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Abstract: The Mann–Whitney effect is a measure for comparing survival distributions between two
groups. The Mann–Whitney effect is interpreted as the probability that a randomly selected subject in
a group survives longer than a randomly selected subject in the other group. Under the independence
assumption of two groups, the Mann–Whitney effect can be expressed as the traditional integral
formula of survival functions. However, when the survival times in two groups are not independent
of each other, the traditional formula of the Mann–Whitney effect has to be modified. In this article,
we propose a copula-based approach to compute the Mann–Whitney effect with parametric survival
models under dependence of two groups, which may arise in the potential outcome framework.
In addition, we develop a Shiny web app that can implement the proposed method via simple
commands. Through a simulation study, we show the correctness of the proposed calculator. We
apply the proposed methods to two real datasets.

Keywords: censoring; copula; Hand’s paradox; Mann–Whitney effect; potential outcome; stress–
strength model; survival analysis; survival function; treatment effect; two-sample comparison
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1. Introduction

When comparing the survival times of two independent groups, the Mann–Whitney
parameter plays an important role in the two-sample problem [1]. The Mann–Whitney
parameter, say, p, is defined as the probability that a random subject from one group (with
survival time T1 in group 1) survives longer than an independent random subject from the
other group (with survival time T2 in group 2), plus one-half the probability that the two
subjects survive at the same time (tie):

p = P(T1 > T2) +
1
2
P(T1 = T2). (1)

When researchers verify the superiority of a treatment over another, they examine whether
the effect exceeds the null difference, p = 0.5. For instance, when they obtain p = 0.7, this
effect is transformed to 0.8 of Cohen’s d according to well-known benchmark values [2].
Therefore, it can be interpreted as a large effect. The Mann–Whitney effect relates to impor-
tant statistical ideas, such as, the Mann–Whitney test [3], hazard ratios, and win ratio [4].
The Mann–Whitney test examines the null hypothesis H0 : p = 1/2 vs. H1 : p ̸= 1/2. The
hazard ratio is the main effect measure of the Cox proportional hazards model, which is a
typical statistical model in survival analysis. The win ratio w is given by the odds of p; that
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is, w = p/(1 − p). That is, p > 1/2, or equivalently w > 1, implies a protective survival
effect for group 1.

The problem of estimating the parameter p plays an important part in survival and
reliability analysis. The basic idea was first studied by Birnbaum [5]. They illustrated
an attractive relationship between the Mann–Whitney statistic and the stress–strength
model. Efron [1] first proposed a nonparametric estimator (Efron’s estimator) for p under
independent censoring. Since then, this topic has been investigated by several researchers.
In the following, we refer to some recent studies in the field of survival and reliability
analyses. Dobler & Pauly [6] modified Efron’s estimator for p under small sample sizes.
Emura & Hsu [7] proposed a copula-graphic estimator for p and suggested the Mann–
Whitney test to compare two survival distributions in the presence of dependent censoring.
Biswas et al. [8] introduced the Bayesian estimation of p for the log-Lindley distribution.
Rubarth et al. [9] proposed estimating the Mann–Whitney effects in factorial clustered data.
Hu et al. [10] developed methodologies for constructing fixed-accuracy confidence intervals
of p when T1 and T2 follow geometric and the exponential distributions, respectively. de
la Cruz et al. [11] studied a estimation procedure of the stress–strength model for the two
independent unit-half-normal distributions with different shape parameters. Patil et al. [12]
investigated the effect of dependence of the variables on p in the stress-strength model
with the exponential margins. Nowak et al. [13] proposed a group sequential method for
estimating the Mann–Whitney parameter. Singh et al. [14] studied the estimator of p in
point, interval, and Bayesian estimations when the stress variables follow geometric and
Lindley distribution. All the methods assumed that T1 and T2 are independent.

When T1 and T2 are independent of each other and continuous, one can estimate p
with the marginal distributions based on the following integral:

p = −
∫ ∞

0
S1(t)dS2(t).

That is, one can estimate p by estimating two marginal survival functions, S1 and S2.
However, this is not the case when T1 and T2 are dependent; the phenomenon is sometimes
called “Hand’s paradox” [15]. This showed that the paradox arises when T1 and T2 are
regarded as potential outcomes in the causal inference framework. Therefore, p in the
integral cannot be interpreted as the true treatment effect. Moreover, the dependence of
outcomes from observation to observation is well known in factorial, paired, and cross-over
designs [16,17].

Since p is not identifiable solely from independently sampled data, Fan & Park [18]
suggested a bound for p under all possible dependence structures for T1 and T2. Alter-
natively, Fay et al. [19] reformulated p such that it can be identified from randomized
treatment assignments. Computing p under various dependence structures gives the re-
searchers additional information for their decision making about the behavior of p when
the outcomes are not independent. However, to estimate the true p, we must model the
bivariate survival function of T1 and T2. A copula is often used to model joint distributions
of dependent survival times [20,21]. Here, the major challenge is to derive the formula
of p under copula models and its extension to allow for a limited follow-up length for
survival times.

In this article, we propose a model for the bivariate survival function by using
parametric copulas and parametric marginal distributions. Our focus is to study p when
there is dependence between T1 and T2. Therefore, we focus on assessing how p vary
under various dependences modeled by copulas. We then derive a new formula for
computing p under a parametric copula. We also propose a new formula for p under
the restricted follow-up. To make the proposed computation method for p to be easily
performed by users, we develop a Shiny-based web app. Furthermore, we validate the
accuracy of the proposed computation method and Shiny web app by simulations. We
finally analyze real data, where the proposed copula-based estimators are compared with
Efron’s estimator (benchmark).
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The rest of the paper is organized as follows. In Section 2, we define copula-based
models and introduce several well-known copula families. In this section, we show that
one can compute p by a theorem given by Emura & Pan [22], and we extend the theorem to
compute p when the follow-up time is restricted up to time τ. In Section 3, we introduce a
Shiny web app in the R software version 4.2.3 that can compute p via simple commands. In
Section 4, we describe a simulation study to show the correctness of the proposed calculator
for p. In Section 5, we illustrate a meaningful application of our proposed method using
survival data. The computer code for the simulations and data analyses is available in
Supplementary Materials.

