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Abstract: The level of difficulty of mathematical test items is a critical aspect for evaluating test
quality and educational outcomes. Accurately predicting item difficulty during test creation is
thus significantly important for producing effective test papers. This study used more than ten
years of content and score data from China’s Henan Provincial College Entrance Examination in
Mathematics as an evaluation criterion for test difficulty, and all data were obtained from the Henan
Provincial Department of Education. Based on the framework established by the National Center
for Education Statistics (NCES) for test item assessment methodology, this paper proposes a new
framework containing eight features considering the uniqueness of mathematics. Next, this paper
proposes an XGBoost-based SHAP model for analyzing the difficulty of mathematics tests. By
coupling the XGBoost method with the SHAP method, the model not only evaluates the difficulty of
mathematics tests but also analyzes the contribution of specific features to item difficulty, thereby
increasing transparency and mitigating the “black box” nature of machine learning models. The
model has a high prediction accuracy of 0.99 for the training set and 0.806 for the test set. With the
model, we found that parameter-level features and reasoning-level features are significant factors
influencing the difficulty of subjective items in the exam. In addition, we divided senior secondary
mathematics knowledge into nine units based on Chinese curriculum standards and found significant
differences in the distribution of the eight features across these different knowledge units, which can
help teachers place different emphasis on different units during the teaching process. In summary,
our proposed approach significantly improves the accuracy of item difficulty prediction, which
is crucial for intelligent educational applications such as knowledge tracking, automatic test item
generation, and intelligent paper generation. These results provide tools that are better aligned with
and responsive to students’ learning needs, thus effectively informing educational practice.

Keywords: mathematics item difficulty; assessment methods; XGBoost; SHAP; secondary education;
computer-based assessment

MSC: 97U40; 97D60; 97N80; 97P50

1. Introduction

The difficulty of mathematics items is important in assessing the quality of exami-
nations and the value of educational outcomes [1]. It is generally determined by several
features, including the knowledge required, the depth of thinking, the problem-solving
ability, and the time constraints [2–4]. Understanding item difficulty has practical implica-
tions for intelligent educational applications such as knowledge tracking [5,6], automatic
test item generation [7–9], intelligent paper generation [10] and personalized recommenda-
tions [11,12]. By accurately assessing the difficulty of exam items, these applications can be
improved and provide effective support for teaching practice.

Methods for assessing item difficulty can be divided into two categories: post-test
determination based on students’ scores [13,14], and pre-test prediction [15]. The former
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is prone to hindsight bias and lacks usefulness for developing new test items. The latter
has three approaches: expert judgment, pre-testing, and text-based feature extraction using
machine learning [16,17]. Expert judgment lacks strong interpretability with accuracy
depending on the experience of the expert. Pre-testing is not only laborious and costly but
can also lead to question leakage in traditional paper-and-pencil tests with fixed length
and content [18]. Text-based feature extraction is a popular method for determining the
difficulty of language-related items such as reading comprehension [3]. However, for
disciplines such as mathematics and physics, which involve logic, symbolic language
and a systematic knowledge system, text-based feature extraction may not fully capture
the unique features of these subjects. As a result, it may not effectively reveal students’
logic and reasoning abilities [19–22]. In addition, machine learning models suffer from
an inherent opacity problem, commonly known as the ‘black box’ problem, which makes
it crucial to understand how the model is making predictions [23]. In this article, item
difficulty prediction refers only to the prediction of item difficulty before the exam.

In this paper, we present an interpretable model called XGBoost-based SHAP, which
predicts the difficulty of test questions [24,25]. By analyzing the contribution of each feature
to the difficulty of the item and improving the interpretability of the model, it can provide
an estimate of the difficulty of the item before the exam [26]. To develop the model, we
utilized information on math questions that contain subjective elements and corresponding
test results gathered from the college admissions assessments taken by numerous Chinese
students during recent decades as the study data. In addition, the model improves the
accuracy and interpretability of item difficulty estimates. The model also supports the
creation of scientific mathematics test items, the modernization of the item bank system,
and the improvement of student knowledge tracking and teacher evaluation. It can also
help to assess students’ ability to learn mathematics and to provide targeted help and
guidance to students.

The contribution of this paper concerns three main aspects of item difficulty estimation:
feature extraction method, model building, and feature contribution analysis for subjective
difficulty of mathematics items.

• Firstly, we provide a rigorous framework for assessing the difficulty of mathematics
items by listing several features necessary for this task, based on the relevant literature
and the features of mathematics items. In particular, the requirements of mathematics
in cognition and ability and the construction of the mathematical knowledge system
are taken into account. The research data are then subjected to feature extraction,
followed by data analysis of the extracted features.

• Secondly, we present the XGBoost-based SHAP model, which is a prediction model
for estimating item difficulty that employs classification features and is highly inter-
pretable, based on the above framework. The features are used as a base and combined
in a linear fashion. The improved XGBoost model is then applied to train and predict
the feature combinations. The SHAP model is then utilized to obtain a quantitative
analysis of the contribution of each feature to the difficulty of the exam, through the
marginal contribution rate of each feature for each exam item and the accumulation of
the marginal contributions. The hyperparameters of the model are then optimized
using a grid search algorithm to improve classification accuracy.

• Finally, the model is trained and evaluated using actual test scores from millions of
Chinese test takers. In order to comply with the Chinese curriculum standards, the
subjective questions of the Chinese math test are divided into nine knowledge units.
As a complement, we further analyze the representation of the eight features in the
nine knowledge units.

In summary, the three main research questions of this study are as follows:
Q1. Feature Extraction Methodology of Mathematics Items: What methodologies can

be deployed to identify the critical features that determine the difficulty of mathematics
items and to conduct an effective analysis of the data?
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Q2. XGBoost-based SHAP Model Application: How does the XGBoost-based SHAP
model function in predicting item difficulty, and what is the role of each identified feature
in contributing to this prediction?

Q3. How many knowledge units can the subjective questions of the Chinese college
entrance examination be classified into? How do the eight features influence the difficulty
of test items in different knowledge units?

