

Definition 2 ([24]). The multifunction F : X −→−→ Z has the “continuous inclusion property”
(CIP) at x if there exist an open neighborhood Ux of x and a nonempty multifunction Hx : Ux −→−→ Z
such that Fx(u) ⊆ F(u) for any u ∈ Ux and co Hx has closed graph.

Definition 3 ([25]). Let M, S : A−→−→ X; the multifunction S is M-majorized if there exists a
multifunction S̃ such that S(x)⊆ S̃(x)⊆ M(x), for all x ∈ A, S̃ has the CIP property for each
x ∈ dom S and x /∈ co S̃(x).

We denote by M(S) the set of multifunctions M : A −→−→ X such that S is M-majorized.
A multifunction S : A −→−→ X is M-majorized if M(S) ̸= ∅.

The following theorem from [26] gives an existence result for the equilibrium of an
abstract economy.

Theorem 25 ([26]). Let Γ = (Xi, Ai, Pi)i∈I be an abstract economy such that for each i ∈ I:

(i) Xi is a nonempty compact convex metrizable subset of Z;
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(ii) Ai has nonempty convex values;
(iii) The correspondence cl Ai is upper semicontinuous;
(iv) Ai has open lower section;
(v) Pi has open lower section;
(vi) xi /∈ coψi(x) for all x ∈ X.

Then, Γ has an equilibrium.

This theorem can be obtained from the Theorem 2 by taking the following particular
sets and multifunctions: A = Xi, T(x) = {x}, K(x) = Ai(x), F(x, y) = y if y ∈ Pi(x) and
F(x, y) = ∅ if y /∈ Pi(x). The sets Ni,W

t,x = ψi(x), and Ni,W
y = (P−1

i (y))c = {x ∈ A | ∃t ∈
T(x), ri(F(x, y, t), W)}. Thus, (ii), (iii), and (iv) are equivalent with (iii) from Theorem 2; (v)
is equivalent with (ii); and the condition (vi) is equivalent with (i) from the same theorem.
Furthermore, we remark that the hypothesis “metrizable” can be omitted.

Theorem 25 generalizes the following result from [27], which in turn was generalized
in [24].

Theorem 26 ([27]). Let Γ = (Xi, Ai, Pi)i∈I be an abstract economy such that for each i ∈ I:

(i) Xi is a nonempty compact convex subset of IRn;
(ii) Ai has nonempty convex compact values;
(iii) Ai is a continuous correspondence;
(iv) Pi has an open graph;
(v) xi /∈ coψi(x) for all x ∈ X.

Then, Γ has an equilibrium.

The following theorem gives a generalization for the case of functions with the
CIP property.

Theorem 27 ([24]). Let Γ = (Xi, Ai, Pi)i∈I be an abstract economy such that for each i ∈ I:

(i) Xi is a nonempty compact convex metrizable subset of a Hausdorff locally convex space;
(ii) Ai has nonempty convex values;
(iii) The correspondence cl Ai is upper semicontinuous;
(iv) ψ has CIP at each x ∈ X with ψi(x) ̸= ∅;
(v) xi /∈ coψi(x) for all x ∈ X.

Then, Γ has an equilibrium.

This theorem is based on the following fixed-point theorem.

Theorem 28 ([24]). Let X be a nonempty compact convex metrizable subset of a Hausdorff locally
convex space and ψ : X −→−→ X be a correspondence which is nonempty convex valued and has the
CIP property. Then, there exists a point x∗ ∈ X such that x∗ ∈ ψ(x∗).

Theorem 27 suggests a generalization for the existence theorem for the (VEPs) with
multifunctions with the CIP property. The result concerning the existence of equilibrium
for the abstract economies may be obtained as a particular case.

Lemma 1. Let G, H : A −→−→ A, E ⊂ A be a closed set and for each x ∈ A, G(x) ⊆ H(x) and
G has the CIP property at x ∈ dom G. Then, the multifunction Q : A −→−→ A, Q(x) = G(x) for
x ∈ E and Q(x) = H(x) if x ∈ A \ E has the CIP property at x ∈ dom Q.