2. Proposed Method

In this section, we first introduce copula-based bivariate survival models for T1 and
T2. We then propose our method for computing the Mann–Whitney effect p in Equation (1)
under the copula models.

2.1. Survival Copula Models for Dependent Survival Time

According to Sklar [23], any bivariate distribution function for (T1, T2) can be formulated
by using a copula. A bivariate copula is a bivariate distribution function for two uniformly
distributed variables on [0, 1] [24,25]. In many applications of copulas on survival analysis,
bivariate survival functions are modeled via survival copulas [20,24,26,27]. Below, we intro-
duce a survival copula model for a bivariate survival function S(t1, t2) = P(T1 > t1, T2 > t2).

Let T1 and T2 be continuous survival times with marginal survival functions S1 and
S2, respectively. We model the bivariate survival function of T1 and T2 using a survival
copula C:

P(T1 > t1, T2 > t2) = C(S1(t1), S2(t2)). (2)

This representation is useful since two marginal survival functions S1 and S2 are separated
from the dependence structure C. Under the survival copula model (2), the copula C
is a bivariate distribution function for U = S1(T1) and V = S2(T2), namely C(u, v) =
P(U ≤ u, V ≤ v). Note that the survival copula model (2) gives a different model from the
copula model P(T1 ≤ t1, T2 ≤ t2) = C(1 − S1(t1), 1 − S2(t2)) unless the copula is radially
symmetric, i.e., C(u, v) = u + v − 1 + C(1 − u, 1 − v).

We will consider the following well-known families of bivariate copulas.

1. The independence copula:
C(u, v) = uv.

2. The Clayton copula [28]:

Cθ(u, v) = max
(
(u−θ + v−θ − 1)−1/θ , 0

)
, θ ∈ [−1, ∞) \ {0}.

3. The Gumbel copula [29]:

Cθ(u, v) = exp
{
−[(− log u)θ+1 + (− log v)θ+1]

1
θ+1

}
, θ ∈ [0, ∞).

4. The Frank copula [30]:

Cθ(u, v) = −1
θ

log
(

1 +
(e−θu − 1)(e−θv − 1)

e−θ − 1

)
, θ ∈ (−∞, ∞) \ {0}.

5. The Farlie–Gumbel–Morgenstern (FGM) copula [31]:

Cθ(u, v) = uv + θuv(1 − u)(1 − v), θ ∈ [−1, 1].
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6. The Gumbel–Barnett (GB) copula [24,32,33]:

Cθ(u, v) = uv exp(−θ log u log v), θ ∈ [0, 1].

In Figure 1, we present scatter plots for (U, V) generated from various copulas with
selected values of θ. The Clayton copula (Figure 1b,c) shows lower tail dependence, the
Gumbel copula (Figure 1d) shows upper tail dependence, Frank copula (Figure 1e,f) shows
symmetric dependence around the median, and the FGM copula (Figure 1g,h) is similar
to the Frank copula; both copulas are radially symmetric. Unlike other copulas, the GB
copula exhibits negative dependence only (Figure 1i).
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Figure 1. Scatter plots of 3000 data points generated from the copula distribution with parameter θ.

These copulas have been applied to survival data and other data analyses. The
Clayton copula was applied to survival data with dependent censoring. For instance,
Schneider et al. [34] modeled dependence between survival and dependent censoring times
in the survival data of tuberculosis cure. The Clayton, Gumbel, and Frank copulas were
also applied to dependently censored data in clinical trials or observational studies [35–37].
The Gumbel, Frank, and FGM copulas were often used in competing risks models on
survival data analysis [26,38–40]. Copulas were also applied to multivariate meta-analysis;
Shih et al. and Shih et al. [41,42] proposed bivariate Clayton, FGM, and Gumbel models for
bivariate meta-analysis. The Gumbel–Barnett copula has the simple form and is suitable
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for modeling negative dependence [24,32]. Therefore, it is important to consider a variety
of copulas for dependent survival times.

To see the strength of dependence in a copula, θ can be transformed to Kendall’s τ.
Kendall’s τ is a well-known measure to assess the dependence between two variables [20,24].
Kendall’s τ does not depend on the marginals, and is solely determined by the copula (by
θ). Appendix A provides the formulas of Kendall’s τ for the Clayton, Gumbel, Frank, FGM,
and GB copulas. Therefore, Kendall’s τ is advantageous over the Pearson correlation for T1
and T2.

2.2. Proposed Method for Computing p

In this section, we propose a new formula for computing p under the survival copula
model (2). Let U = S1(T1) and V = S2(T2). For computing p, we will use the conditional
distribution function for U given V = v, which is the partial derivative of C with respect
to v:

C[0,1](u, v) = P(U ≤ u | V = v) =
∂C(u, v)

∂v
.

Then, by slightly modifying the theorem given by Emura & Pan [22], p can be expressed as
the univariate integral on [0, 1]:

p = P(T1 > T2) +
1
2
P(T1 = T2)

= P(S1(T1) < S1(T2)) = P(U < S1(S−1
2 (V))) = E

[
P(U < S1(S−1

2 (V)) | V)
]

=
∫ 1

0
C[0,1](S1(S−1

2 (v)), v)dv.

(3)

We note that the theorem of Emura & Pan [22] is not directly applicable to the survival
copula model (2) since that theorem is designed for the copula model P(T1 ≤ t1, T2 ≤ t2) =
C(1 − S1(t1), 1 − S2(t2)).

In order to compute p by the above formulas, we need to specify S1, S2, and θ. One
can specify S1 and S2 by continuous parametric models that will be discussed in Section 2.4.
One can try different values for θ in a sensitivity analysis. Note that the above calculations
are not applicable for discrete parametric models for S1 and S2.

2.3. Computing p with Follow-Up Time

In this section, we assume that every subject has a common follow-up time τ > 0. For
survival data, the follow-up period is often limited. When a subject survives longer than the
follow-up period, one may treat the survival time of the subject as equal to the follow-up
period [6,43,44]. This means that we define the Mann–Whitney effect for min(T1, τ) and
min(T2, τ). We now obtain p with the follow-up time τ from the following theorem, a
straightforward expansion of the theorem of Emura & Pan [22].