The paper is organized as follows: In the initial section of this study, we present the
background and content of the research. In the second section, we provide a comprehensive
overview of current methods used to assess exam difficulty and delve into the practical
application of both the XGBoost and SHAP models in different domains. The third section
delves into the specifics of feature extraction rules and data analysis to address the first
research question. Following this, the fourth section meticulously outlines the process
of model construction, including the incorporation of relevant formulas and parameter
optimization efforts, thus addressing the second research question. Then, in the fifth
section, we delve deeper into the analysis by evaluating the individual contributions of
the features, thereby increasing the transparency of the model and further addressing the
second research question. In addition, we classify the knowledge units of the Chinese
college entrance examination and study the distribution of each knowledge unit in eight
characteristics, which solves the third research problem. In the last section, we discussed
possible future directions and limitations of our model.

2. The Related Work
2.1. A Summary and Classification of Item Difficulty Estimation Methods

Current methods of estimating item difficulty prior to testing include pre-testing [27]
and expert judgment [3,28]. Pre-testing has been widely used and has promising applica-
tions in Computer Adaptive Testing (CAT) and the Programme for International Student
Assessment (PISA) [29]. In educational psychology, Classical Test Theory (CTT) [30–32]
often uses students’ scores or pass rates on exam items as data and uses statistical methods
to quantify the difficulty of exam items. However, its disadvantages are obvious: (1) the
unfairness caused by the leakage of examination papers; (2) the difference in the level of
knowledge and ability between the pre-test takers and the actual exam takers [33]; and
(3) the waste of resources and money. As for expert judgment, it may be affected by
individual differences and subjective bias.

Data-driven machine learning methods have been widely used to estimate item diffi-
culty. Mainstream methods use textual information, such as the stem and options of exam
items, as features [3]. Using the known difficulty information of the exam items as labels,
a machine learning model is constructed to predict item difficulty. Traditional machine
learning models include regression analysis [3], support vector machines (SVMs) [34],
decision trees [35,36], Random Forests [37], and shallow BP neural networks [38]. On the
other hand, deep learning models such as Convolutional Neural Networks (CNNs) [39],
Recurrent Neural Networks (RNNs) [40] and Long Short-Term Memory (LSTM) [41] neu-
ral networks are also used. Feature extraction based on text content is widely used in
disciplines with rich text information, such as language. Lexical and syntactic features
of texts can help to estimate the difficulty of language-related tasks [42,43]. However,
in mathematics and physics, the difficulty of test items is influenced by the amount of
computation, the knowledge background, and the correlation between knowledge items,
which cannot be determined by lexical and syntactic features alone [19–22].

In summary, traditional methods, statistical methods and machine learning methods
have achieved high accuracy in predicting the difficulty of exam items (Figure 1), This
study employed the XGBoost model in machine learning, which has been demonstrated to
exhibit high accuracy and generalizability [25].

However, the XGBoost model was not designed with interpretability in mind and is
therefore a “black-box” model [44,45]. Thus, in this study, we further use SHAP to increase
the interpretability of XGBoost results. We can then reveal what features are primary
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contributors to the exam difficulty. Accuracy is a critical metric in machine learning, but
focusing solely on accuracy while ignoring interpretability can lead to misinterpretation
of predictions, ultimately affecting final decisions. That is why it is critical to understand
the process by which models make predictions in order to accurately interpret and apply
them. While previous researchers have summarized the impact of input features on the
entire model using global interpretation methods, little consideration has been given to
local interpretation, specifically, the impact of input features on the prediction of individual
samples or sample data [46]. In order to explain the influence of individual features on
the assessment of test difficulty, this paper introduces the SHAP model, which provides
more detailed and accurate explanations and reveals the contribution of each feature to
an individual sample. Only by interpreting the prediction model in a reasonable way, i.e.,
by identifying the features that influence the evaluation of test difficulty and by analyzing
the importance of these features, can the model of test difficulty evaluation be better
understood. This will give examiners and teachers confidence in the predicted results so
that timely adjustments and corrections can be made in exam design and teaching.

Methods for Prediction Exam Item Difficulty

Classical Test Theory (CTT)

Machine Learning Methods

Traditional Machine Learning Deep Learning

XGBoost

Support Vector Machine (SVM)

Decision Trees

Random Forest

Shallow BP Neural Networks

Others

Convolutional Neural Networks (CNN)

Recurrent Neural Networks (RNN)

Long Short-Term Memory (LSTM) 
Neural Networks

Others

Expert EvaluationPre-testing

Figure 1. A classification of methods for item difficulty estimation.

2.2. XGBoost-Based SHAP Model

In [25], a new ensemble learning method, called eXtreme Gradient Boosting (XGBoost),
is proposed by Chen and Guestrin by introducing a scalable end-to-end tree boosting
system. As one of the commonly used nonlinear models, XGBoost is applied by machine
learning practitioners as an independent predictor [47] for prediction based on input
feature sets [48] in areas such as finance, medicine, biology, customer loyalty, advertising,
supply chain management, manufacturing, public health, and others [26,49]. Compared to
other algorithms, it is a practicable model in classification and nonlinear problem solving
in related fields [25] because it can deal with overfitting in the model, allowing faster
learning and faster model exploration. As for the prediction of confusion attempting
algebra homework [50] and student performance [51], the scalable XGBoost model was
superior to other evaluation models and significantly improved its prediction performance.
In conclusion, although the XGBoost model has never been used to judge the difficulty
of test questions, it can provide accurate and highly interpretable predictions of input
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features and has good applicability for judging the difficulty of test questions based on
subject features.

The SHapley Additive exPlanations (SHAP) is a mathematical method proposed by
Shapley L. S. in 1953 [24] for calculating the contribution of each feature in a shared feature
space. It is commonly used to allocate benefits between collaborators. The SHAP value of a
feature is the marginal contribution of that feature to the feature mix [52–54], i.e., the impact
of that feature on the final output value is calculated. SHAP is widely used. The Catboost
SHAP method is used to visualize and analyze the factors that influence students’ grades,
which can both predict student performance and help administrators better understand
the factors that influence student performance [55]. SHAP values are incorporated into the
Student Achievement Prediction Framework model to make it more intuitive to determine
which factors have an impact on test scores, and to aid the interpretation and understanding
of the overall model. In this article, we will use SHAP to explain the importance of
individual features in assessing the difficulty of exam items.