Theorem 29. Let X be a Hausdorff topological space and A ⊆ X be a nonempty compact convex
set, and we suppose:

(i) co Φ has CIP at each x ∈ X with Φ(x) ̸= ∅, where Φ : A −→−→ X is given by Φ(x) = {y ∈
A ∩ cl K(x) | ∀t ∈ T(x), r̄i(F(x, y, t), W)};
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(ii) x /∈ coΦ(x), for all x ∈ X;
(iii) cl K(·) is u.s.c. ∀x ∈ A, A ∩ cl K(x) ̸= ∅, K(x) is convex ∀x ∈ A.

Then, (VEP1)
W
ri

has a solution.

Proof. Let E = {y ∈ A | y ∈ cl K(y)} and Q : A −→−→ A be a multifunction given by
Q(x) = co Φ(x) if x ∈ E and Q(x) = A ∩ cl K(x) for x ∈ A \ E. We observe that E
is closed since cl K is u.s.c. and for each x ∈ A, Q(x) is convex, x /∈ Q(x) and lemma
implies that Q has CIP. Following Theorem 35 we get x̄ ∈ A such that Q(x̄) = ∅. Since
A ∩ cl K(x) ̸= ∅ for all x ∈ A we get x̄ ∈ E, and thus, co Φ(x̄) = ∅. The conclusion follows
now obviously.

Let us remark that if A = Xi, T(x) = {x}, K(x) = Ai(x), F(x, y) = y if y ∈ Pi(x) and
F(x, y) = ∅ if y /∈ Pi(x), then Φ = ψ and this theorem becomes Theorem 27 of Yannelis
and He for abstract economies.

Furthermore, let us remark that Φ(x) =
⋂

t∈T(x)
N̄i,W

t,x and Ni,W
y = (Φ−1(y))c from

Theorem 2; the assumptions of Theorem 2 provide that Φ has los, and thus, Φ and co Φ
have CIP.

The existence Theorem 29 may be generalized forM-majorized multifunctions as follows.

Theorem 30. Let X be a Hausdorff topological space, A ⊆ X be a nonempty compact convex set
and we suppose:

(i) Φ : A −→−→ X, Φ = {y ∈ A ∩ cl K(x) | ∀t ∈ T(x), r̄i(F(x, y, t), W)} is M-majorized and
A ∩ cl K(·) ∈ M(Φ);

(ii) cl K(·) is u.s.c.; ∀x ∈ A, A ∩ cl K(x) ̸= ∅, K(x) is convex; ∀x ∈ A.

Then, (VEP1)
W
ri

has a solution.

Proof. Let us denote by Φ̃ the multifunction which has the CIP property for each x ∈ domS,
x /∈ co S̃(x) and Φ(x) ⊆ Φ̃(x) ⊆ A ∩ cl K(x). The proof is similar to that of Theorem 29 by
replacing Φ with Φ̃.

For the case of a noncompact set of actions, we have from [28] the following theorem
for the existence of an equilibrium for an abstract economy.

Theorem 31 ([28]). Let Γ = (Xi, Ai, Pi)i∈I be an abstract economy such that for each i ∈ I:

(i) Xi is a nonempty convex metrizable subset of Z;
(ii) Ai(x) is a nonempty convex set for all x ∈ X;
(iii) The correspondence cl Ai is upper semicontinuous and cl Ai(x) is compact for all x ∈ X;
(iv) Ai has an open lower section;
(v) Pi has an open lower section;
(vi) xi /∈ coψi(x) for all x ∈ X.
(vii) There exists Ci ⊂ Xi, nonempty, compact, convex sets such that:

Ai(C) ⊆ Di, where C = ∏
i∈I

Ci, Di ⊂ Xi is compact and convex;

Ai(x) ∩ Zi ̸= ∅, ∀x ∈ X−i × Zi, Zi = cl co(Di ∪ Ci);
∀xi ∈ Zi \ Ci, x−i ∈ X−i, there exists yi ∈ Ai(x) ∩ Zi ∩ Pi(x).