Theorem 1. The Mann–Whitney effect p with a follow-up time τ is written as the univariate
integral:

pτ = P(min(T1, τ) > min(T2, τ)) +
1
2
P(min(T1, τ) = min(T2, τ))

= P(T1 > T2, T2 < τ) +
1
2
P(T1 > τ, T2 > τ)

= P(U < S1(S−1
2 (V)), V > S2(τ)) +

1
2

C(S1(τ), S2(τ))

=
∫ 1

S2(τ)
C[0,1](S1(S−1

2 (v)), v)dv +
1
2

C(S1(τ), S2(τ)).

(4)
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Furthermore, pτ tends to p as τ → ∞. That is,

lim
τ→∞

pτ =
∫ 1

0
C[0,1](S1(S−1

2 (v)), v)dv +
1
2

C(0, 0) = p.

Appendix B provides the formulas of p and pτ for the Clayton, Gumbel, Frank, FGM,
and GB copulas.

2.4. Marginal Survival Distributions

To compute p and pτ , we considered the following parametric marginal distributions
for the group j ∈ {1, 2}:

1. The exponential distribution:

Sj(t) = exp(−λjt), λj > 0,

Si(S−1
j (v)) = v

λi
λj ,

where λj is a rate parameter.
2. The Weibull distribution:

Sj(t) = exp(−λjt
kj), λj > 0, k j > 0,

Si(S−1
j (v)) = exp

−λi

(
− log v

λj

) ki
kj

,

where λj is a scale parameter and k j is a shape parameter.
3. The gamma distribution:

Sj(t) = 1 −
γ(k j, λjt)

Γ(k j)
, λj > 0, k j > 0,

where λj is a scale parameter and k j is a shape parameter, and Γ(k) is the gamma

function, and γ(k, λt) =
∫ λt

0 xk−1e−xdx is the lower incomplete gamma function. The
gamma distribution has no simple closed-form expression for the inverse survival
function. Therefore, one can use approximations for the inverse survival function. In
this article, we use the R software version 4.2.3 function “qgamma” to calculate S−1

j (v).
4. The log-normal distribution:

Sj(t) =
1√

2πσ2
j

∫ ∞

t

1
y

exp

{
− 1

2σ2
j
(log y − µj)

2

}
dy,

where µj is a location parameter and σj is a scale parameter. Note that Sj(t) has no
simple closed-form expression for the inverse survival function. Therefore, one can
use approximations for the inverse survival function. In this article, we use the R
software function “qlnorm” to calculate S−1

j (v).
5. The Burr III distribution:

Sj(t) = 1 − (1 + t−cj)−kj , cj > 0, k j > 0,

Si(S−1
j (v)) = 1 −

1 +
(
(1 − v)

− 1
kj − 1

) ci
cj

−ki

,

where cj, k j are shape parameters.
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In Figure 2, we present survival curves of the exponential, Weibull, gamma, log-
normal, and Burr III distributions with different parameters. These plots show that these
distributions can represent almost any continuous survival curve that will be encountered
in practice.
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Figure 2. The plots for parametric survival functions.

Example 1. Let the marginals S1(t), S2(t) be the exponential distributions with parameter λ1 = 1,
λ2 = 2. Assume that T1 and T2 are independent. Then, by Theorem 1 with τ = ∞, p is given by

p =
∫ 1

0
C[0,1]

θ (S1(S−1
2 (v)), v)dv

=
∫ 1

0
exp

(
λ1

λ2
log v

)
dv =

λ2

λ1 + λ2
=

2
3

.

Example 2. Let the marginals S1(t), S2(t) be the exponential distributions with parameter λ1 = 1,
λ2 = 2. Assume that Cθ(u, v) is the Clayton copula with parameter θ = 3. Then, Kendall’s τ is
given by

Kendall’s τ =
θ

θ + 2
= 0.6

and by Theorem 1 with τ = ∞, p is given by

p =
∫ 1

0
C[0,1]

θ (S1(S−1
2 (v)), v)dv

=
∫ 1

0
v−θ−1

(
v−θ

λ1
λ2 + v−θ − 1

)− 1
θ −1

dv

=
∫ 1

0
v−4

(
v−

3
2 + v−3 − 1

)− 4
3 dv = 0.84.
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When τ < ∞, pτ is given by

pτ =
∫ 1

0
C[0,1](S1(S−1

2 (v)), v)dv +
1
2
P(min(T1, τ) = min(T2, τ))

=
∫ 1

e2τ
v−4

(
v−

3
2 + v−3 − 1

)− 4
3 dv +

1
2

(
e3τ + e6τ − 1

)− 1
3 .

When τ = 0.5, pτ = 0.68. Here, we computed the last two equations by a numerical integration by
the R software version 4.2.3 function “integrate”.

Parameters for the marginal distributions can be estimated by maximum likelihood
estimators (MLEs) when the survival data are available in two groups (Section 5).

2.5. Sensitivity Analysis by Copulas

To comprehensively cover the possible dependence structures between T1 and T2,
we select the Clayton, Gumbel, Frank, FGM, and GB copulas, and set their parameters.
Table 1 contains positive dependence and negative dependence with weak and strong
correlations, as well as the independence. However, the selection of an appropriate copula
may be difficult unless both T1 and T2 are observed for the same subject (e.g., by cross-over
designs). This is the case for the data examples (Section 5), where T1 and T2 are observed for
different subjects. Let Z be the group indicator (Z = 1 when T1 is observed; Z = 2 when T2
is observed). What we observe is one of T1 and T2, namely, T = T11(Z = 1) + T21(Z = 2).
As T1 and T2 are never observed simultaneously, the copula for T1 and T2 are not iden-
tifiable [18,19]. This means that copula model selection and goodness-of-fit test are not
feasible. Therefore, as one cannot specify a single copula, we suggest computing p under all
these copulas and dependence parameters to see how p changes under various dependence.
Such sensitivity analyses allow researchers to obtain the bounds of p under the possible
dependence structures.

Table 1. Selection of copulas and their parameters.