Based on the analysis of XGBoost model and SHAP method, we can find that the
XGBoost model has a better generalization ability than other machine learning methods.
It can deal with the overfitting problem of the model more effectively to achieve faster
learning and faster model exploration. Therefore, it is a very good model for classification
and nonlinear problem solving in related fields. In terms of model interpretation, the SHAP
method can rank the importance of the features that affect the model and help researchers
better understand the factors that affect the model. Although no researchers have combined
the XGBoost and SHAP model in the field of mathematics education, the combination of
these two models has been applied to real-time accident detection and feature analysis in
the aspect of traffic safety factors [26] and traffic accident feature detection [56].

In summary, this paper proposes a SHAP model based on XGBoost, which is a kind
of machine learning model. This model combines and improves the two previous models
to accurately evaluate the complexity of mathematics test questions. In fact, the XGBoost-
based SHAP strategy used in this paper is effective in improving the interpretability of
the model as well as the accuracy of test difficulty prediction while taking into account
the generalization performance of the model [52–55]. Firstly, it improves interpretability
by revealing the contribution of each feature to the prediction results. In addition, this
integration also allows a ranking of feature importance to be derived, which helps to
identify influential features. This is valuable for understanding the impact of data and
features, as well as for feature selection, and improves model performance [26].

3. Framework Building and Data Analysis
3.1. Feature Extraction Rules for Item Difficulty Estimation Framework

In 2001, the National Center for Education Statistics (NCES) established a framework
for test item assessment methodology [57]. The NCES framework evaluates test items
based on eight aspects, including content categories, scientific vocabulary, response type,
context, multi-step reasoning, mathematical skills, computation, and interpretation or use
of figures and graphs. Although this framework can, to a certain extent, effectively assess
the overall situation of test papers, it still has some shortcomings. The framework has some
limitations when applied to mathematics. It lacks features that accurately reflect the unique
features of the mathematical knowledge system and the level of mathematical exploration.
In addition, the framework’s evaluation criteria are somewhat crude and do not provide
sufficient quantitative rules for analyzing the difficulty of examination items in the era of big
data. Furthermore, within the eight features evaluated by the NCES framework, we does
not know the contribution of each characteristic to the overall difficulty of an exam item.

In order to address the first research question of this study, a novel framework for
the evaluation of the difficulty of test items is proposed, which will overcome the afore-
mentioned limitations. We identified eight features that significantly influence the diffi-
culty level of Chinese high school math exam items, namely, Parameter Level Features
(PLFs) [57], Reasoning Level Features (RLFs) [57], Thinking Mode Features (TMFs), Cal-
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culate Rank Features (CRFs) [57], Background Information Features (BIFs) [57], Character
Count Features (CCFs), Knowledge Content Features (KCFs), and Cognitive Level Features
(CLFs). The four selected features, PLF, RLF, CRF and BIF, are based on the framework
of NCES [19–22,57]. However, the specific extraction rules for these features have been
defined differently from those proposed by NCES as shown in Table 1. Furthermore, this
study considers TMF, CCF, CLF, and KCF to be important features that affect the difficulty
of math tests. TMF reflects the mathematical thinking mode needed to solve the problem.
CCF reflects the amount of information and complexity of the test. CLF represents the
cognitive depth required by the test. KCF involves the specific mathematical knowledge
content and quantity involved in the test as shown in the Table 1. These features directly
affect the way students understand and respond to the questions, and thus, they are crucial
in assessing the difficulty of the questions. Next, we provided extraction rules and defined
four levels for each feature based on Bloom’s cognitive target classification and the nature
of mathematics as shown in Table 1. Each level was assigned a rank variable from high to
low (1, 2, 3, and 4).

Table 1. Extraction rules for item difficulty features.

Features Description

PLF Items are categorized into four levels based on the number of parameters involved:
no parameters, one parameter, two parameters, and three or more parameters.

RLF
Items that require reasoning steps to solve are classified into four levels based
on the number of steps needed. The levels are based on the intervals [0, 5),
[5, 8), [8, 10), and [10,+∞), respectively

TMF

The problem-solving process of the given items involves four types of thinking
methods: forward thinking, backward thinking, primarily forward thinking
(with a hint of backward thinking), and primarily backward thinking (with a
hint of forward thinking). These four cases are respectively referred to as four
levels of thinking.

CRF

Exam computation processes can fall into four categories: (1) simple sym-
bol/numeric operations with a simple symbol and numeric value, (2) combi-
nation of simple symbol and numeric operations, (3) complex symbol/numeric
operations with complex symbols and numeric values, and (4) combination of
complex symbol and numeric operations. We refer to these cases as four levels
for ease of description and distinction.

BIF

Exam’s background may fall into four categories: (1) no specific background,
focusing only on mathematical knowledge; (2) real-life contexts for practical
problem-solving; (3) on the background of other disciplines or mathematical cul-
ture; and (4) real-life or scientific contexts with mathematical figures and charts.

CCF

To standardize the quantity of printed symbols in exam items and improve
problem-solving efficiency, we calculate the number of symbol units for each
item and divide them into four symbol levels based on their respective ranges:
[0, 50], (50, 70], (70, 100], and (100,+∞]

KCF

We extract the knowledge points covered in each exam item, using the 170 tar-
get knowledge points in the scope of Chinese high school mathematics as the
knowledge units. When an exam item contains 2–3, 4, 5–6, or 7–9 knowledge
units, we classify them into four knowledge levels accordingly.

CLF

Based on Bloom’s cognitive domain and the analysis of behavioral verbs in
the three-dimensional objectives of the Chinese mathematics curriculum stan-
dards, we divide the cognitive levels into three levels of increasing complexity:
Cognitive Level A (Understanding, 1 point), Cognitive Level B (Comprehen-
sion, 2 points), and Cognitive Level C (Mastery, 3 points). Next, we evaluate
the cognitive level for each knowledge point in a question separately, sum
them up to obtain the cognitive level score for that item, and then categorize
them into four grades based on their respective ranges: [0, 7], (7, 11], (11, 16],
and (16, 22].
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Taking the 17th item (12 points) in the 2019 Chinese National College Entrance Ex-
amination (C-NCEE) Volume 1 exam as an example, this item contains two parameters,
requires five to six steps of reasoning, and mainly tests reverse thinking. The computation
involves both simple symbol operations and simple numerical operations, without specific
contextual factors. There are 42 printed characters, and the item covers 5 knowledge units,
with a total cognitive level of 14 across these units. The item is shown as follows, and the
original data are shown in Table 2.

