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Abstract: Positive and unlabeled learning (PU learning) is a significant binary classification task
in machine learning; it focuses on training accurate classifiers using positive data and unlabeled
data. Most of the works in this area are based on a two-step strategy: the first step is to identify
reliable negative examples from unlabeled examples, and the second step is to construct the classifiers
based on the positive examples and the identified reliable negative examples using supervised
learning methods. However, these methods always underutilize the remaining unlabeled data, which
limits the performance of PU learning. Furthermore, many methods require the iterative solution of
the formulated quadratic programming problems to obtain the final classifier, resulting in a large
computational cost. In this paper, we propose a new method called the absolute value inequality
support vector machine, which applies the concept of eccentricity to select reliable negative examples
from unlabeled data and then constructs a classifier based on the positive examples, the selected
negative examples, and the remaining unlabeled data. In addition, we apply a hyperparameter
optimization technique to automatically search and select the optimal parameter values in the
proposed algorithm. Numerical experimental results on ten real-world datasets demonstrate that our
method is better than the other three benchmark algorithms.

Keywords: PU learning; absolute value inequality; support vector machine; eccentricity; hyperparameter
optimization

MSC: 90C90

1. Introduction

In machine learning, the general classification task is to construct a classifier based
on a labeled dataset. However, in various real-world applications, obtaining a large num-
ber of labeled examples is difficult or impractical. For instance, in text classification, it
is challenging to identify a type of text from an enormous number of texts. As another
example, in medical diagnosis, finding patients with a specific disease (positive exam-
ples) may be straightforward, while collecting a comprehensive group of healthy patients
(negative examples) can be challenging. Therefore, solving semi-supervised classification
problems with few labeled examples and a large number of unlabeled examples is of
practical importance.

Positive and unlabeled learning (PU learning) is a unique semi-supervised classifica-
tion task that performs binary classification on a set consisting of a small number of positive
examples and a large number of unlabeled examples. To date, PU learning has been used to
successfully solve various problems, such as gene identification [1], text classification [2,3],
fraud detection [4,5], and recommendation [6].

The scarcity of negative examples necessitates the learning of information from unla-
beled examples. Based on the means of processing the unlabeled examples, existing PU
learning methods can be classified into three categories. The first category is related to
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one-class classification [7–9]. It estimates the distribution of the positive class only from
positive examples, without using information from unlabeled examples. These methods
often underperform when positive samples are scarce [10]. The second category is the
one-step method [11–14]. It treats the PU learning problem as a supervised problem with
noise; specifically, all unlabeled examples are assumed to be negative examples. This
assumption may introduce label noise, degrading the performance due to misclassified
unlabeled positives [15]. The third and most widely used category is the two-step method.
This method selects potential negative examples from the unlabeled set and then constructs
a classifier using both positive and identified negative examples [16–20]. Many algorithms
of this category underutilize the remaining unlabeled data, resulting in limited classification
performance. In addition, many approaches require the iterative solution of the quadratic
programming problem to obtain the final classifier, resulting in a large computational cost.

As an excellent state-of-the-art tool for classical binary classification in machine learn-
ing, support vector machine (SVM) has already shown its superiority in comparison
with other learning algorithms. Therefore, many methods based on SVM to solve semi-
supervised problems have been proposed. For example, Mangasarian [21] proposed a novel
method that utilizes convex absolute value inequality (AVI) to minimize the overlap of
boundary hyperplanes to divide unlabeled data into two classes. The method is easy to im-
plement, and the experimental results show that it can achieve good classification accuracy.

In this paper, we also follow the two-step strategy and propose a new algorithm for
PU learning named AVI-SVM. First, negative examples are selected based on the concept
of Typicality and Eccentricity Data Analytics (TEDA), introduced in [22]. In the next step,
the convex absolute value inequality SVM is utilized to solve the resulting semi-supervised
problem. Furthermore, to reduce the amount of resources spent in manually adjusting the
parameters, we adopt the hyperparameter optimization method HORD, proposed in [23],
to set the optimal values of the parameters in the algorithm. The main contributions of our
work can be summarized as follows.

(1) Our approach employs TEDA for the extraction of reliable negative examples from the
unlabeled dataset. Unlike alternative methods for negative example selection, TEDA
operates without predefined assumptions, relying solely on the spatial distribution of
the data. Furthermore, this method is not only computationally straightforward but
also remains effective even with a limited number of positive examples.