Copula θ Kendall’s τ

Clayton 1.0 0.33
5.0 0.71

10.0 0.83
Gumbel 0.0 0.00

4.0 0.80
Frank −20.0 −0.82

−5.0 −0.46
1.0 0.11
5.0 0.46

FGM −1.0 −0.22
0.0 0.00
1.0 0.22

GB 0.5 −0.21
1.0 −0.36

3. Software and Web App

We developed a Shiny-based web app to implement the proposed method for com-
puting p and pτ . The app is available at (https://nkosuke.shinyapps.io/shiny_survival/
accessed on 7 April 2024) and can be used in any environment, including smartphones.
Using this app, users can choose a marginal survival distribution, copula, and the relevant
parameters to compute p and pτ . Our app is easy to use without knowledge of the R
software version 4.2.3. The app works without data, because it does not estimate the
parameters of the marginals and copula. All relevant parameters are entered by users. The

https://nkosuke.shinyapps.io/shiny_survival/
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app can compute p and pτ across different parametric distributions (Section 2.4) and copula
models (Section 2.5).

3.1. Input

The web app requires users to select input values to compute p and pτ . The left panel
of Figure 3 shows input icons, where users can select marginal distributions from the
exponential, Weibull, gamma, log-normal, and Burr III distributions and a copula from the
Clayton, Gumbel, Frank, FGM, and GB copulas. One can choose marginal distributions
and copulas, set their parameters, and choose the language displayed on the screen in the
input panels on the left-hand of the app (Figure 3). Furthermore, users can set a follow-up
time τ.

Figure 3. The web app showing the results for computing p and pτ under the exponential distribution.

3.2. Output

This app displays key formulas, survival curves of two groups, the values of p and
pτ , and the value of Kendall’s τ. These formulas include marginal and bivariate survival
functions and formulas of p and pτ based on the input values. The theoretical values of p
and pτ are displayed together with survival curves.

3.3. Example of Using the App

Users may set the marginal survival distribution = “Exponential Distribution”, λ1 = 0.5,
λ2 = 0.25, τ = 4.5, copula = “Clayton”, θ = 1.5 and the language displayed on the screen
“English”, and push “submit” button, and then they can obtain p = 0.225, pτ = 0.268.
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Figure 3 displays the web app in this setting. Appendix C provides further examples
for users.

4. Simulation Studies

To show the correctness of the proposed calculator for p and pτ , we conduced a
simulation study. In particular, we tried to confirm the formula of Theorem 1 under
a variety of marginal distributions and copulas. For the simulation study, we set the
marginal survival functions to be the exponential distributions with (λ1, λ2) = (1.0, 2.0),
the Weibull distributions with (λ1, k1, λ2, k2) = (1.0, 0.5, 2.0, 1.0), the gamma distributions
with (λ1, k1, λ2, k2) = (1.0, 1.5, 2.0, 2.0), the log-normal distributions with (µ1, σ2

1 , µ2, σ2
2 ) =

(0.7, 1.5, 0.3, 2.0), and the Burr III distributions with (c1, k1, c2, k2) = (1.5, 3.0, 1.0, 1.0). Fur-
thermore, we set the copula parameters, the Clayton copula with θ = 1.0, 5.0 or 10.0, the
Gumbel copula with θ = 0.0 or 4.0, the Frank copula with θ = −5.0, 1.0, or 5.0, the FGM
copula with θ = −1.0, 0.0, or 1.0, the GB copula with θ = 0.5, or 1.0, and follow-up
time τ = 0.5, 2.0, 5.0, or ∞. We chose the copulas and their parameters to cover both posi-
tive and negative dependence. We generated 100,000 pairs (Ti1, Ti2), i = 1, . . . , M, where
M = 100,000, from the bivariate survival function based on the aforementioned setting, and
calculated the Monte Carlo simulation values defined as

pτ,sim =
1
M

M

∑
i=1

[
1(min(Ti1, τ) > min(Ti2, τ)) +

1
2
1(min(Ti1, τ) = min(Ti2, τ))

]
.

Table 2 shows that the simulation values are nearly equal to the theoretical values
computed by the formula of Theorem 1 for every setting. Note that the standard errors (SEs)
due to the uncertainty of the Monte Carlo values are less than 0.002 in all settings, which
are negligible. As the positive dependence between Ti1 and Ti2 gets strong, the value of p
and pτ approaches 1. Moreover, even though the values of the Kendall’s τ are equivalent,
it is possible for pτ to vary from a copula model to others due to distinct characteristics of
copulas. In conclusion, our simulations show that Theorem 1 is correct, and the Shiny web
app based on Theorem 1 is reliable.

Table 2. Comparison of the theoretical value and the simulation value (SE < 0.002) for calculating pτ

defined in Theorem 1. (The exponential, Weibull, gamma, log-normal, and Burr III distributions).

τ = 0.5 τ = 2 τ = 5 τ = ∞
Distribution Copula θ Kendall’s τ pτ,theory pτ,sim pτ,theory pτ,sim pτ,theory pτ,sim pτ,theory pτ,sim

Exponential Clayton 1.0 0.33 0.645 0.643 0.737 0.738 0.744 0.746 0.744 0.746
5.0 0.71 0.704 0.706 0.872 0.872 0.881 0.883 0.881 0.883
10.0 0.83 0.746 0.745 0.920 0.921 0.930 0.930 0.930 0.929

Gumbel 0.0 0.00 0.629 0.631 0.666 0.666 0.666 0.665 0.667 0.666
4.0 0.80 0.798 0.799 0.961 0.961 0.970 0.969 0.970 0.968

Frank −5.0 −0.46 0.615 0.615 0.622 0.622 0.622 0.622 0.622 0.620
1.0 0.11 0.636 0.636 0.684 0.684 0.685 0.685 0.685 0.685
5.0 0.46 0.674 0.674 0.771 0.768 0.773 0.772 0.773 0.775

FGM −1.0 −0.22 0.617 0.617 0.633 0.634 0.633 0.631 0.633 0.633
0.0 0.00 0.629 0.629 0.666 0.666 0.666 0.666 0.666 0.664
1.0 0.22 0.642 0.641 0.699 0.697 0.700 0.702 0.700 0.698

GB 0.5 −0.21 0.623 0.624 0.642 0.643 0.642 0.641 0.642 0.640
1.0 −0.36 0.617 0.616 0.629 0.628 0.629 0.632 0.629 0.630

Weibull Clayton 1.0 0.33 0.497 0.496 0.594 0.589 0.603 0.602 0.603 0.602
5.0 0.71 0.482 0.480 0.644 0.645 0.653 0.654 0.653 0.650
10.0 0.83 0.472 0.472 0.645 0.645 0.654 0.653 0.654 0.652