Table 2. Features of the 17th item (12 points) in the 2019 C-NCEE1 Mathematics paper.

Question
Number PLF RLF TMF CRF BIF CCF KCF CLF

17 2 2 1.75 2 1 1 3 3

Q17. We are given a parallelogram ABCD in which ∠ADC = 90◦ and ∠A = 45◦.
Also, AB = 2 and BD = 5. We need to find the following:

(a) cos∠ADB
(b) Length of BC if DC = 2

√
2.

3.2. Item Difficulty Levels

In this paper, we introduce a difficulty coefficient (DC) to measure and quantify the
difficulty level of actual test questions, where AS and TS are the average score and total
score of the test items, respectively [58]:

DC = 1 − AS
TS

, (1)

Specifically, items with DC falling within the ranges of [0, 0.45], [0.45, 0.83], and [0.83, 1]
were classified as Level 0, Level 1, and Level 2. These levels correspond to easy, moderate,
and difficult items, respectively.

To calculate the DC and DL of each item, Table 3 presents the TS and AS of the
seven subjective math items in the 2019 C-NCEE1 exam. These data were provided by the
Information Management Department of a provincial admissions office in China.

Table 3. Normalized values, DC and DL of features in the 2019 C-NCEE1 math paper items.

Question
Number PLF RLF TMF CRF BIF CCF KCF CLF TS AS DC DL

17 0.563 0.108 0.250 0.600 0.000 0.015 0.429 0.600 12 8.5 0.292 1
18 0.563 0.242 0.917 0.400 0.000 0.085 0.857 0.850 12 8.2 0.317 1
19 0.375 0.125 0.583 0.500 0.000 0.054 0.571 0.600 12 4.49 0.626 1
20 0.469 0.300 0.917 1.000 0.000 0.020 1.000 0.950 12 1.73 0.856 2
21 0.469 0.217 0.417 0.300 1.000 0.775 0.286 0.350 12 2.22 0.815 2
22 0.469 0.075 0.333 0.700 0.000 0.165 0.571 0.650 10 3.41 0.659 1
23 0.563 0.167 0.750 0.500 0.000 0.007 0.143 0.150 10 4.23 0.577 1

3.3. Data Analysis

In this section, we apply Principal Component Analysis (PCA) to decrease the dataset’s
dimensionality, while still keeping the most significant characteristics that influence vari-
ance. In order to better construct the model, all the data are normalized. The mathematics
paper from the 2019 C-NCEE is taken as an example, referring to Table 3.

Principal Component Analysis is an unsupervised learning algorithm that is used for
the dimensionality reduction in machine learning. It is a statistical process that converts
the observations of correlated features into a set of linearly uncorrelated features with the
help of orthogonal transformation. These new transformed features are called the Principal
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Components. It is one of the popular tools that is used for exploratory data analysis and
predictive modeling. It is a technique to draw strong patterns from the given dataset by
reducing the variances. In general, PCA tries to find the lower-dimensional surface to
project the high-dimensional data. Figure 2 depicts the distribution of abnormal features
in PCA dimensionality reduction, with blue data points representing these abnormal
features. Abnormal features are defined as those that differ from or deviate from the normal
pattern during the dimensionality reduction process. They may affect the PCA results,
causing changes in the principal variance or distorting the data distribution. Consequently,
it is of paramount importance to monitor the distribution of abnormal features during
PCA dimensionality reduction, evaluate their influence on the results, and implement
appropriate corrective measures, such as the removal of outliers.
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Figure 2. Distribution of abnormal features in dimensionality reduction by PCA.

4. Methodology
4.1. Model Building

The test question difficulty prediction model we developed consists of the following
parts: in the model development phase, we utilized and improved the XGBoost model;
in the model parameterization phase, we improved it using the grid search method; and
in the model interpretation phase, we integrated the SHAP model. We trained the model
using the mathematics test questions from China’s college entrance exams over the past
decade. These test questions are evaluated based on the actual scores of millions of test
takers. The model uses 263 sets of samples, each consisting of 8 features and a DL.

In constructing the model, we referred to the model construction process by Chen
and Guestrin [25]. Motivated by Gradient Boosting Decision Tree (GBDT), XGBoost adopts
a tree-shaped structure containing decision nodes (root nodes), chance nodes (internal
nodes), and terminal nodes (leaf nodes). Starting from the decision node, each internal
node represents a judgment on a feature, each branch represents an output of the judgment
result, and each leaf node represents a classification result. The XGBoost algorithm consists
of multiple decision trees, where each tree is trained on the residual of the previous tree
and influences the next tree. The conclusions of all decision trees are accumulated to obtain
the final conclusion.

In this work, we investigated a dataset containing n sets of data, each set including
an independent variable xi and a dependent variable yi. Each independent variable xi
contains 8 features. xi ∈ R8, while yi ∈ R. To generate predictions, the model employs K
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decision tree functions fk, and these functions are summed to denote the prediction on the
K-th boost result ŷi [25]:

ŷi =
K

∑
k=1

fk(xi), ( fk ∈ F , i ∈ n), (2)

where F =
{

fk(x) = ωq(x)
}

, q : R8 → T, ω ∈ RT denotes the set of all decision tree
functions fk. It is important to note that XGBoost utilizes a specific type of base learner in
the form of a decision tree, where each tree can be represented as ωq(x), q ∈ {1, 2, . . . , T},
and T is the total number of leaves in the tree. Here, q represents the decision rules of the
tree, which classify the samples into corresponding leaves, and ω is a vector indicating the
weight of each leaf node (i.e., leaf scores). Essentially, q and ω together describe how the
samples are classified into leaves and the corresponding weights assigned to each leaf node
in the tree.