(2) Our approach is the first to use the convex absolute value inequality technique to
solve PU problems. This technique enables the successive linearization algorithm to
resolve the optimization model, thus reducing the computational costs.

(3) Our approach adopts the hyperparameter optimization method HORD to set the
optimal values of the parameters in the algorithm, thus reducing the amount of
resources spent in manually adjusting the parameters.

The rest of this paper is organized as follows. Section 2 provides a brief review of
related research works. Section 3 introduces the concept of TEDA, convex absolute value
inequality for semi-supervised algorithms, and the HORD algorithm. In Section 3, we
propose the AVI-SVM algorithm for PU problems. The numerical results are reported in
Section 4 and the conclusions are presented in Section 5.

2. Related Work

Various methods have been proposed to solve PU learning problems and most of them
can be divided into three types.

The first type of approach is related to one-class classification, where the distribution of
positive classes is estimated from known positive examples, such as the one-class support
vector machine (OSVM) [7,8]. The Laplacian unit hyperplane classifier (LUHC) [9] places
predicted labels and initial labels close to each other at the labeled points by adding
a regularity factor. Only positive examples are used in this approach to discover the
discriminant structure of the dataset.
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Another type of method is the biased support vector method (B-SVM) [11]. It treats
the PU learning problem as a supervised problem with noise, i.e., all unlabeled examples
are assumed to be negative examples, and different classes are assigned different weights in
the loss function. L∞-BSVM [12] adopts the Chebyshev distance (L∞ norm) instead of the
L1 norm in B-SVM to measure the empirical risk, which allows all examples to participate
in the learning to improve the classification performance. Then, it uses an improved
Sequential Minimal Optimization (SMO) algorithm with low time complexity to solve
the classifier. In the last decade or so, nonparallel hyperplane support vector machines
(NPSVM) [24,25] have attracted much attention. Some researchers have combined NPSVM
and B-SVM to solve the PU problem, such as B-NPSVM [13] and B-l1NPSVM [14].

The third type of method is based on the two-step strategy. This type of method con-
sists of two steps: (1) identifying reliable negative examples from the unlabeled examples,
and (2) learning based on the labeled positive examples and the identified reliable negative
examples. The representative methods in this category include S-EM [16], PEBL [17], Roc-
SVM [18], SPUPIL [19], and KNN-SVM [20]. S-EM [16] uses the Spy technique to obtain
some reliable negative examples from the unlabeled set and then runs the Expectation-
Maximization (EM) algorithm to construct the final classifier. PEBL [17] is an SVM-based
technique used to classify web pages given positive and unlabeled pages. It defines docu-
ments that do not contain any characteristics of positive data as strong negative documents.
After identifying a set of strong negative documents, it iteratively applies an SVM to build
a classifier. Roc-SVM [18] builds prototypes for labeled and unlabeled examples based
on Rocchio classification, counts unlabeled examples closer to the unlabeled prototypes
as reliable negative examples, and then applies the SVM algorithm to learn the classi-
fier. SPUPIL [19] first takes the intersection of reliable negative examples extracted by
the Spy [16] and Rocchio [18] methods as the final reliable negative examples, and then
incorporates similarity weights and privileged information into the learning to extend the
standard ranking SVM [26] to obtain a more accurate classifier. KNN-SVM [20] sorts the
unlabeled examples by calculating the sum of the cosine similarities with the nearest k
positive examples to select reliable negative examples in the first step. Then, the iterative
SVM is used to train the classifiers, and the last classifier is chosen as the final classifier.

3. Preliminaries

In this section, we briefly introduce the convex absolute value inequality for semi-
supervised problems, the concept of TEDA, and the HORD algorithm.

Throughout this paper, the training dataset is represented as

T = {(x1, y1), · · · , (xp, yp)} ∪ {xp+1, · · · , xp+q}, (1)

where xi ∈ Rn, yi = 1, xi (i = 1, · · · , p) is a positive input, and xi (i = p + 1, · · · , p + q) ∈ Rn

is an unlabeled datum known to belong to one of the two classes. The objective of PU
learning is to find a function f (x) in Rn such that the class of any input x can be predicted
by the sign function of f (x) as

sgn( f (x)). (2)