Then, Γ has an equilibrium.

In what follows, we present a similar result for the case of correspondence with the
CIP property which extends to noncompact case Theorem 2 from [24].

Theorem 32. Let Γ = (Xi, Ai, Pi)i∈I be an abstract economy such that for each i ∈ I

(i) Xi is a nonempty convex metrizable subset of Z;
(ii) Ai(x) is a nonempty convex set for all x ∈ X;
(iii) The correspondence cl Ai is upper semicontinuous and cl Ai(x) is compact for all x ∈ X;
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(iv) ψi has CIP;
(v) xi /∈ coψi(x) for all x ∈ X.
(vi) There exists Ci ⊂ Xi, nonempty, compact, convex sets such that:

Ai(C) ⊆ Di, where C = ×i∈ICi, Di ⊂ Xi is compact and convex;
Ai(x) ∩ Zi ̸= ∅, ∀x ∈ X−i × Zi, Zi = cl co(Di ∪ Ci);
∀xi ∈ Zi \ Ci, x−i ∈ X−i, there exists yi ∈ Ai(x) ∩ Zi ∩ Pi(x).

Then, Γ has an equilibrium.

Proof. Let T = ∏
i∈I

Zi and for each i ∈ I, Ki : T −→−→ Zi, Ki(x) = Ai(x) ∩ Zi, ∀x ∈ T. Since

cl Ai has closed graph, T, Zi are compact sets, then cl Ki has closed graph, compact values,
and thus, cl Ki is u.s.c.

We remark that Ki(x) = Ai(x), ∀xi ∈ Ci and Ki(x) = Ai(x) ∩ Zi, otherwise. Let
GrP̃i = cl GrPi. We remark that ψ̃i(x) = Ki ∩ P̃i(x) = Ai(x) ∩ P̃i(x) ∩ Zi has a closed
graphic, which implies that ψ̃i has the CIP property.

The abstract economy Γ̃ : (Zi, Ki, P̃i |T)i∈I satisfies the conditions from Theorem 2 [24],
and thus, there exists x̄ ∈ cl Ki(x̄) and P̃i(x̄) ∩ Ki(x) = ∅ which yields Pi(x̄) ∩ Ki(x̄) = ∅,
and thus, x̄ ∈ Ci, cl Ki(x̄) = cl Ai(x̄). We conclude x̄ ∈ cl Ai(x̄), Pi(x̄) ∩ Ai(x̄) = ∅, and
thus, x̄ is an equilibrium for Γ.

In what follows, we present some results concerning the existence for the Walrasian
equilibrium in a vector exchange economy.

A vector exchange economy, E is a family (Xi, Pi, ei)i∈I such that I is a finite set of
agents and for every i ∈ I:

• Xi ⊆ Z+ is the consumption set of agent i and X = ∏
i∈I

Xi;

• An element xi ∈ Xi will be called an allocation for agent il;
• Pi : X −→−→ Xi is the preference correspondence of agent i;
• ei ∈ Xi is the initial endowment of agent i.

We suppose that Z∗
+ has a compact base B∗

+.
The budget set of agent i is Bi(z∗) = {xi ∈ Xi | z∗(xi) ≤ z∗(ei)} for z∗ ∈ B∗

+.
For z∗ ∈ B∗

+, x ∈ X, i ∈ I, let ψi(z∗, x) = Bi(z∗) ∩ Pi(x), the set of allocations in the budget
set of agent i at price z∗ that he prefers to x.

A free disposal Walrasian equilibrium for the exchange economy E is (z̄∗, x̄) ∈ B∗
+ × X

such that:

1. For each i ∈ I, x̄i ∈ Bi(z̄∗) and ψi(z̄∗, x̄) = ∅;

2. ∑
i∈I

x̄i ≤ ∑
i∈I

ei.

Theorem 33. Let E be an exchange economy satisfying the following assumptions for each i ∈ I:

(i) Xi is a nonempty compact convex subset of Z+;
(ii) For all (z∗, x) ∈ (B∗

+ × X) ∩ dom ψi, xi /∈ co ψi(z∗, x) and ψ is M-majorized at (z∗, x).