To prevent overfitting, we introduce a regularization term Ω( fk) = γT + 1
2 λ∥ωi∥2 that

limits the complexity of the algorithm [59]. Here, γ and λ are regularization coefficients,
and ∥ωi∥2 is the L2 norm of leaf weights. We use l(ŷi, yi) to represent the deviation between
predicted values and true values in order to minimize the following objective function:

L =
n

∑
i=1

l(yi, ŷi) +
K

∑
k=1

Ω( fk), (3)

XGBoost approximates (3) using Taylor expansion [60], allowing for fast computa-
tion. Let Ij = {i|q(xi) = j}, q : R8 → T be the set of instances of leaf j. After removing
the constant term, we simplify and obtain the objective function L (k) after k iterations
as follows:

L (k) =
T

∑
j=1

(∑
i∈Ij

gi)ωj +
1
2
(∑

i∈Ij

hi + λ)ω2
j

+ γT, (4)

where gi = ∂ŷ(k−1) l(yi, ŷ(k−1)) and hi = ∂2
ŷ(k−1) l(yi, ŷ(k−1)) are first- and second-order gradi-

ent statistics on the loss function.
By using a fixed tree structure q(x) and the optimal leaf weights ω∗

j on each leaf

node, the optimal solution for ωj and the extreme value of L (k) can be obtained by
Equations (2)–(4):

ω∗
j = −1

2

[
T

∑
j=1

(∑i∈Ij
gi)

2

∑i∈Ij
hi + λ

]
+ γT, (5)

L (k) =
T

∑
j=1

(∑
i∈Ij

gi)ωj +
1
2
(∑

i∈Ij

hi + λ)ω2
j

+ γT, (6)

XGBoost’s primary challenge is finding the optimal tree structure, which can be
approached through an intuitive search algorithm that involves enumerating all possible
tree structures, computing their scores using (6), and selecting the one with the highest
score. Nonetheless, due to the infinite number of possible tree structures, this approach is
impractical. So, we use the greedy algorithm to change the objective function to [25]:

Lsplit =
1
2

[
(∑i∈IL

gi)
2

∑i∈IL
hi + λ

+
(∑i∈IR

gi)
2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ

]
− γ, (7)

Here, IL is the instances set of left nodes after the split, IR is the instances set of right
nodes after the split, and I = IL ∪ IR.
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4.2. Model Parameters

To improve the classification accuracy of the model in this study, we employed grid
search to determine the optimal hyperparameters. Typically, learning algorithms are
trained to optimize parameters for improved data fitting, while hyperparameters are used
to regulate the complexity of the model or introduce regularization techniques to enhance
performance. The credit-scoring models discussed in this paper (SVM, CNN, RNN, and
the proposed model) have various hyperparameters that greatly affect the accuracy of the
models [61].

Grid search is a method that optimizes model performance by traversing a given set of
parameter combinations. Within the specified parameter range, the parameters are adjusted
step by step, and every possible combination is tried through a loop traversal to find the
parameters that produce the highest accuracy on the training set. The adjusted parameters
are then used to train the base and ensemble learners. Grid search effectively prevents
overfitting of the model. However, since it essentially traverses all combinations, it is
time-consuming. Therefore, this study sets other irrelevant optimization model parameters
to their default values (Table 4).

Table 4. Hyperparameters combination.

Model Parameter Poptimal Value

Colsample_ bylevel 1
Colsample_ bytree 1
Learning rate 0.4
Max depth 5
N_estimators 100
Subsampl 1

The procedure for setting parameters is as follows. The study first determined the
number of base learners through a fitting score curve, then utilized grid search to identify
the optimal hyperparameters [26], and finally trained the model on a 7:3 ratio training and
test set, generating a curve graph to illustrate the classification accuracy of the model as the
number of base learners varied. To ensure the rigor of this study, the model was trained on
the training set, and a curve graph showing the classification accuracy (number of correctly
classified samples/total number of samples) of the model as the number of base learners
changes was plotted as shown in Figure 3. In Figure 3, the classification accuracy of the
training set reaches its highest value of 0.987 when the number of base learners exceeds 18.
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Figure 3. The relationship between number of evaluators and scores.
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The data show that the most accurate model is achieved by establishing the hyperpa-
rameters illustrated in Table 4.

4.3. Model Interpretation

This article utilizes the SHAP value method for model interpretation. The SHAP
value method, introduced by Shapley L. S. in 1952 [24], is a mathematical approach used
to calculate the contribution rate of individual features under the joint action of multiple
features [62]. It is commonly used to allocate benefits among collaborators [63]. The Shapley
value of a certain feature is the average marginal contribution of it to the combination
of features.

Combining the relevant data of the difficulty estimation of exam items, the specific
principles of SHAP are briefly introduced as follows:

The set I is composed of eight test question difficulty features, denoted as A1 through
A8, where A1 = PLF, A2 = RLF, A3 = TMF, A4 = CRF, A5 = BIF, A6 = CCF,
A7 = KCF, and A8 = CLF. For any subset s of I, which represents any combination of the
eight features, there exists a corresponding combination contribution represented by the
real-valued function v(s). For instance, when s = {A1, A2, A3}, v(s) denotes the combined
contribution of features A1, A2, and A3 to the exam item difficulty. Assuming that there
is only one tree in the model, given a sample x and its feature subset s, if all features are
considered, i.e., s is equal to the entire feature set, then the combination contribution v(s) is
the output value of the model under that feature. On the other hand, if the subset is empty,
the combination contribution is calculated as the weighted average of the predicted values
of all leaf nodes, which are used as the output value. If the subset contains some features,
only leaf nodes that can be reached after removing the features excluded are considered.
The weighted average of the predicted values from the remaining leaf nodes is then taken
as the output value. In summary, this process defines how the model generates output
values based on different feature subsets [26].

The SHAP value ϕi(v) is calculated as follows:

ϕi(v) = ∑
s∈Si

m̌(|s|)[v(s)− v(s\Ai)], (8)

m̌(|s|) = (8 − |s|)!(|s| − 1)!
8!

, (9)

where |s| represents the number of elements in subset s; Si represents all subsets of features
that include Ai; i is the number of features, i ∈ {1, 2, 3, . . . , 8}.