3.1. Convex Absolute Value Inequality with SVM

Consider the following absolute value inequality (AVI)

|x⊤ω − b| ≤ 1, (3)

where the vector x ∈ Rn represents any data point, ω ∈ Rn is the normal vector to
the classification plane x⊤ω − b = 0, and b denotes the distance from the plane to the
origin. The inequality (3) divides the space Rn into two overlapping half spaces via the
following inequalities:
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x⊤ω ≤ b + 1

x⊤ω ≥ b − 1. (4)

Ref. [21] applies AVI to the semi-supervised classification problem. The main idea
is that if AVI (3) is imposed on an unlabeled dataset, the dataset will be classified into
two classes to best fit the requirements of either AVI (3) or the two linear inequalities (4).
Therefore, the objective of the method proposed in [21] is to minimize the overlap between
the bounding planes x⊤ω = b ± 1. To achieve this objective, it is necessary to find two
planes x⊤ω − b = ±1 in Rn that designate the ±1 feasible region resulting from the two
inequalities of (4) and that satisfy, with a minimal error vector ξ, the following inequalities:

|Aω − eb| ≤ e,

D(Hω − eb) + ξ ≥ e,

ξ ≥ 0, (5)

where e is a vector of ones, A is the matrix of unlabeled examples, H is the matrix of
p positive examples and m negative examples, and the matrix D is the diagonal matrix
formed by the labels corresponding to the labeled dataset. The second inequality means
that the labeled dataset needs to be distributed on different sides of the hyperplane.

Then, the formulation of the SVM with the AVI for a semi-supervised problem is given
as follows (see [21]):

min
ω,b,ξ

−
∥∥ω

∥∥
1 − |b|+ ue⊤ξ

s.t. |Aω − eb| ≤ e, (6)

−D(Hω − eb)− ξ ≤ −e,

ξ ≥ 0,

where
∥∥ω

∥∥
1 is the l1-norm of ω, u > 0 is a penalty parameter, and ξ is a slack variable. For

this model, the purpose of maximizing
∥∥ω

∥∥
1 and |b| is to minimize the distance between

the two hyperplanes (4).

3.2. Typicality and Eccentricity Data Analytics

TEDA [22,27] is an evolving method for outlier detection. It performs recursive com-
putation on data samples and is very computationally efficient. The concept of typicality
relates to the similarity of an example to the given examples. Eccentricity indicates how
different a data example is from the data distribution, which means that a data example
with high eccentricity is more likely to be an outlier. Here, we only briefly introduce
eccentricity. Consider the dataset X ∈ Rn, which consists of a sequence of n-dimensional
examples {x1, x2, ..., xk, ...}, xk ∈ Rn, k ∈ N. The cumulative proximity π(·) from a data
example x ∈ X to all remaining data samples up to the kth one is calculated as

π(x) =
k

∑
i=1

d(x, xi), (7)

where d(x, xi) is any type of distance function (the Euclidean distance in this paper) between
x and xi. The eccentricity ξ of the example x is defined as

ξk(x) =
2πk(x)

∑k
i=1 πk(xi)

= 2
∑k

i=1 d(x, xi)

∑k
j=1 ∑k

i=1 d(xi, xj)
, k ≥ 2,

k

∑
i=1

πk(x) > 0. (8)
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It has been shown in [22] that the eccentricity can be calculated recursively as

ξk(x) =
1
k
+

(µx
k − xk)

T(µx
k − xk)

k[σ2]xk
, [σ2]xk > 0, (9)

where ξk(x) is the eccentricity of the example xk in relation to all previous samples in the
dataset, while µx

k and [σ2]xk are the mean and the variance, respectively. Both µx
k and [σ2]xk

can be recursively updated as

µx
k =

(k − 1)
k

µx
k−1 +

1
k

xk, k ≥ 1, µx
0 = 0, (10)

[σ2]xk =
(k − 1)

k
[σ2]xk−1 +

1
k
∥ xk − µx

k ∥, k ≥ 1, [σ2]x0 = 0. (11)

The normalized eccentricity ζ(xk) can be acquired as follows:

ζ(xk) =
ξk(x)

2
, (12)

where ζ(xk) is used to determine a threshold for Chebyshev inequality-based outlier
detection [28]. The main idea of the Chebyshev inequality is that, under any distribution,
no more than 1/l2 of the data samples are more than lσ away from the mean, where l is a
constant value and σ is the standard deviation of the dataset [28]. Thus, an example xk is
considered to be an outlier if the condition

ζk >
l2 + 1

2k
, l > 0, (13)

is satisfied. In Section 3, we will demonstrate how the eccentricity is used to determine
reliable negative examples.