Then, E has a free disposal Walrasian equilibrium.

Proof. Let I0 = I ∪ {0} and for each i ∈ I, z∗ ∈ B∗
+, x ∈ X, let:

Ai(z∗, x) = B∗
+ × Bi(z∗)

P̃i(z∗, x) = B∗
+ × Pi(x)

and for A0(z∗, x) = B∗
+ × X:

P̃0(z∗, x) = {q∗ ∈ B∗
+ | q∗i (∑

i∈I
(xi − ei)) > z∗(∑

i∈I
(xi − ei))} × X.
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Since i ∈ I0, Ai are nonempty convex valued, u.s.c. on B∗
+ × X. For i ∈ I, ψ̃i(z∗, x) =

Ai(z∗, x) ∩ P̃i(z∗, x) = B∗
+ × (Bi(z∗) ∩ Pi(x)) = B∗

+ × ψi(z∗, x) and since ψ is M-majorized
so is ψ̃.

For i = 0:
ψ̃0(z∗, x) = A0(z∗, x) ∩ P̃0(z∗, x) = P̃0(z∗, x) =

= {q∗ ∈ B∗
+ | q∗(∑

i∈I
(xi − ei)) > z∗(∑

i∈I
(xi − ei))} × X.

For (q∗, v) ∈ ψ̃0(z∗, x), let G(z∗, x) = (q∗, v) which is a constant, and thus, a con-
tinuous multifunction. There exists O ∈ V(z∗, x) such that G(z∗, x) ⊂ ψ̃0(z∗, x) for each
(z∗, x) ∈ O, which implies that ψ̃0 has CIP, and thus, ψ̃0 is M-majorized.

For the abstract economy (B∗
+ × Xi, Ai, P̃i)i∈I0 , we may apply Theorem 30 and we get

(z̄∗, x̄) ∈ B∗
+ × X such that (z̄∗, x̄i) ∈ Ai(z̄∗, x̄) = B∗

+ × Bi(z̄∗) and ψ̃(z̄∗, x̄) = ∅ for each
i ∈ I0. Thus, for i ∈ I, ψ(z̄∗, x̄) = ∅.

Since ψ̃0(z̄∗, x̄) = ∅, for each q∗ ∈ B∗
+, we have:

q∗(∑
i∈I

(xi − ei)) ≤ z∗(∑
i∈I

(xi − ei)) ≤ 0

and finally, ∑
i∈I

(xi − ei) ≤ 0. Therefore, (z̄∗, x̄) is a free disposal Walrasian equilibrium.

In what follows, we present a result concerning the existence of a nonfree disposal
Walrasian equilibrium.

Let us denote Bi(z∗) = {xi ∈ Xi | z∗(xi) ≤ z∗(ei) + 1 − ∥z∗∥} for z∗ ∈ B∗
+,

ψ(z∗, x) = Pi(x) ∩ Bi(z∗) and K = {x ∈ X | ∑
i∈I

xi = ∑
i∈I

ei}.

A nonfree disposal Walrasian equilibrium is an element (z̄∗, x̄)∈B∗
+×X such that:

1. for each i ∈ I, x̄ ∈ Bi(z̄∗), ψi(z̄∗, x̄) = ∅;
2. ∑

i∈I
x̄i = ∑

i∈I
ei.

Theorem 34. Let E be an exchange economy satisfying the following assumptions for each i ∈ I:

(i) Xi is a nonempty compact convex subset of Z+;
(ii) For each (z∗, x) ∈ (B∗

+ × X) ∩ dom ψi we have xi /∈ co ψi(z∗, x) and ψ is M-majorized at
(z∗, x).

(iii) xi ∈ priK implies that xi ∈ Fr Pi(x).

Then, E has a nonfree disposal Walrasian. equilibrium.