5. Results
5.1. Model Evaluation

In this section, we compare our proposed model with two other models and summarize
the results in Table 5. We evaluate the correlation model using five metrics: training set
fit accuracy, test set fit accuracy, recall, F1 score, and precision (see Table 5). We divide the
datasets into training and test sets to train the models with the former and evaluate their
performance with the latter. Following the standard industry practice advocated by [64,65],
we adopt a 70/30 split for training and testing. Specifically, 70% of the samples are utilized
for model development and the remaining 30% for evaluation. Following the optimization
of five parameters and the consideration of eight features, we subsequently continue with
model training.

Precision, recall, accuracy, and F1 score are commonly used metrics to evaluate the
performance of a classification model [66,67]. Precision is especially important in assessing
positive instance predictions. A higher precision corresponds to better accuracy in detecting
positive cases and reducing the risk of false positives. However, precise measurement alone
cannot fully capture the model’s efficacy in identifying positive instances missed, or false
negatives. Therefore, when evaluating the model’s performance, it is crucial to consider
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additional metrics such as recall, F1 score, and accuracy, which offer a more comprehensive
assessment of the model’s effectiveness. Accuracy measures the proportion of accurately
predicted samples out of the total sample size, providing an overall measure of correctness.
A higher level of accuracy indicates that the model can make more precise predictions.
Recall measures the model’s ability to correctly identify true positive samples, showing the
ratio of accurately predicted positive samples to the total number of true positive samples.
A higher recall indicates that the model captures a greater portion of true positive samples.
The F1 score calculates a harmonic mean of accuracy and recall, providing an objective
evaluation of the model’s performance based on both prediction accuracy and its ability to
efficiently capture positive instances (Table 5).

Table 5. Evaluation metrics for the three classification models.

Model Training Set
Fitting Accuracy

Test Set
Fitting
Accuracy

F1 Score
Recall
(Weighted
Avg)

Precision

Proposed model 0.9998 0.8064 0.9419 0.9411 0.9435
Light GBM 0.7875 0.6857 0.6932 0.6911 0.5600
Random Forest 0.8625 0.6571 0.6657 0.6603 0.5600

As Table 5 shows, the proposed model always yields the best result. It outperforms
Light GBM with a significant improvement of 0.2123 in training set fitting accuracy, sur-
passing Random Forest by 0.1496. It also beats the other two models in terms of test set
fitting accuracy with a score of 0.8064. Additionally, its F1 score reaches 0.9419, 0.2640
higher than Light GBM and 0.2932 higher than Random Forest. When considering the
weighted average recall, the proposed model surpasses Light GBM and Random Forest by
0.2656 and 0.2983 respectively. Moreover, precision increases from 0.5600 to 0.9435.

In Figure 4, we show the confusion matrix [68] of the proposed model in the test set,
and the overall data. In this confusion matrix, each cell represents the model’s prediction
results for a certain class. The elements on the diagonal represent the number of correct
predictions for a certain class by the model, while those off the diagonal represent the
number of instances where the model incorrectly predicted a certain class as another class.
In the test set, the proposed model achieved a weighted average accuracy of 0.8312 for item-
level deep learning. Additionally, in the overall data, the proposed model demonstrated a
weighted average accuracy of 0.9435 for item-level deep learning.

In a word, the proposed model outperforms Light GBM and Random Forest in terms
of training and test set fitting accuracy, as well as the F1 score, weighted average recall,
and precision.

Figure 4. The confusion matrix of the proposed model.
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5.2. Model Interpretability

In the preceding sections, in order to address the initial research question of this study,
we presented a novel framework for evaluating the difficulty of test items (Table 1). In
order to address the second research question of this study, this section offers an objective
interpretation of the results, ranking their importance based on eight features. Interpretabil-
ity holds the same importance in credit scoring as accuracy. However, it receives little
attention in many studies for two reasons [61]. Firstly, popular base models like SVM are
inherently black-box systems [69]. Secondly, global explanations adopted by ensemble
methods like bagging, boosting, and stacking face challenges when it comes to establishing
comprehensive credit-scoring models. To overcome the constraints, this paper utilizes the
SHAP model to emphasize localized explanations. It focuses on the impact of individual
features on test difficulty assessment. By employing the SHAP model, this study provides
in-depth and accurate insights, uncovering the precise contribution of each feature to a
single sample in Figure 5.

0.8641 0.9141

CLF = -1.016 CCF = -0.5003 RLF = -1.434 PLF = -0.5006 KCF = -0.5308 CRF = -1.709

0.9641

higher lower
f(x)base value

1.00 1.014 1.064 1.114

Figure 5. Shap summary plot.

Figure 6 shows the SHAP summary plot obtained by accumulating the precise con-
tribution of each feature to the 116 sample sets. These features sorted by their relative
importance scores in descending order are PLF, RLF, KCF, CCF, CLF, TMF, CRF, and BIF.
Therefore, PLF is the most significant feature that affects test difficulty, while BIF is the least
important and can be removed to improve learning speed and accuracy.
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Figure 6. Shap summary plot.

By removing the BIF, we observed a notable enhancement in XGBoost model accuracy
on the test set, with an improvement of 7.5% compared to predictions made using all
features. Additionally, we conducted an analysis where we systematically constructed
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256 combinations of eight features. Subsequently, the accuracy of these combinations was
evaluated on the training and test sets using the XGBoost model.

5.3. Distribution of Features in Different Knowledge Units

In order to address the third research question of this study, in this section, the subjec-
tive items in CNCEE mathematics are categorized into nine distinct knowledge units based
on the Chinese curriculum standards [70], then the distribution of each knowledge unit
across the eight features is analyzed. The identified knowledge units include probability
and statistics, trigonometric functions, coordinate systems and parametric equations, plane
analytic geometry, solid geometry, selected topics in geometric proofs, derivatives, selected
topics in inequalities, and sequences. The results show that different knowledge units have
different levels of emphasis on the eight characteristics (Figure 7).