3.3. HORD Algorithm

The hyperparameter optimization using an RBF-based surrogate and DYCORS (HORD)
algorithm is a hyperparameter optimization method based on a deterministic surrogate
that requires relatively fewer function evaluations for optimization [23]. The advantages
of HORD are that it is not only computationally fast but also performs well in both high-
and low-dimensional parameter spaces. The main idea of the HORD algorithm is to use
the radial basis function (RBF) as a surrogate to approximate the error function of the
hyperparameters and to search for the near-optimal hyperparameter configuration through
a dynamic coordinate search. After inputting the initial number of sampling points h0, the
number of candidate points h1, and the maximum number of iterations hmax, the algorithm
first samples h0 points using Latin hypercubic sampling and then evaluates the objective
function values of these initial points to obtain the optimal point xbest. The objective func-
tion values at these points are utilized to fit or update the surrogate model. Subsequently,
the algorithm selects the next most promising point x∗ through coordinate perturbation.
This new point x∗ is then incorporated into the initial point set, and the above operation is
repeated. After reaching hmax iterations, the algorithm finalizes and returns the hyperpa-
rameter configuration corresponding to xbest, which results in the lowest validation error
(for more details, please refer to [23]).

4. Proposed Approach

The proposed AVI-SVM algorithm follows the two-step strategy. The first step is to
select reliable negative data samples. In this step, we select suitable examples as reliable
negative examples based on the concept of eccentricity. The second step is to classify this
dataset containing unlabeled data examples, in which the AVI integrated with the SVM
will be applied. All three parameters in the proposed algorithm will be set automatically
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by the HORD algorithm, i.e., the constant l that affects the selection of reliable negative
samples in the first step (see (17)) and the weights C1, C2 in the objective function of the
classification model in the second step (see (20)).

4.1. Reliable Negative Samples

For the binary classification problem, if an example is an outlier to the positive dataset,
then the probability of this example not belonging to the positive class is high. As mentioned
in Section 2, an example with high eccentricity is usually considered an outlier. The
eccentricity of any unlabeled example xi to the positive dataset P is calculated as follows:

ξ(xi) =
1
si
+

(µx
si
− xi)

T(µx
si
− xi)

si[σ2]xsi

, (14)

where si is the number of samples in the set composed of dataset P and sample xi, and µx
si

and [σ2]xsi
can be obtained using the following formulas:

µx
si

=
si − 1

si
µ +

1
si

xi, (15)

[σ2]xsi
=

si − 1
k

[σ2] +
1
k
∥ xi − µx

si
∥, (16)

where µ and [σ2] are the mean and variance of the positive set P.
According to the concept of eccentricity, the threshold used to determine whether the

unlabeled datum xi is an outlier is

ζ(xi) ≥
l2 + 1

2si
, (17)

where ζ(xi) = ξ(xi)/2; l represents the sensitivity of the threshold, and it will be set by
using the HORD algorithm.

If the condition (17) holds, it implies that xi does not belong to the positive dataset P,
and we place it in the reliable negative dataset RN. The specific steps followed to generate
the set of reliable negative examples are given in Algorithm 1.

Algorithm 1 Generation of reliable negative samples

Input: Positive dataset P; unlabeled dataset U; number of positive samples np; constant
value l

Output: Reliable negative dataset RN; new unlabeled dataset A
1: Calculate the mean µ and the variance σ2 of the positive dataset P
2: RN = {}
3: For each unlabeled example µi
4: Calculate the eccentricity ξi to the positive dataset according to the formulas (14),

(15) and (16)
5: Calculate the normalized eccentricity ζi by the formulas (12)
6: If ζi >

l2+1
2(np+1)

7: Then RN = RN ∪ µi
8: End If
9: End For

10: If the number of elements in RN is more than np
11: Then select np examples with the largest eccentricity as the final reliable negative

dataset RN
12: End If
13: The new unlabeled dataset A = U\RN
14: return RN, A
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It should be noted that when the number of examples in RN is larger than np, we
only take np examples with the np largest eccentricity to form RN (Lines 10–12) in order to
ensure that the negative examples selected are reliable.