Proof. Similar to the first part of the proof in the case “free disposal”, we get (z̄∗, x̄) ∈
B∗
+ × X such that:

1. x̄i ∈ Bi(z̄∗);
2. ψi(z̄∗, x̄) = ∅, ∀i ∈ I0.

From 1, we obtain z̄∗(x̄i) ≤ z∗(ei) + 1 − ∥z∗∥. Let z = ∑
i∈I

(xi − ei) and we suppose that

z ̸= 0. From 2, for i = 0, we have q∗(z) ≤ z̄∗(z) for each q∗ ∈ B∗. Let q∗ = 1
∥z̄∗∥ z̄∗ ∈ B∗

+;

we get z̄∗(z)
∥z∥ ≤ z̄∗(z), which yields ∥z̄∗∥ ≥ 1 and since z̄∗ ∈ B∗

+, we conclude that ∥z̄∗∥ = 1.
Using 1, we obtain that z̄∗(z) ≤ 0, and thus, q∗(z) ≤ 0 for each q∗ ∈ B∗

+. However, since
z ̸= 0, we find q∗ ∈ B∗

+ such that q∗(z) = ∥q∗∥ > 0, which is false. Thus, z = 0 and
∑
i∈I

x̄i = ∑
i∈I

ei, x̄ ∈ K. Note that x̄i ∈ priK implies that x̄i ∈ Fr Pi(x). Since x̄i ∈ Bi(z̄∗) and

x̄i /∈ coψi(z̄∗, x̄), x̄i /∈ Pi(x̄). If there exists i such that z̄∗(x̄i) < z̄∗(ei)+ 1−∥z̄∗∥, one can find
a point yi ∈ Pi(x̄) such that x̄i and yi are sufficiently close, and z̄∗(yi) < z̄∗(ei) + 1 − ∥z̄∗∥.
Thus, yi ∈ ψi(z̄∗, x̄), which contradicts 2. Therefore, z̄∗(x̄i) = z∗(ei) + 1 − ∥z∗∥ for each
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i ∈ I, and summing up over all i yields ∥z∗∥ = 1. Finally, we conclude (z̄∗, x̄) is a nonfree
disposal Walrasian equilibrium.

Let us remark that if Z = IRl , we get Theorems 3 and 4 from [24].
Finally, we remark that the notion of Walrasian equilibrium was extended for the case

of a vector exchange economy with an infinite number of agents and commodities, both for
the additive case and for the nonadditive one. For results concerning the existence of the
Walrasian equilibrium and the core-Walras equivalence with linear and nonlinear prices,
the reader may consult [29–31].

6. Applications of VEPs to the Vector Optimization Problems

In this section, we intend to find a vector optimization problem such that the solutions
of the vector equilibrium problem are solutions for this vector optimization problem. Let
F : A × A −→−→ Z such that 0 ∈ F(x, x) and consider the problem (VEP)−K

r̄1
:

(VEP)−K
r̄1

: find x ∈ A such that F(x, y) ∩−K = ∅ ∀y ∈ A.

Let us recall the definition for the principal efficient points and the domination prop-
erty which will be used in the following. For more details concerning this subject, see [32].

Let K ⊆ Z+ \ {0}, A ⊂ Z, ε ∈ Z+. The following sets:

K INF A = {y ∈ Z̄ | y − a /∈ K, ∀a ∈ A};

K INF1 A = {y ∈ K INF A | ∀y′ ∈ Z̄, y′ − y ∈ K, ∃a ∈ A, y′ − a ∈ K};

K MINε A = {a ∈ A |̸ ∃a′ ∈ A, a′ − a + ε ∈ −K}

will be the K-infimal, the K-approximative infimal, and the K-ε minimal points sets of A,
respectively. Similarly, we may consider the K-supremal, K-approximative supremal, and
the K-ε maximal points sets of A denoted K SUP A, K SUP1 A, and K MAXε A.

We remark that if K = Z+ \ {0}, the K-efficient points becomes the efficient points sets
given in [33]. We will denoted these points by INF A, INF1 A, and ε MIN A, respectively,
MIN A if ε = {0}. If the interior of the cone is nonempty and K = int Z+, the K-efficient
points are the weak efficiencies denoted wEFF A, i.e., wINF A, wINF1 A, w ε MIN A, and
wMIN A if ε = {0}, respectively.

