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Abstract: Accurate air quality prediction is paramount in safeguarding public health and addressing
air pollution control. However, previous studies often ignore the geographic similarity among
different monitoring stations and face challenges in dynamically capturing different spatial–temporal
relationships between stations. To address this, an air quality predictive learning approach
incorporating the Third Law of Geography with SAM–CNN–Transformer is proposed. Firstly, the
Third Law of Geography is incorporated to fully consider the geographical similarity among stations
via a variogram and spatial clustering. Subsequently, a spatial–temporal attention convolutional
network that combines the spatial attention module (SAM) with the convolutional neural network
(CNN) and Transformer is designed. The SAM is employed to extract spatial–temporal features from
the input data. The CNN is utilized to capture local information and relationships among each input
feature. The Transformer is applied to capture time dependencies across long-distance time series.
Finally, Shapley’s analysis is employed to interpret the model factors. Numerous experiments with
two typical air pollutants (PM2.5, PM10) in Haikou City show that the proposed approach has better
comprehensive performance than baseline models. The proposed approach offers an effective and
practical methodology for fine-grained non-stationary air quality predictive learning.

Keywords: air quality prediction; the third law of geography; spatial–temporal attention convolutional
network; Shapley’s analysis

MSC: 37M10; 68T07

1. Introduction

In recent years, rapid urbanization and industrialization have led to deteriorating
air quality, which poses a serious threat to public health [1,2]. Furthermore, prior studies
indicate that prolonged exposure to air pollution can stimulate lung tissue and affect
vascular endothelial function, thereby precipitating a range of diseases affecting the
respiratory and cardiovascular systems, either directly or indirectly causing harm to the
entire body [3,4]. Therefore, the effective control of air pollutants has become an urgent
issue in many countries. Providing a comprehensive analysis of air quality and predicting
the concentration of various pollutants in the air in advance is essential for controlling
air pollution levels and supporting policy formulation. This effort holds paramount
significance in safeguarding public health.

According to literature reviews, many factors influence the efficacy of air quality
predictive learning, which strongly depends on the following three complex factors:
modeling feature engineering [5,6], the application of geography laws [7,8], and the
selection of predictive models [9,10].
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Firstly, existing studies reveal intricate interactions among multiple air pollutants [5,11].
Consequently, integrating multiple air pollutants into the predictive learning of air
quality becomes imperative. For example, Ma et al. considered the interaction between
PM2.5, PM10, SO2, benzene, and other pollutants when predicting the air quality index,
resulting in heightened prediction accuracy [12]. However, the studies exclusively
considering inter-pollutant interactions often overlook the impacts of geographical
location and meteorological factors on air pollution concentrations. To address this,
Lin et al. incorporated meteorological and other pollutant exogenous factors in PM2.5
concentration prediction to comprehensively capture features influencing the PM2.5
concentration sequence [13]. Multivariate models embedding diverse factors have
demonstrated significant contributions to enhancing prediction capability [14]. It is
worth noting that an efficient method is required to fully capture the interrelationships
between multivariate data to obtain effective information while avoiding redundant
information that interferes with model training.

Moreover, the majority of current air quality predictive learning methods are based
on the principle of the First Law of Geography. This law posits that everything is related
to everything else, but near things are more connected than distant things [15]. Based
on this theory, the Pearson correlation coefficient and proximity are commonly applied
to the selection of correlated stations in most studies [7]. However, these approaches
achieve poor results as they solely consider relationships between adjacent stations
within the geographic area, overlooking the complex interactions induced by human
factors in distinct urban functional areas. The Third Law of Geography can fully play
an important role in addressing uncontrollable patterns of spatial variation in air pollutant
concentrations. This law points out that the more similar the geographical environment is,
the more similar the geographical target characteristics are [16]. The spatial correlation of
air pollution concentration at each monitoring station is not only correlated to the distance
between stations but also to the environment surrounding the stations [17]. In practice,
human production activities and the distribution of Points of Interest (POIs) can lead to
differences in the distribution of pollutant concentrations [18]. In addition, considering
the influence of wind direction and the effect of airflow and atmospheric circulation, there
is a specific correlation and synergy between the concentration of air pollutants at two
monitoring stations that may be farther away in a particular direction [19]. Therefore, fully
integrating the content of the Third Law of Geography is crucial for predictive learning in
air quality.

Last but not least, researchers have proposed many methods based on deep learning
architectures to automatically capture dynamic non-linear distribution characteristics. The
widely applied foundational models include attention mechanisms [20,21], convolutional
neural networks (CNNs) [22,23], and long short-term memory networks (LSTMs) [11,24].
A common strategy for modeling air quality predictive learning is to integrate these
individual models, leveraging their respective strengths to enhance prediction accuracy
and stability [25]. Although the combination of these models has improved the accuracy
of air quality prediction to a certain extent, there are still some limitations. Recently, the
Transformer models have been successfully applied in time series forecasting tasks [26]. The
model can capture the long-term dependencies in the data, presenting a viable approach
for achieving accurate fine-grained air quality predictive learning based on the Transformer
model [26].

As far as we know, most of the current studies on air quality predictive learning
predominantly center around the identification of correlated stations using the First Law
of Geography [7]. However, there is a limited number of studies that take into account
regional influences and the anisotropy of spatial air pollutant concentrations. In addition,
the existing deep learning models are difficult to fully extract the spatial–temporal features
of air pollutants. To address the weaknesses of previous studies, an air quality predictive
learning approach incorporating the Third Law of Geography with SAM–CNN–Transformer
is proposed. The proposed approach fully considers the interaction between different
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air pollutants and meteorological factors, the environmental similarity between stations
through the Third Law of Geography, and the spatial–temporal features of air pollutant
concentrations through the SAM–CNN–Transformer model. The main contributions of this
study can be summarized as follows:

(1) The Third Law of Geography is incorporated. The spatial clustering results of POI
data are used as a characterization parameter to fully consider the correlation and
synergism among different geospatial monitoring stations. The spatial anisotropy
analysis is also utilized to optimize the impacts of spatial factors to fully consider the
spatial variability of the atmospheric physical processes of air pollution.