4.2. AVI-SVM Formulation for the Resulting Semi-Supervised Problem

After the set of reliable negative examples is obtained, the training set T (1) is trans-
formed into

T∗ = {(x1, 1), · · · , (xp, 1)} ∪ {(xi1 ,−1), · · · , (xim ,−1)} ∪ {xj1 , · · · , xjq−m} (18)

where i1, · · · , im is the index of the examples selected as negative examples, and j1, · · · , iq−m
is the index of the remaining unlabeled examples. The PU problem then is converted into a
normal semi-supervised one, which will be solved using the SVM formulation with the
AVI given in Section 3.1.

We will make some changes to (6) to establish the SVM formulation. First, for the first
constraint, we add a non-negative slack variable η to it and minimize the slack variable in
the objective function to relax this constraint appropriately. Second, we maximize

∥∥ω
∥∥

1 in
the objective function of model (6) while ignoring |b|. The reason for this change is that,
according to [21], maximizing both

∥∥ω
∥∥

1 and |b| aims to minimize the distance between
the two overlapping feasible regions of the first constraint. However, maximizing only∥∥ω

∥∥
1 can also achieve this goal, and, in this way, the computational effort can be reduced.

Therefore, the final optimization model for this problem is as follows:

min
ω,b,η,ξ

−
∥∥ω

∥∥
1 + C1e⊤η+ C2e⊤ξ

s.t. |Aω − eb| ≤ η+ e, (19)

−D(Hω − eb)− ξ ≤ −e,

η, ξ ≥ 0,

where
∥∥ω

∥∥
1 is the l1-norm of ω, Ci > 0(i = 1, 2) are the penalty parameters, η and ξ are the

slack variables, A is the matrix of unlabeled examples, H is the matrix of positive examples
(P) and reliable negative examples (RN), and the diagonal matrix D with entries of ±1
denotes which class of +1 or −1 each row of H belongs to.

It is clear that the formulation (19) can be rewritten as

min
ω,b,η,ξ

−e⊤|ω|+ C1e⊤η+ C2e⊤ξ

s.t. −η− e ≤ Aω − eb ≤ η+ e, (20)

−D(Hω − eb)− ξ ≤ −e,

η, ξ ≥ 0,

where |ω| is a vector with each component being the absolute value of the corresponding
component of ω. For this linearly constrained concave minimization problem with absolute
value functions in the objective, we also use the successive linearization algorithm [29], as
in [21]. Finally, the decision function f (x) = ω⊤x − b is obtained. The specific steps are
given in Algorithm 2.

In this framework, we select unlabeled data examples with high eccentricity for the
positive dataset as reliable negative examples. Based on the positive examples, reliable neg-
ative examples, and remaining unlabeled examples, we construct the model (20) and obtain
its solution (ω, b) via Algorithm 2, and we then build the decision function f (x) = ω⊤x − b.
Finally, for any input example, we can use this decision function to predict its class.
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Algorithm 2 Successive linearization algorithm for (20)

Input: Positive dataset P; reliable negative dataset RN; unlabeled dataset A
Output: Solution ω, b

1: Randomly select a non-negative initial vector ω0 ∈ Rn, let i = 0
2: Solve the following linear programming problems

min
ω,b,η,ξ

−sign(ωi)⊤ω + C1e⊤η + C2e⊤ξ

s.t. −η− e ≤ Aω − eb ≤ η+ e,
−D(Hω − eb)− ξ ≤ −e,
η, ξ ≥ 0.

3: If ωi+1 = ωi, stop and go to 5
4: Else, let i = i + 1, go back to 2
5: return ω,b

4.3. Performance Metric

We use the metrics of the F-score and accuracy (Acc) for comprehensive comparisons.
Note that the F-score takes into account both recall (r) and precision (p):

F =
2pr

(p + r)
, (21)

where r = TP
(TP+FN)

and p = TP
(TP+FP) . TP, TN, FP, and FN are the numbers of true positive,

true negative, false positive, and false negative examples, respectively. However, the
F-score cannot be directly calculated on the validation set during the training process due to
the absence of labeled negative examples. An approximate measure to the F-score proposed
in [30] is used instead to evaluate the performance:

F̃ =
r2

p

Pr( f (x) = 1)
, (22)

where rp is the recall for the positive set in the validation set, x is the random variable
representing the input vector, and Pr( f (x) = 1) is the probability of an input example x in
the validation set being classified as a positive example.