In what follows, the efficient points are considered by respect to the cone K ⊆ Z+

which ensure that the following domination property does holds.

Theorem 35. Let A ⊂ Z, K = ri A, iri A, int A and X = cone (Z+ − x), x ∈ K. Let
us denote B = {a ∈ A | K INFA

⋂
(a + X) ̸= ∅} and let us suppose that B ̸= ∅. Then,

∅ ̸= K INF1 A ⊂ A + X and the following domination properties hold:

B ⊂ K INF1 A + K

K INFA
⋂
(B + X) = (K INF1 A − K).

Obviously, if x is a solution for (VEP) then x is a solution for the optimization prob-
lem (Px):

(Px) : K INF1
⋃

y∈A
F(x, y) = K INF1

⋃
y∈A

Fx(y) = v(Px)

The dual problem is (Dx):

K SUP1
⋂

T∈L(X,Z)

−F∗
x | A(T) = v(Dx),

where F∗
x | A(T) = K SUP1{T(y)− Fx(y) | y ∈ A}.

We say that Px is stable if v((Px)) = v((Dx)) = K MAX(Dx).
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Let us consider now the perturbed problem:

(Pa(F)) K INF1{Φ(y, u), y ∈ X}

where Φ(y, u) = Fx(y + u) if y + u ∈ A and Φ(y, u) = +∞ else. We have
Φ∗(0, T) = SUP1{F∗

x |A (T) + {−T(y) | y ∈ A}}. The dual problem is:

(Da(F)) K SUP1
⋃

T∈L(X,Z)

−Φ∗(0, T).

Let us denote γ(x) =
⋃

T∈L(X,Z)
K INF1{−F∗

x |A (T) + {T(y) | y ∈ A}}.

Let us consider the vector equilibrium problem (VEP)W−K
r2

.

(VEP)W−K
r2

: find x ∈ A such that F(x, y) ⊆ W − K \ {0} , ∀y ∈ A.

We denote −F(x, y) = G(x, y) and −W = W ′ and the problem becomes:

(VEPG)
W ′+K
r2

: find x ∈ A such that G(x, y) ⊆ W ′ + K \ {0} ∀y ∈ A.

We remark that if x is a solution for (VEP)W−K
r2

, then x is a solution for the problems:

(IVEP)W ′−ε+K\{0}
r2 find x ∈ A such that K INF1

⋃
y∈A

G(x, y) ⊆ W ′ − ε + K \ {0}

for all ε ∈ K \ {0}. We consider the dual problem for α ∈ W ′:

(Pα) K SUP1
⋃

u∈A
γ(u)

where γ(u) =
⋃

T∈L(X,Z)
K INF1{−G∗

x |A (T) + {T(y) | y ∈ A}}.

The element x is a solution for (Pα) if there exists z ∈ γ(x) such that (K SUP1
⋃

u∈A
γ(u))

⋂
(z + α + K) = ∅. We denote the set of these solutions by S(Pα). Let us remark that

if x ∈ S(Pα), then (
⋃

u∈A
γ(u))

⋂
(z + α + K) = ∅ and thus γ(x)

⋂
K MAXα ⋃

u∈A
γ(u) ̸= ∅,

that is:
x is an α − solution for (P) : K MAXα

⋃
u∈A

γ(u).

Theorem 36. If (Pa(G)) is stable, then there exists α ∈ W such that for all α′ > α we have:

S(VEP)W−K
r2

⊆ S(Pα′).