Gumbel 0.0 0.00 0.511 0.509 0.560 0.562 0.562 0.562 0.562 0.563
4.0 0.80 0.425 0.424 0.584 0.585 0.593 0.594 0.593 0.592

Frank −5.0 −0.46 0.528 0.530 0.542 0.541 0.542 0.543 0.542 0.541
1.0 0.11 0.505 0.504 0.566 0.565 0.569 0.572 0.569 0.568
5.0 0.46 0.486 0.486 0.592 0.595 0.597 0.597 0.597 0.594

FGM −1.0 −0.22 0.521 0.523 0.548 0.549 0.549 0.551 0.549 0.549
0.0 0.00 0.511 0.509 0.560 0.563 0.562 0.562 0.562 0.564
1.0 0.22 0.501 0.503 0.572 0.574 0.575 0.577 0.575 0.574

GB 0.5 −0.21 0.519 0.520 0.549 0.546 0.549 0.548 0.549 0.553
1.0 −0.36 0.526 0.526 0.545 0.545 0.545 0.545 0.545 0.546
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Table 2. Cont.

τ = 0.5 τ = 2 τ = 5 τ = ∞
Distribution Copula θ Kendall’s τ pτ,theory pτ,sim pτ,theory pτ,sim pτ,theory pτ,sim pτ,theory pτ,sim

Gamma Clayton 1.0 0.33 0.529 0.529 0.651 0.649 0.679 0.678 0.679 0.680
5.0 0.71 0.530 0.528 0.763 0.763 0.809 0.810 0.809 0.810
10.0 0.83 0.534 0.533 0.817 0.816 0.862 0.863 0.863 0.863

Gumbel 0.0 0.00 0.530 0.530 0.611 0.612 0.615 0.614 0.615 0.616
4.0 0.80 0.545 0.546 0.813 0.813 0.853 0.853 0.854 0.853

Frank −5.0 −0.46 0.532 0.530 0.584 0.584 0.584 0.583 0.584 0.584
1.0 0.11 0.530 0.529 0.622 0.622 0.628 0.628 0.628 0.628
5.0 0.46 0.530 0.530 0.679 0.679 0.694 0.692 0.694 0.697

FGM −1.0 −0.22 0.531 0.533 0.591 0.591 0.592 0.591 0.592 0.592
0.0 0.00 0.530 0.529 0.611 0.610 0.615 0.614 0.615 0.617
1.0 0.22 0.529 0.529 0.631 0.631 0.639 0.640 0.639 0.641

GB 0.5 −0.21 0.531 0.532 0.597 0.598 0.598 0.598 0.598 0.597
1.0 −0.36 0.532 0.532 0.589 0.592 0.590 0.588 0.589 0.588

Log-normal Clayton 1.0 0.33 0.580 0.582 0.596 0.594 0.593 0.591 0.573 0.574
5.0 0.71 0.599 0.599 0.658 0.658 0.675 0.677 0.619 0.619
10.0 0.83 0.618 0.617 0.715 0.715 0.756 0.755 0.684 0.684

Gumbel 0.0 0.00 0.574 0.575 0.576 0.578 0.569 0.570 0.564 0.562
4.0 0.80 0.652 0.652 0.745 0.746 0.760 0.759 0.728 0.726

Frank −5.0 −0.46 0.567 0.567 0.553 0.554 0.547 0.547 0.547 0.544
1.0 0.11 0.577 0.576 0.584 0.586 0.578 0.580 0.571 0.570
5.0 0.46 0.593 0.593 0.624 0.625 0.623 0.621 0.609 0.607

FGM −1.0 −0.22 0.568 0.567 0.560 0.561 0.553 0.553 0.550 0.551
0.0 0.00 0.574 0.574 0.576 0.576 0.569 0.569 0.564 0.560
1.0 0.22 0.580 0.580 0.591 0.593 0.585 0.586 0.577 0.579

GB 0.5 −0.21 0.571 0.572 0.563 0.566 0.558 0.555 0.558 0.557
1.0 −0.36 0.568 0.567 0.557 0.557 0.550 0.554 0.549 0.550

Burr III Clayton 1.0 0.33 0.661 0.662 0.753 0.753 0.760 0.761 0.747 0.748
5.0 0.71 0.665 0.665 0.819 0.820 0.883 0.883 0.863 0.865
10.0 0.83 0.666 0.666 0.832 0.832 0.913 0.914 0.896 0.897

Gumbel 0.0 0.00 0.660 0.661 0.714 0.715 0.701 0.701 0.697 0.696
4.0 0.80 0.667 0.665 0.832 0.832 0.885 0.883 0.871 0.871

Frank −5.0 −0.46 0.658 0.658 0.663 0.662 0.650 0.649 0.650 0.653
1.0 0.11 0.661 0.660 0.730 0.731 0.720 0.719 0.715 0.716
5.0 0.46 0.664 0.663 0.788 0.789 0.798 0.797 0.789 0.788

FGM −1.0 −0.22 0.658 0.658 0.683 0.683 0.666 0.666 0.665 0.664
0.0 0.00 0.660 0.660 0.714 0.711 0.701 0.701 0.697 0.699
1.0 0.22 0.661 0.662 0.744 0.747 0.737 0.736 0.730 0.729

GB 0.5 −0.21 0.659 0.659 0.692 0.693 0.676 0.677 0.675 0.676
1.0 −0.36 0.658 0.658 0.673 0.671 0.659 0.659 0.659 0.659

Note: We set the exponential distributions with (λ1, λ2) = (1.0, 2.0), the Weibull distributions with
(λ1, k1, λ2, k2) = (1.0, 0.5, 2.0, 1.0), the gamma distributions with (λ1, k1, λ2, k2) = (1.0, 1.5, 2.0, 2.0), the log-
normal distributions with (µ1, σ2

1 , µ2, σ2
2 ) = (0.7, 1.5, 0.3, 2.0), and the Burr III distributions with (c1, k1, c2, k2) =

(1.5, 3.0, 1.0, 1.0).

5. Data Analysis

In this section, we apply our proposed methods to a tongue cancer dataset and a
prostate cancer dataset. The two datasets are publicly available and anonymized. The
purpose of the data analyses is to show how the proposed methods are implemented
and how the results offer new insights beyond Efron’s traditional estimator for the Mann–
Whitney effect.