Accuracy is the proportion of correct predictions (both true positives and true nega-
tives) among the total number of examples. The formula for accuracy is

Acc =
(TP + TN)

(TP + TN + FP + FN)
. (23)

4.4. Parameter Tuning

The HORD algorithm [23] is employed to set the optimal parameters. The details are
given in Algorithm 3.

In Lines 2 to 12, the black-box objective function handled by the HORD algorithm
is defined via the N-fold cross-validation method. N-fold cross-validation divides the
dataset T into N equally sized folds. For each training iteration, a different fold is used
as the validation set, with the remaining N-1 folds serving as the training set. Once the
training and validation steps are completed for all N folds, the F values are averaged over
all iterations. The solution x∗par with the highest average value F̄ is the optimal solution
that we seek.

In the numerical experiments, the ranges of parameters l, C1, and C2 are set as [1, 3],
(0, 26), and (0, 26), respectively; the number of initial sampling points, the number of
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candidate points, and the maximum number of iterations in the HORD algorithm (Line 1)
are set as 20, 300, and 200, respectively.

Algorithm 3 Parameter tuning by HORD

Input: Range Ω of parameters (l, C1, C2); positive set P; unlabeled set U
Output: Optimal parameters l∗, C∗

1 and C∗
2

1: Run the HORD algorithm on f with the domian Ω to get the solution x∗par = (l∗, C∗
1 , C∗

2 ),
where f is defined as follows:

2: Given xpar = (l, C1, C2) ∈ Ω
3: Perform N f old cross-validation method on T = P ∪ U to generate the average F̃:
4: Partition the dataset T into N f old partitions: (Pi, Ui), i = 1, ..., N f old
5: For i = 1:N f old
6: Obtain the reliable negative set RN i of Pi and U i by Algorithm 1 with l
7: Obtain the decision function by Algorithm 2 with C1, C2
8: Get the labels for the validation set
9: Calculate the F̃i values using (22)

10: End For
11: Find the average values F̄ = (∑

N f old
i=1 F̃i)/N f old

12: Let f (xpar) = −F̄
13: return x∗par

4.5. AVI-SVM Algorithm

The complete AVI-SVM algorithm for the PU learning problem is given as Algorithm 4.
Its flowchart is shown in Figure 1. For the input positive dataset P and the unlabeled
dataset U, AVI-SVM first uses Algorithm 3 to obtain the optimal parameters l∗, C∗

1 , and
C∗

2 and then applies Algorithm 1 to obtain the reliable negative examples RN and the
remaining unlabeled examples A, followed by generating the ω and b required for the
decision function by Algorithm 2. Finally, for any input example x, it uses decision function
sgn ( f (x)) to predict and return its class.

Start

Inputs

Run Algorithm 3 to obtain the
optimal parameters: l∗, C∗

1 , C∗
2

Input the l∗ into the Algorithm 1 to generate the
reliable negative set RN and the unlabeled U

Input C∗
1 , C∗

2 and data sets RN, P
and A into Algorithm 2 to get ω, b

Build the decision function: f (x) = ω⊤x − b

For any input x, predict its label k(k = −,+)

Output

Stop

2

Figure 1. Flowchart of the AVI-SVM algorithm.
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Algorithm 4 AVI-SVM algorithm for the PU learning problem

Input: Positive dataset P; unlabeled dataset U;
Output: The predicted labels

1: Run Algorithm 3 with P and U to obtain the optimal parameters l∗, C∗
1 , and C∗

2
2: Run Algorithm 1 with parameter l∗ to generate the reliable negative set RN and the

unlabeled set A
3: Run Algorithm 2 with parameters C∗

1 , C∗
2 and datasets RN, P, and A to get ω, b

4: Build the decision function f (x) = ω⊤x − b
5: For any input x, assign it to class k(k = +,−) by sgn ( f (x)):
6: if sgn ( f (x)) = 1, then k = +
7: if sgn ( f (x)) = −1, then k = −
8: return k

5. Numerical Experiments

We evaluate and compare the performance of the proposed AVI-SVM algorithm with
that of three well-known PU learning algorithms using ten UCI benchmark datasets.

5.1. Algorithms for Comparison

In our experiments, we evaluate the performance of the AVI-SVM algorithm compared
with the following algorithms.

• LUHC [9]: It exploits both the geometrical and the discriminant properties of the
examples; thus, it can improve the classification performance. This algorithm follows
the one-class classification scheme.