Probability and Statistics Trigonometric Functions Coordinate Systems and Parametric Equations

Plane Analytic Geometry Solid Geometry Selected Topics in Geometric Proofs

Derivatives Selected Topics in Inequalities Sequences

PLF

CLF

KCF TMF

CCF CRF

BIF

RLF

PLF

CLF

KCF TMF

CCF CRF

BIF

RLF

PLF
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KCF TMF

CCF CRF
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PLF

CLF

KCF TMF

CCF CRF

BIF
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Figure 7. Distribution of features in different knowledge units.

Figure 7 illustrates the distribution of each knowledge unit across eight features, which
reveals varying levels of importance and focus. The distribution of knowledge units across
different features reveals varying levels of importance and focus. For the “Inequality”
knowledge unit, the distribution is relatively balanced, with a primary emphasis on the
PLF, TMF, and CRF features. On the other hand, the “Derivative” knowledge unit exhibits
a higher concentration in the PLF, TMF, CRF, CCF, and KCF features, particularly in the
TMF and CRF features. Geometric proofs are mainly associated with the TMF feature,
while analytic geometry demonstrates a significant presence in the PLF, TMF, CRF, CCF,
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and CLF features, particularly with higher distribution in the CRF and CLF features. Solid
geometry shows a relatively balanced distribution across the PLF, TMF, CRF, and KCF
features. Trigonometric functions and sequences exhibit a similar balanced distribution
across the PLF, CRF, and CLF features. Statistics and probability are primarily associated
with the CCF and KCF features, while coordinate and parametric equations are prominent
in the PLF, CRF, KCF, and CLF features, with higher distribution in the CRF and CLF
features. These findings contribute to a comprehensive understanding of the importance
and distribution of features within each knowledge unit, providing valuable insights for
further research and instructional.

6. Discussion

In this study, we utilized the past ten years’ subjective math items from the Chinese
National College Entrance Examination and combined them with millions of students’
exam scores to establish an interpretable model, XGBoost-based SHAP, for predicting the
difficulty of exam items. The training set and test set achieved accuracy rates of 0.99 and
0.806, respectively. We hypothesized that the item difficulty is determined by eight features
and used SHAP model analysis to determine the importance of each feature relative to
the item difficulty. We found that PLF and RLF were two significant factors influencing
the difficulty of subjective items in the Chinese National College Entrance Examination.
Additionally, we divided high school mathematics knowledge according to the Chinese
curriculum standards into nine units [70]. We further analyzed the distribution of these
nine knowledge units across the eight features to gain deeper insights into whether the
influencing features on item difficulty vary across different knowledge units. Through
this analysis, we reveal notable differences in the distribution of the eight features across
different units of the textbook, which can assist teachers in placing different emphasis
on different units during the instructional process. These findings have the potential to
inform classroom practice by providing tools that are better aligned with and responsive to
students’ learning needs.

6.1. Feature Analysis

Figure 6 gives a SHAP summary plot ranking the importance of features for item
difficulty estimation. We can observe the features associated with item difficulty estimates
and their importance ranking. This approach highlights the importance of each feature
in determining item difficulty, reducing the ’black box’ of the model and increasing its
interpretability compared to other models. The first and second research objectives of this
study are solved. This section presents a detailed discussion of the first and second research
objectives of this study.

PLF has the greatest influence on the model. Higher PLE value and higher SHAP value
indicate that the item is more difficult. This is easy to understand because the more that
unknown parameters are involved in the problem-solving process, the more information
students need to solve the problem. This could increase the complexity of the question, as
students have to consider more variables and factors. In addition, students may need to
perform more calculation and analysis to solve the problem, which could also increase the
difficulty of the item.

RLF and TMF are the next two most important features, with higher feature values
indicating more difficult questions. Indeed, more complex reasoning steps and the exami-
nation of more knowledge points may require more thinking and calculation, thus making
the question more difficult [71]. Especially when multiple knowledge items are integrated,
students need to carefully distinguish the differences between them and practice, which
may pose some challenge to their own knowledge thinking system [72]. At the same time,
when multiple knowledge points are integrated, students may need to think creatively
about how to solve the problem. This is because this type of question requires students to
combine different knowledge points to generate new ideas and methods, thereby increasing
the creativity and complexity of the item.
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As for CCF, Figure 6 shows us an interesting result: the more characters an item has,
the easier it is, and the fewer characters it has, the harder it is. This result is not difficult to
understand and demonstrates a characteristic of mathematics itself: the effect of the use
of symbolic language on the difficulty of questions. The use of symbolic mathematical
language can make questions more concise and precise. At the same time, however, it can
increase the abstractness of mathematical questions for students and thus increase their
difficulty. Mathematical symbols make the mathematical expression of questions more
abstract and symbolic, which can make mathematical questions more obscure and difficult
for students to understand. It therefore poses a greater challenge to students’ mathematical
and comprehension skills.

Subsequently, CLF also has a significant impact on question difficulty. The higher the
cognitive level of the knowledge itself, the more difficult the question [73]. This may be
because the Chinese Curriculum Standards require students to achieve a certain level of
knowledge. Ref. [70] presents a SHAP summary plot ranking the importance of features for
difficulty estimation of examination items.We can observe the features that are relevant for
the difficulty estimation of examination questions, as well as their ranking of importance.
And the higher the standard required, the deeper the examination of the questions by the
test makers, thus making the questions more difficult.

The results for TMF show that, overall, the use of reverse thinking in the process of
answering questions increases the difficulty of the question, but the effect is not significant.
We can see that TMF has both positive and negative contributions to the difficulty of the
question. This may be because the use of reverse thinking can lead to finding different
perspectives and methods of solving problems, which can make some seemingly complex
problems simpler and more direct than traditional methods, thereby reducing the amount
of calculation and reasoning steps needed in the process of answering the question and
thus reducing the difficulty of the question. We therefore conclude that backward and
forward thinking do not have a direct effect on the difficulty of the question but rather
depend on the nature of the question and the mathematical ability level of students.

In terms of CRF, as the computational complexity required to solve a problem increases,
so does the difficulty of the problem [74,75]. Different types of mathematical operations are
associated with different levels of difficulty in problems. In general, problems involving
more complex operations are more difficult.