Before analyzing the real datasets, we introduce basic notations and ideas for esti-
mating p by using censored data. We consider survival times (Ti1, Ti2) for two groups,
a group indicator Zi (Zi = 1 for group 1 and Zi = 2 for group 2), and censoring time
Ci for i = 1, . . . , n. The sample size for each group is nj = ∑i 1(Zi = j), j = 1, 2. With
Ti = Ti11(Zi = 1) + Ti21(Zi = 2), we observe is Xi = min(Ti, Ci), ∆i = 1(Ti ≤ Ci), and
Zi for i = 1, . . . , n. In this observation, only one of Ti1, Ti2, and Ci is observed (Ti1 and
Ti2 are never observed simultaneously) for each i, making it difficult to identify a copula
for (Ti1, Ti2). Without specifying a copula for possibly dependent survival times (Ti1, Ti2),
one can still estimate the marginal distributions. Using the exponential distribution, we
obtained the MLE of the exponential hazard rate λ̂j, j = 1, 2 by

λ̂j =
∑n

i=1 ∆i1(Zi = j)
∑n

i=1 Xi1(Zi = j)
, j = 1, 2.

Then, by applying the values of the MLE to the proposed Shiny web app, we obtained
the estimators p̂ and p̂τ , where τ was chosen appropriately (Sections 5.1 and 5.2). The
estimators were computed under various copulas as one cannot specify a single copula (see
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Section 2.5). On the other hand, under the independence assumption of Ti1 and Ti2, Efron’s
estimator [1] of p is

p̂KM = −
∫ ∞

0
Ŝ±

1 (t)dŜ2(t),

p̂KM
τ = −

∫ Ŝ−1
2 (τ)

0
Ŝ±

1 (t)dŜ2(t) +
1
2

Ŝ±
1 (τ)Ŝ±

2 (τ),

where Ŝ±
j (t) = [Ŝj(t+) + Ŝj(t−)]/2 and Ŝj(t) is a Kaplan–Meier (KM) estimator for group

j = 1, 2. However, these benchmark estimates are subject to the independence of two
groups. Therefore, the proposed estimator is useful to examine the sensitivity under a
variety of dependence structures via copulas. We apply a jackknife estimator of standard
error (SE) to measure the estimators’ uncertainty, and employ the normal approximation to
obtain p-values for testing H0 : pτ = 1/2 vs. H1 : pτ ̸= 1/2.

5.1. Tongue Cancer Data

The tongue dataset is available in the R software version 4.2.3 package KMsurv. It has
80 observations and contains: type (tumor DNA profile: 1 = aneuploid tumor, 2 = diploid
tumor), time (time to death or on-study time (weeks)), and death (event indicator: 0 = alive,
1 = dead). It contains n1 = 52 observations in the DNA-aneuploid tumor group (j = 1),
and n2 = 28 observations in the DNA-diploid tumor group (j = 2). We considered the
follow-up time τ = min{maxi Xi∆i1(Zi = 1), maxi Xi∆i1(Zi = 2)} and obtained τ = 167.
The tongue cancer data resulted in λ̂1 = 0.00736, λ̂2 = 0.0130 and p̂KM

τ = 0.615. In Figure 4,
the KM estimators of each group and the estimated exponential survival curves are plotted.
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Figure 4. KM estimators for the DNA-aneuploid tumor and the DNA-diploid tumor group and the
exponential survival curves with the MLEs of exponential hazard rate (darker blue and red lines),
λ̂1 = 0.00736, λ̂2 = 0.0130. The vertical line signifies the follow-up time τ = 167.

We conducted sensitivity analyses using a copula-based approach (see Section 2.5).
We calculated p̂ and p̂τ by Theorem 1 under weak, strong positive, and negative in-
dependence. We calculated p̂τ via the web app (Figure 5). Table 3 shows the out-
put under the independent, Clayton, Gumbel, Frank, FGM, and GB copula with pa-
rameter θ ∈ {1, 5} (the Clayton), θ = 4 (the Gumbel), θ ∈ {−20,−5, 5} (the Frank),
θ ∈ {−1, 1} (the FGM), θ ∈ {0.5, 1} (the GB). The results for all scenarios are summa-
rized in Table 3. We obtained the p̂τ ranging from 0.596 to 0.895, which is equivalent to
Cohen’s d being greater than or equal to 0.5. Therefore, we concluded that subjects in the
DNA-aneuploid tumor group survive longer than in those the DNA-diploid tumor group.
This conclusion did not change under any of the conducted dependence structures.
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Figure 5. Example for the tongue cancer dataset on the app. This setting is marginal distribution:
“Exponential”, λ1 = 0.00736, λ2 = 0.0130, τ = 167, copula: “Clayton”, copula parameter: θ = 1, and
language: “English”.

Table 3. Estimates p̂τ(τ = 167) for fitting the KM estimator (independent) and with exponential
marginal survival distributions (the independent, Clayton, Gumbel, Frank, FGM, GB copulas) for the
tongue cancer dataset.

Copula Marginal
Distribution θ p̂ SE p-Value p̂τ(τ = 167) SE p-Value

Independent KM estimator - - - - 0.624 0.071 0.079
Independent exponential - 0.638 0.076 0.070 0.633 0.075 0.076

Clayton exponential 1.0 0.709 0.096 0.029 0.676 0.096 0.067
5.0 0.856 0.075 <0.001 0.799 0.100 0.003

Gumbel exponential 4.0 0.944 0.084 <0.001 0.895 0.095 <0.001
Frank exponential −20.0 0.596 0.055 0.080 0.596 0.055 0.080

−5.0 0.600 0.057 0.081 0.600 0.057 0.081
5.0 0.733 0.111 0.036 0.714 0.108 0.046

FGM exponential −1.0 0.609 0.063 0.082 0.609 0.063 0.083
1.0 0.666 0.090 0.063 0.658 0.088 0.072

GB exponential 0.5 0.617 0.066 0.077 0.617 0.066 0.078
1.0 0.606 0.060 0.079 0.606 0.060 0.080

5.2. Prostate Cancer Data

The prostate cancer data are available in the R software version 4.2.3 package asaur [45].
They have 14,294 observations and contain grade (moderately differentiated and poorly
differentiated), survTime (time from diagnosis to death or last date known alive), and status
(event indicator: 0 = censored, 1 = death from prostate cancer). They contain n1 = 10,988
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observations in the moderately differentiated group (j = 1), and n2 = 3306 observations in
the poorly differentiated group (j = 2).