• B-l1NPSVM [14]: It replaces the L2 norm in NPSVM with an L1 regularization term
to address the PU learning problem, achieving satisfactory results in both classi-
fication and feature selection aspects. This algorithm follows the biased support
vector method.

• kNN-SVM [20]: It sorts the unlabeled examples based on the sum of their distances
to the k-nearest positive examples; it then selects the examples at the largest distance
as reliable negative examples. The iterative SVM is used to train the classifier. This
algorithm is one of the representative algorithms using the two-step strategy.

5.2. Experimental Results

We present the experimental results obtained by the algorithms in this subsection.
All experiments are implemented in MATLAB 2020a on a PC with an Intel(R) Core(TM)
i7-8700 CPU (3.20 GHz) and 16.0 GB RAM. The corresponding AVI-SVM MATLAB codes
are available at https://github.com/Yongjia2/AVI-SVM (accessed 6 March 2024).

5.2.1. Illustration on the Iris Dataset

First, we apply our algorithm on the Iris dataset, which is a well-known dataset
used to demonstrate the performance of classification algorithms. It contains three classes,
Setosa, Versicolor, and Virginica, with each instance characterized by four features. For
our PU learning task, we focus exclusively on two classes—Versicolor and Virginica—and
two features—the petal length and petal width. Figure 2 presents the classification result
of our algorithm on this dataset. We randomly select 40% of the Versicolor examples
and designate them as positive examples, represented by black circles in the figure. The
remaining Versicolor and all Virginica examples are treated as unlabeled examples. In
Figure 2b, the examples within diamond-shaped boxes are the selected reliable negative
examples; the red solid line is the separating hyperplane ω⊤x − b = 0; and the two red
dashed lines are hyperplanes ω⊤x − b = ±1. From this figure, we can see that the AVI-
SVM algorithm can select some true negative samples that are far from the labeled positive
examples as reliable negative examples, and it can identify all positive examples. Note that
the direction of the separating line is appropriate for the distribution of the two classes
of examples.

https://github.com/Yongjia2/AVI-SVM
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Figure 2. Classification result obtained by AVI-SVM on the modified Iris dataset. (a) Modified
Iris dataset with labeled positive examples; (b) the reliable negative examples identified and the
separating line.

5.2.2. Results on Other UCI Datasets

To further demonstrate the effectiveness of our algorithm, numerical experiments
on the three benchmark algorithms and the AVI-SVM algorithm on ten other real-world
datasets from the UCI machine learning repository [31] have been undertaken. Table 1
gives detailed information about the ten UCI datasets.

The experiments are set up in the following way. Firstly, each dataset is randomly
divided into two portions: 70% of examples are for training and 30% of examples are for
testing. Then, we choose 20% or 40% of the positive data examples from the training set
randomly as the positive set P, and we use the remainder as the unlabeled dataset U to
generate the PU learning problems. Algorithm 3 determines the optimal parameters for
both the AVI-SVM and kNN-SVM algorithms. Specifically, for AVI-SVM, the parameters
l, C1, and C2 are defined within the ranges of [1, 3], (0, 26), and (0, 26), respectively.
Meanwhile, in kNN-SVM, parameters k and T are set within the ranges of {1, . . . , 5} and
[0, 5], respectively. The parameters in the LUHC and the B-l1NPSVM algorithms are set as
per the instructions in the experiments section in the references [9] and [14], respectively.

Table 1. Details of the ten UCI datasets.

Dataset # Examples # Features # Positive # Negative

Sonar 208 60 97 111
Hearts 270 13 120 150

Haberman 306 3 225 81
BUPA 345 6 145 200

Australian 690 14 383 307
German 1000 24 700 300

Banknote 1372 4 610 762
Spambase 4601 57 1803 2788
Twonorm 7400 20 3703 3697
HTRU2 17898 8 1639 16259

Each algorithm is run 10 times on every dataset, and the accuracy (Acc) and average
F-score obtained by AVI-SVM and the three benchmark algorithms on these test sets are
recorded in Tables 2 and 3.



Mathematics 2024, 12, 1454 12 of 15

Table 2. Accuracy and F-score comparison for four algorithms on datasets with 20% of positive
examples labeled. The best results are indicated by bold font in the table.