Proof. Let x ∈ S(VEP)W−K
r2

. Thus, INF1
⋃

y∈A
G(x, y) ⊆ W ′ − ε + K \ {0}. If (Pa(G)) is

stable, then K INF1
⋃

y∈A
G(x, y) = K MAXγ(x) ̸= ∅. Since 0 ∈ F(x, x), then for all

z ∈ (K INF1
⋃

y∈A
G(x, y)) = K MAXγ(x), z ̸> 0. Furthermore, following the domination

property, there exists z0 ∈ K INF1
⋃

y∈A
G(x, y) = MAXγ(x) such that z0 < 0 and there

exists α ∈ W such that −α − ε < z0 < 0. We remark that for all z ∈ K MAXγ(u) =
K INF1

⋃
y∈A

G(u, y), z ̸> 0.

(
⋃

u∈A
K MAXγ(u))

⋂
(z0 + α + ε + K) = ∅
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since z0 + α + ε > 0. The conclusion follows obviously.

Let us consider the vector equilibrium problem (VEP)W−K\{0}
r1 :

(VEP)W−K\{0}
r1 : find x ∈ A such that F(x, y)

⋂
(W − K \ {0}) ̸= ∅, ∀y ∈ A.

Moreover, let us consider the problem (IVEP)W+K\{0}
r1 :

(IVEP)W+K\{0}
r1 : find x ∈ A such that W ̸= K INF

⋃
y∈A

F(x, y)
⋂

W + K \ {0} ̸= ∅.

This relation is equivalent with the following conditions: K INF1
⋃

y∈A
F(x, y)

⋂
(W +K \ {0}) ≠ ∅

and W ̸⊆ K INF
⋃

y∈A
F(x, y). We remark that S(IVEP)W+K\{0}

r1 ⊆ S(VEP)W−K\{0}
r1 .

We consider the dual problem:

(Pα) K SUP1
⋃

u∈A
γ(u)

γ(u) =
⋃

T∈L(X,Z)
K INF1{−F∗

x |A (T) + {T(y) | y ∈ A}}.

An element x is a solution for (Pα) if there exists z ∈ γ(x) such that (K SUP1
⋃

u∈A
γ(u))

⋂
(z − α + K{0}) = ∅. We denote the set of these solutions by S(Pα). Let us remark

that if z ∈ S(Pα) then:

z − α ∈ K SUP(K SUP1
⋃

u∈A
γ(u)) = K SUP

⋃
u∈A

γ(u)

so z ∈ MAXα ⋃
u∈A

γ(u), i.e., x is a solution for (P).

Theorem 37. If (Pa(F)) is stable, then there exists α ∈ W such that:

S(IVEP)W+K\{0}
r1 ⊆ S(Pα)

S(VEP)W−K\{0}
r1

⋂
S(Pα) ̸= ∅

Proof. If x ∈ S(IVEP)W+K\{0}
r1 , then there exists z0 ∈ K INF1

⋃
y∈A

F(x, y) = K MAXγ(x)

(since (Pa(F)) is stable) and α ∈ W such that z0 − α > 0. If we suppose (K SUP1
⋃

u∈A
γ(u))

⋂
(z0 − α + K{0}) ̸= ∅ we have z ∈ K MAXγ(u), z > z0 − α > 0, which is false.

Since S(IVEP)W+K\{0}
r1 ⊆ (VEP)W−K\{0}

r1 , we get the conclusion.

7. Conclusions

We present a unified approach for the vector equilibrium problems in the case of
the ordering cone with nonempty quasi-interior or relative interior (possible with empty
interior). In this case, some results concerning the existence of the solutions for a vec-
tor equilibrium problem are given and are applied to obtain conditions of existence for
equilibrium in an abstract economy and for Walrasian equilibrium in a vector exchange
economy. Several properties concerning the continuity and the connectedness for the
solutions set are obtained. Some applications of this study in other domains, such as vector
optimization problems and vector duality, are also given. Optimality results, linear and
nonlinear scalarization characterization, as well as algorithm methods remain topics for
future research.
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19. Capătă, A. Optimality conditions for vector equilibrium problem and their applications. J. Ind. Manag. Optim. 2013, 9, 659–669.

[CrossRef]
20. Grad, S.; Pop, E. Vector Duality for Convex Vector Optimization Problems by Means of the Quasi-Interior of the Ordering Cone.