Finally, the BIF is the least important feature, which is very interesting and unexpected.
In the Chinese GCE Mathematics examination, the context of the problem has relatively
little effect on the difficulty of the problem. This may be because Chinese mathematics
examiners focus on testing students’ basic concepts, skills and methods, emphasizing their
problem-solving skills, and are relatively weak in testing the ability to identify and analyze
problems [76]. As a result, items tend to lack background information and complexity.

In short, over the past decade, a variety of features have influenced the difficulty of
subjective math questions on Chinese college entrance exam to varying degrees as illus-
trated in Figure 6. The figure provides a comprehensive overview of the relative importance
of various features in estimating the test items’ difficulty. Educators can utilize the factors
that have been identified to enhance the design of test papers and regulate the overall
difficulty of test papers in order to better align with the diverse learning needs of students.
Furthermore, this approach could facilitate the development of more targeted teaching
strategies that would ultimately improve learning outcomes in mathematics education.

6.2. Distribution of Features in Different Knowledge Units

In this section, we divide high school mathematics knowledge into nine units [70]
based on the Chinese curriculum standards, and further analyze the distribution of these
eight features on the nine knowledge units to gain insights into whether there are differences
in the influence of these characteristics on the difficulty of different knowledge units. In
this section, we address the third research objective of this study; the results are shown
in Figure 7.
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In the realm of probability and statistics, it assumes paramount importance to cultivate
students’ proficiency beyond fundamental concepts and mere probability computations.
The focus should be directed towards nurturing their comprehension of statistical data, data
organization and acquisition, data analysis and its interpretation, problem formulation and
resolution, and fostering sound critical thinking skills. Our research findings indicate that
within the domain of Chinese mathematics, questions pertaining to probability and statistics
underscore the augmentation of question complexity in relation to features such as RLF,
CLF, and BIF. This implies that China places a premium on evaluating students’ aptitude
for data analysis, interpretation of statistical information, as well as the capacity to model
and resolve problems in the context of probability and statistics inquiries. Nonetheless,
there may exist certain lacunae in the domain of critical thinking.

Trigonometric functions, sequences, inequalities, and derivatives are typically catego-
rized within the domain of functions. In the subjective question segment of the Chinese
National College Entrance Examination for mathematics, there is a heightened emphasis on
evaluating students’ grasp of and proficiency in handling functions. The incorporation of
numerous variables in the examination questions elevates the intricacy of the computations
involved. However, to a certain extent, this examination approach tends to neglect stu-
dents’ capacity to employ functions for resolving real-world issues. This encompasses their
ability to convert practical problems into functional models and to apply their functional
knowledge in the process of problem resolution.

Coordinate systems and parametric equations, plane analytical geometry, solid ge-
ometry, and geometric proofs can be classified as part of the geometry section. In the
subjective question section of the Chinese National College Entrance Examination Mathe-
matics Test, there is a detailed examination of spatial visualization ability, graph analysis
and judgment ability, geometric reasoning and proof ability, and geometric calculation and
measurement ability. However, there is relatively little emphasis on the ability to apply
geometric knowledge to solve practical problems.

Despite the curriculum reforms in China in 2017 and 2021 as highlighted by the
Ministry of Education of P.R.o.C [70], which underscored the development of mathematical
modeling skills encompassing the utilization of mathematical knowledge for practical
problem-solving, this emphasis is not conspicuously manifested in the subjective question
segment of the National College Entrance Examination. Mathematical modeling skills
receive only modest assessment within the probability and statistics section, whereas they
are scarcely addressed within the functions and geometry sections. This suggests that the
current Chinese college entrance examination mathematics questions still lack the ability to
examine mathematical modeling.

This analysis has revealed significant disparities in the distribution of the eight features
across various units of the textbook. Overall, this study presents considerable potential for
the field of mathematics education. It can equip teachers with more effective instructional
support, enabling them to navigate the differences in teaching between distinct knowledge
units. Moreover, it aids in comprehending the focal points and challenges of different
knowledge units, assisting teachers in better understanding and addressing students’
learning needs.

6.3. Limitations and Future Directions

An important consideration to bear in mind pertains to the constraint imposed by our
data sample in this study, which may not offer a comprehensive representation of all forms
of assessments. Our research primarily centers on subjective mathematics items featured
in the CNCEE. Consequently, the findings may not be readily extrapolated to various
educational systems or diverse examination formats, such as those applicable to language
subjects. Subsequent research endeavors could delve into assessing the suitability of the
proposed approach across a broader spectrum of contexts and examination structures. This
could involve the training of the model using items sourced from different countries and
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of various types, thereby validating the generalizability of the outcomes across student
samples both within and outside of China.

Another noteworthy limitation pertains to the constraint imposed on the set of features.
The paper’s focus on eight prominent features that exert an influence on the difficulty of
mathematics test items signifies a significant starting point. Nevertheless, it is imperative
to acknowledge that the complexity associated with item difficulty extends beyond the
purview of these specific features alone. There may exist other pertinent factors that
have not been incorporated into the analysis, potentially leaving crucial dimensions of
difficulty unexplored. In order to mitigate this limitation, forthcoming research endeavors
could consider an expansion of the feature set by incorporating additional variables or
exploring the interplay among various features. By widening the spectrum of features
under consideration, researchers can attain a more comprehensive grasp of the diverse
factors that contribute to item difficulty. This expanded feature set may encompass cognitive
factors such as problem-solving strategies, as well as critical aspects like item presentation
format or language requirements.

The paper highlights the potential applications of the proposed approach in automatic
test item generation and intelligent paper generation. However, it does not address the
practical implementation or future directions for integrating the item difficulty assessment
model into these systems. This provides an avenue for future research to explore and
develop practical frameworks that utilize the proposed approach for automated item
generation. Future research can explore the integration of the item difficulty assessment
model into automated item generation systems to optimize the generation of well-balanced
test items of varying difficulty levels. In addition, integrating the item difficulty rating
model into intelligent paper generation systems can be explored to enable the dynamic
assembly of test papers based on difficulty ratings, desired levels of challenge, and other
relevant features. This integration enables educators and test administrators to create
customized assessments that are aligned with educational objectives and take into account
the diverse needs and abilities of students.
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