The prostate cancer data resulted in λ̂1 = 0.000817, λ̂2 = 0.00374, τ = 108, and
p̂KM = 0.679. In Figure 6, we plot the KM estimators of each group and estimated exponen-
tial survival curves. We calculated p̂τ by Theorem 1 with copulas and several parameters.
We calculated p̂τ under the independent, Clayton, Gumbel, Frank, FGM, and GB copulas
with parameter θ ∈ {1, 5} (the Clayton), θ = 4 (the Gumbel), θ ∈ {−20,−5, 5} (the Frank),
θ ∈ {−1, 1} (the FGM), θ ∈ {0.5, 1} (the GB) via the web app (Figure 7). The results for all
scenarios are summarized in Table 4. We obtained the p̂τ ranging from 0.623 to 0.666, which
is equivalent to Cohen’s d being equal to 0.5. Therefore, we concluded that subjects in
the moderately differentiated group survive longer than those in the poorly differentiated
group. The range of p̂τ is narrower than one of tongue cancer dataset, because the large
difference of survival functions may not be influenced by copulas.
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Figure 6. KM estimators for the moderately differentiated and the poorly differentiated group and
exponential survival curves with the MLEs of exponential hazard rate (darker blue and red lines),
λ̂1 = 0.000817, λ̂2 = 0.00374. The vertical line signifies the follow-up time τ = 108.

Table 4. Estimates pτ(τ = 108) for fitting the KM estimator (independent) and pτ(τ = 108) with the
exponential marginal survival distributions (the independent, Clayton, Gumbel, Frank, FGM, GB
copulas) for the prostate cancer dataset.

Copula Marginal
Distribution θ p̂ SE p-Value p̂τ

(τ = 108) SE p-Value

Independent KM estimator - - - - 0.635 0.013 <0.001
Independent exponential - 0.821 0.010 <0.001 0.625 0.007 <0.001

Clayton exponential 1.0 0.889 0.008 <0.001 0.626 0.007 <0.001
5.0 0.958 0.003 <0.001 0.635 0.007 <0.001

Gumbel exponential 4.0 0.999 <0.001 <0.001 0.666 0.006 <0.001
Frank exponential −20.0 0.741 0.009 <0.001 0.624 0.007 <0.001

−5.0 0.753 0.010 <0.001 0.624 0.007 <0.001
5.0 0.924 0.007 <0.001 0.632 0.007 <0.001

FGM exponential −1.0 0.777 0.011 <0.001 0.623 0.007 <0.001
1.0 0.865 0.010 <0.001 0.626 0.007 <0.001

GB exponential 0.5 0.786 0.010 <0.001 0.624 0.007 <0.001
1.0 0.764 0.010 <0.001 0.623 0.007 <0.001
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Figure 7. Example for the tongue cancer dataset on the app. This setting is marginal distribution:
“Exponential”, λ1 = 0.000817, λ2 = 0.00374, τ = 108, copula: “Gumbel”, copula parameter: θ = 4,
and language: “English”.

6. Conclusions

The Mann–Whitney effect has been widely used for survival analysis, which can
provide a meaningful measure of treatment effects on survival outcomes. However, the
Mann–Whitney effect may not be interpreted as the true treatment effect under the depen-
dence of the two survival times. In this article, we proposed a parametric copula-based
approach for estimating the Mann–Whitney effect p under dependence structures for two
survival times. We derived the formulas of p under a variety of copulas and marginal
survival functions and modified it by pτ with τ as the follow-up time. We also intro-
duced a web-based calculator for p and pτ for users. Our simulation studies demonstrate
the correctness of the proposed calculator under a variety of parametric marginal sur-
vival distributions and copulas. The results of the data analyses show that the proposed
method provides possible changes in p and pτ under various dependence and enables the
examination of the sensitivity.

In the examples of real datasets, we obtained pτ under the Clayton, Gumbel, Frank,
FGM, and GB copulas with varying parameters. The value of pτ ranged from 0.596 to
0.895 in the tongue cancer dataset and from 0.623 to 0.666 in the prostate cancer dataset.
We obtained narrow ranges whose lower bounds did not include the null value of 1/2.
The results show that, under a variety of dependence structures, the interpretation of the
Mann–Whitney effect does not change. This result is consistent with previous studies
showing that Hand’s paradox does not occur under a strictly monotonic effect [15,46]. The
considered dependence may not affect decision making in clinical research or practice.
Although more complex dependence structures with various copulas might be considered,
the conclusion may not change significantly.
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On computing the Mann–Whitney effect under dependence, there are several previous
works (Table 5). However, these works focused on specific combinations of marginals and
copulas. The advantage of our article is that it can be applied to various marginals and
copulas, not just to a specific one. Our app allows readers to verify the behavior of the
Mann–Whitney effect under various dependences.

Table 5. Recent works on the Mann–Whitney effect with the copula models and marginal models.

Copula Marginal Distribution

Domma & Giordano [47] FGM, Generalized FGM, Frank Burr III, Dagum, Singh–Maddala
Gao et al.[48] Mixed (Clayton, Gumbel, Frank) Empirical
de Andrade et al. [49] Clayton, Gumbel, Frank, Gauss, Plackett Weibull, Gamma, Log-normal, Dagum
Rathie et al. [50] Frank Dagum, Log-Dagum
James et al. [51] FGM Rayleigh
Shang & Yan [52] Clayton Weibull, Kumaraswamy
Lima et al. [53] Clayton, Frank, Gumbel–Houggard Generalized extreme value, Weibull, gamma