Optimization 2014, 1, 21–37. [CrossRef]
21. Durea, M. On the existence and stability of approximate solutions of perturbed vector equilibrium problems. J. Math. Annal. Appl.

2007, 333, 1165–1171. [CrossRef]
22. Chen, B.; Liu, Q.; Liu, Z.; Huang, N. Connectedness of approximate solutions set vector equilibrium problems in Hausdorff

topological vector spaces. Fixed Point Theory Appl. 2011, 2011, 36. [CrossRef]
23. Tarafdar, E. A fixed point theorem equivalent to the Fan-Knaster-Kuratowski-Mazur-Mazurkiewicz theorem. J. Math. Annal. Appl.

1987, 198, 475–479. [CrossRef]
24. He, W.; Yannelis, N. Equilibrium Theory with Discontinuous Non-Ordered Preferences; University of Iowa, Mimeo Posted: Iowa City,

IA, USA, 2014.
25. Stamate, C. Equilibrium Theory for Abstract Economies with M-majorized multifunctions. In Proceedings of the CAIM 2017,

Iasi, Romania, 14–17 September 2017.
26. Yannelis, N.C.; Prabhakar, N.D. Existence of Maximal Elements and Equilibria in Linear Topological Spaces. J. Math. Anal. Appl.

1996, 197, 61–74. [CrossRef]
27. Shafer, W.; Sonnenschein, H. Equilibrium in Abstract Economies Without Ordered Preferences. J. Math. Econ. 1975, 23, 345–348.

[CrossRef]
28. Tian, G. Equilibrium in Abstract Economies with Non-compact Infinite Dimensional Strategy Space, an Infinite Number of Agents

and Without Ordered Preferences. Econ. Lett. 1990, 33, 203–206. [CrossRef]
29. Rustichini, A.; Yannelis, N. Edgeworth’s Conjecture in Economies with a Continuum of Agents and Commodities. J. Math. Econ.

1991, 20, 307–326. [CrossRef]
30. Sambucini, A.R. The Choquet Integral with Respect to Fuzzy Measures and Applications. Mat. Slovaca 2017, 67, 1427–1450.

[CrossRef]
31. Stamate, C. A general Pettis-Choquet type integral. In Proceedings of the CAIM 2019, Târgoviste, Romania, 19–22 September 2019.

http://doi.org/10.1016/j.jmaa.2008.01.026
http://dx.doi.org/10.3934/jimo.2016.12.1135
http://dx.doi.org/10.11650/twjm/1500403832
http://dx.doi.org/10.1016/j.cam.2006.10.002
http://dx.doi.org/10.1080/01630563.2023.2233168
http://dx.doi.org/10.1515/math-2018-0028
http://dx.doi.org/10.1007/s10957-017-1169-1
http://dx.doi.org/10.1007/s11228-020-00571-z
http://dx.doi.org/10.3934/jimo.2013.9.659
http://dx.doi.org/10.1080/02331934.2013.775283
http://dx.doi.org/10.1016/j.jmaa.2006.12.009
http://dx.doi.org/10.1186/1687-1812-2011-36
http://dx.doi.org/10.1016/0022-247X(87)90198-3
http://dx.doi.org/10.1016/0304-4068(83)90041-1
http://dx.doi.org/10.1016/0304-4068(75)90002-6
http://dx.doi.org/10.1016/0165-1765(90)90001-H
http://dx.doi.org/10.1016/0304-4068(91)90033-P
http://dx.doi.org/10.1515/ms-2017-0049


Mathematics 2024, 12, 1448 21 of 21

32. Stamate, C. About the weak efficiencies in vector optimization. Curr. Top. Math. Comput. Sci. 2022, 11, 408–420.
33. Postolica, V. Vectorial Optimization Programs with Multifunctions and Duality. Ann. Sci. Math. Que. 1986, 10, 85–102.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Preliminaries
	The Existence of the Solutions Set
	Properties for the Solutions Set
	Applications for Abstract Economies
	 Applications of VEPs to the Vector Optimization Problems
	Conclusions
	References 