Dataset
LUHC B-l1NPSVM KNN-SVM AVI-SVM
Acc (%) Acc (%) Acc (%) Acc (%)
F-Score F-Score F-Score F-Score

Sonar 53.23 57.10 58.71 51.32
0.512 0.607 0.555 0.567

Hearts 62.47 60.49 65.43 74.44
0.695 0.741 0.696 0.791

Haberman 73.15 71.15 70.14 72.39
0.584 0.757 0.809 0.832

BUPA 45.77 47.12 44.33 43.27
0.585 0.592 0.593 0.561

Australian 55.56 67.21 72.22 83.09
0.773 0.723 0.778 0.822

German 65.67 70.10 68.24 70.67
0.723 0.700 0.828 0.819

Banknote 92.23 87.62 93.06 93.71
0.921 0.900 0.913 0.933

Spambase 52.10 50.36 49.71 54.64
0.492 0.567 0.479 0.634

Twonorm 97.84 90.14 92.18 97.39
0.978 0.921 0.932 0.975

HTRU2 54.64 45.54 52.10 43.96
0.165 0.189 0.207 0.243

From Table 2, we can observe that our AVI-SVM algorithm demonstrates superior
performance in terms of accuracy across five distinct datasets, Hearts, Australian, German,
Banknote, and Spambase, surpassing the results achieved by the LUHC, B1 NPSVM, and
KNN-SVM algorithms. Meanwhile, on Twonorm, our AVI-SVM obtains accuracy of 97.39%,
which is slightly lower than the highest of 97.84%. Moreover, when evaluating the F-score,
our algorithm emerges as the top performer on six datasets: Hearts, Haberman, Australian,
Banknote, Spambase, and HTRU2.

Compared with Table 2, Table 3 indicates that the Acc and F-score values of all
algorithms tend to increase with the increasing percentage of labeled positive examples.
Table 3 also shows that our AVI-SVM algorithm has the best performance with respect to
accuracy on six datasets (Hearts, Haberman, Australian, Banknote, Spambase, HTRU2)
and second best on the BUPA, German, and Twonorm datasets. Meanwhile, as the ratio of
positives increases, AVI-SVM still maintains the best F-score on Sonar, Hearts, Haberman,
Australian, Banknote, and Spambase. Overall, it can be seen from the experimental results
that the proposed AVI-SVM algorithm always performs efficiently on most of the datasets.

The experimental results clearly demonstrate that the AVI-SVM algorithm performs
well on most of the test datasets. Furthermore, its ability to sustain the classification perfor-
mance despite variations in the number of positive examples underscores the algorithm’s
robustness and effectiveness.
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Table 3. Accuracy and F-score comparison for four algorithms on datasets with 40% of positive
examples labeled. The best results are indicated by bold font in the table.

Dataset
LUHC B-l1NPSVM KNN-SVM AVI-SVM
Acc (%) Acc (%) Acc (%) Acc (%)
F-Score F-Score F-Score F-Score

Sonar 54.84 57.58 64.35 54.11
0.550 0.534 0.574 0.580

Hearts 70.37 61.73 56.79 76.79
0.699 0.762 0.724 0.802

Haberman 76.09 73.80 65.22 73.91
0.630 0.802 0.844 0.846

BUPA 43.27 43.17 44.71 43.37
0.595 0.602 0.596 0.569

Australian 62.80 69.64 78.82 83.57
0.754 0.821 0.829 0.843

German 68.73 65.33 73.08 71.33
0.738 0.728 0.828 0.823

Banknote 94.66 88.92 94.64 96.87
0.924 0.923 0.937 0.975

Spambase 60.97 52.88 54.84 61.45
0.493 0.585 0.669 0.674

Twonorm 97.61 92.24 92.65 97.52
0.978 0.961 0.940 0.977

HTRU2 55.11 51.06 57.80 59.04
0.267 0.255 0.289 0.304

6. Conclusions

The key to solving the PU problem via the two-step strategy lies in how to select
reliable negative examples from the unlabeled examples. In this paper, the concept of
eccentricity is used to perform the selection. After transforming the PU problem into
a normal semi-supervised problem, the absolute value inequality SVM is employed to
find the decision function. The procedures involved are easy to implement. Moreover, a
hyperparameter optimization method is used to tune the parameters in order to obtain
better classification results. The experimental results show the effectiveness of the proposed
algorithm in dealing with the PU learning problem.

Note that the presented AVI-SVM strategy currently focuses on solving linear clas-
sification problems within PU learning. In the future, we plan to extend it with kernel
methods to handle nonlinear classification situations in real-world scenarios.
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