The main limitation of the present article is that we only discussed the “paramet-
ric” approach. Because the proposed method uses extrapolated parameters to compute
the Mann–Whitney effect, the result strongly depends on the model assumptions of the
marginals and copulas and the characteristics of the extrapolated parameter. However, in
practice, researchers may use the “semiparametric” or “nonparametric” approaches [17]. In
future work, we will examine the method of computing p without parametric assumptions
and expand it to nonparametric or semiparametric models such as Cox regression. The
anticipated challenge of nonparametric approach is that the empirical copula, which is a
nonparametric approach to copula models, is often nonsmooth and not a genuine copula.
Another extension is to include covariates or secondary outcomes, including time-varying
effects in the model, which helps obtain narrow bounds for treatment effects [54–56]. An-
other limitation is that only one-parameter bivariate copulas and noninformative censoring
were implemented. Multiparameter or multivariate copulas deserve attention [24,32,57].
There are also several recent works on copula-based approaches for dependent censor-
ing [58–60]. If censoring is not independent of survival, the usual MLE and KM estimators
are biased (hence, the estimators in Section 5 are all biased). Furthermore, the proposed
method for two-sample comparison may be extended to multigroup comparisons using the
factorial designs by adopting the relative treatment effects of Brunner & Puri and Dobler &
Pauly [43,61].
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Appendix A. Kendall’s τ

Under the copula model (2), Kendall’s τ for T1 and T2 is expressed as

Kendall’s τ = 4
∫ 1

0

∫ 1

0
Cθ(u, v)Cθ(du, dv)− 1.

Kendall’s τ of each copula is expressed as follows.

1. The independence copula:
Kendall’s τ = 0.

2. The Clayton copula:

Kendall’s τ =
θ

θ + 2
, θ ∈ [−1, ∞) \ {0}.

3. The Gumbel copula:

Kendall’s τ =
θ

θ + 1
, θ ∈ [0, ∞).

4. The Frank copula:

Kendall’s τ = 1 − 4
θ
+

4Dθ

θ
, where Dθ =

1
θ

∫ θ

0

x
exp(x)− 1

dx, θ ∈ (−∞, ∞) \ {0}.

5. The FGM copula:

Kendall’s τ =
2
9

θ, θ ∈ [−1, 1].

6. The GB copula:

Kendall’s τ = 1 − 4
θ

∫ 1

0
t(1 − θ log t) log(1 − θ log t)dt, θ ∈ [0, 1].

Appendix B. Examples of p and pτ with Different Copulas

Equation (3) with different copulas is computed by the following formulas:

1. The Clayton copula:

p =
∫ 1

0
v−θ−1

(
{S1(S−1

2 (v))}−θ + v−θ − 1
)− 1

θ −1
dv.

2. The Gumbel copula:

p =
∫ 1

0

{
exp

{
−[(− log S1(S−1

2 (v)))θ+1 + (− log v)θ+1]
1

θ+1

}
×
[(

− log(S1(S−1
2 (v)))

)θ+1
+ (− log(v))θ+1

]− θ
θ+1 (− log(v))θ

v

}
dv.

3. The Frank copula:

p =
∫ 1

0

e−θv
(

e−θS1(S−1
2 (v)) − 1

)
(
e−θ − 1

)
+
(

e−θS1(S−1
2 (v)) − 1

)(
e−θv − 1

)dv.

4. The FGM copula:

p =
∫ 1

0

{
S1(S−1

2 (v)) + θS1(S−1
2 (v))

(
1 − S1(S−1

2 (v))
)
(1 − 2v)

}
dv.
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5. The GB copula:

p =
∫ 1

0

{
S1(S−1

2 (v))
(

1 − θ log S1(S−1
2 (v))

)
v−θ log S1(S−1

2 (v))
}

dv.

Equation (4) with different copulas is computed by the following formulas:

1. The Clayton copula:

pτ =
∫ 1

S2(τ)

{
v−θ−1

(
{S1(S−1

2 (v))}−θ + v−θ − 1
)− 1

θ −1
}

dv +
1
2
(S1(τ)

−θ + S2(τ)
−θ − 1)−1/θ .

2. The Gumbel copula:

pτ =
∫ 1

S2(τ)

{
exp

{
−[(− log S1(S−1

2 (v)))θ+1 + (− log v)θ+1]
1

θ+1

}
×
[(

− log(S1(S−1
2 (v)))

)θ+1
+ (− log(v))θ+1

]− θ
θ+1 (− log(v))θ

v

}
dv

+
1
2

exp
{
−[(− log S1(τ))

θ+1 + (− log S2(τ))
θ+1]

1
θ+1

}
.

3. The Frank copula:

pτ =
∫ 1

S2(τ)

e−θv
(

e−θS1(S−1
2 (v)) − 1

)
(
e−θ − 1

)
+
(

e−θS1(S−1
2 (v)) − 1

)(
e−θv − 1

)dv

+
1
2

(
−1

θ
log

(
1 +

(e−θS1(τ) − 1)(e−θS2(τ) − 1)
e−θ − 1

))
.

4. The FGM copula:

pτ =
∫ 1

S2(τ)

{
S1(S−1

2 (v)) + θS1(S−1
2 (v))

(
1 − S1(S−1

2 (v))
)
(1 − 2v)

}
dv

+
1
2
(S1(τ)S2(τ) + θS1(τ)S2(τ)(1 − S1(τ))(1 − S2(τ))).

5. The GB copula:

pτ =
∫ 1

S2(τ)

{
S1(S−1

2 (v))
(

1 − θ log S1(S−1
2 (v))

)
v−θ log S1(S−1

2 (v))
}

dv

+
1
2
(S1(τ)S2(τ) exp(−θ log S1(τ) log S2(τ))).

Appendix C. Examples of Using the Shiny Web App

This appendix gives two examples of using the Shiny web app.

Example A1. Users set the marginal survival distribution = “Burr III Distribution”, c1 = 1.5,
k1 = 3.0, c2 = 1.0, k2 = 1.0, τ = 5.0, copula = “FGM”, θ = 0.5 and the language displayed on
the screen “English”, and push the “submit” button, and then they can obtain Kendall’s τ = 0.111,
p = 0.714, and pτ = 0.719. Figure A1 displays the web app in this setting.
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Figure A1. The web app showing the results for computing p and pτ under the Burr III distributions.

Example A2. Users set the marginal survival distribution = “Log-normal Distribution”,
log(µ1) = 0.7, log(σ2

1 ) = 1.5, log(µ2) = 0.3, log(σ2
2 ) = 2.0, τ = 5.0, copula = “Frank”,

θ = 2.0 and the language displayed on the screen “English”, and push the “submit” buttom, and
then they can obtain Kendall’s τ = 0.214, p = 0.588, and pτ = 0.579. Figure A2 displays the web
app in this setting.

Figure A2. The web app showing the results for computing p and pτ under the log-normal distribution.
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