(2) This study notes the advantages of the hybrid deep learning model based on fusion
mechanisms in dealing with spatial–temporal dependencies. SAM, CNN, and Transformer
are integrated with the overall structural design to fully extract the spatial–temporal
distribution features of the stations; it overcomes the problems existing in typical deep
learning methods, such as gradient vanishing, gradient explosion, etc.

(3) Shapley’s analysis is employed to assess the importance of air pollutant concentrations,
meteorological factors, and correlated stations’ influences on the model predictive
learning, providing direction for further modeling.

The rest of this paper is organized as follows: Section 2 briefly summarizes the related
work. Section 3 reviews the theoretical principles of the involved methods. Section 4
presents several experiments to analyze the obtained results. Section 5 outlines the
discussion. Finally, the conclusion and future work are presented in Section 6.

2. Related Works
2.1. The Laws of Geography in Spatial–Temporal Forecasting

The First Law of Geography [15], describing a spatial similarity and autocorrelation
of geographic phenomena, has gained attention in spatial–temporal air quality predictive
learning [7,8,27]. For example, Seng et al. utilized spatial information from five nearby
stations with the highest Pearson correlation coefficients to improve prediction accuracy [7].
Mao et al. treated pollutants at different stations as a spatial adjacency matrix, employing
graph convolutional networks for spatial dependency modeling [8]. However, these
studies often rely on Pearson correlation coefficients or identify strongly correlated stations
based on proximity, introducing subjectivity. There is limited emphasis on extracting
spatial–temporal correlation features, particularly concerning uncontrollable spatial change
patterns in geographic phenomena and their variability. For instance, geographic phenomena
may decrease with distance due to wind direction, air movement, and atmospheric
circulation, resulting in spatial correlations between monitoring stations more pronounced
in specific directions [28]. The First Law of Geography primarily focuses on the spatial
distance between two stations, overlooking the interaction among different geographical
elements in natural phenomena. We are motivated by the Third Law of Geography [16],
which asserts that “similar geographical environments lead to analogous features in
geographical targets”. The theory of environmental similarity is broadly applied across
multiple domains, including the groundwater level [29] and soil organic carbon predictive
learning [22]. However, in the field of air quality, few researchers have thoroughly
examined the similarity between the geographical environments of monitoring stations
when analyzing the spatial and temporal characteristics of air pollution. Figure 1 illustrates
this concept, with circles representing air pollution monitoring stations categorized into
different regions based on POI information around their locations. According to the
First Law of Geography, monitoring stations A and B, being geographically adjacent, are
expected to show similarities in air quality. Furthermore, both station A and station C are
in proximity to power plants, suggesting, in accordance with the Third Law of Geography,
that stations A and C may exhibit similar patterns despite their considerable geographical
separation. Therefore, it becomes evident that fully considering the geographical similarity
of all stations is crucial for enhancing the accuracy of air quality predictive learning.
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Figure 1. A demonstration of the effectiveness of the First and Third Geographic Laws. A–C represent
air quality monitoring stations.

2.2. Spatial Feature Extraction

CNN demonstrates great potential in extracting spatial features, and its utilization for
mining spatial dependencies between different stations is widely employed in air quality
prediction. For example, when predicting temperature, Hou et al. utilized the CNN network
to extract features for obtaining local spatial temperature characteristics [30]. Mao et al.
employed deep convolutional neural networks to extract the sequential features of time
series data, and the experimental results show that CNN performs well for air quality
prediction [31]. However, the uneven distribution of monitoring stations, dynamically
changing spatial relationships, and CNNs’ limitation in capturing localized areas pose
challenges in fully mining irregular topological information in the pollutant monitoring
network, thereby affecting predictive learning accuracy.

The Graph Convolutional Neural Network (GCN) establishes inter-nodal connections
through an adjacency matrix, rendering it particularly apt for handling irregular spatial
data, especially when contrasted with CNN [32]. For instance, Qi et al. employed
an undirected graph to capture the topological relationships among air quality monitoring
sites [24]. Wu et al. adaptively integrated monitoring network topology, ancillary pollutants,
and meteorological factors into the GCN model to discern spatial dependence for air
quality PM2.5 [10]. The existing GCN-based air quality predictive learning research aims to
capture the spatial dependence between multiple air quality monitoring stations. However,
since the modeling process is a hypothetical static topology structure, it may ignore the
spatial–temporal dynamics of the connection between actual monitoring stations.

The attention mechanism has demonstrated significant advantages in capturing crucial
information from the past state among monitoring stations [21]. For instance, Yang et al.
applied a spatial–temporal attention mechanism in air quality predictive learning, extracting
spatial–temporal features from embedded data. This mechanism incorporates self-attention
calculations in spatial and temporal dimensions, resulting in more accurate predictions [20].
Wang et al. proposed a Spatial and Channel Calibration Network (SCCNet), integrating
spatial and channel attention to effectively extract spatial–temporal dependencies of air
pollutants [33]. Therefore, the attention mechanism can adaptively learn the importance
of different stations and features, enabling a more flexible and accurate capture of critical
information in spatial feature extraction.
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2.3. Temporal Feature Extraction

Typical time series prediction models based on deep learning include recurrent neural
network (RNN) [34–36], Gated Recurrent Unit (GRU) [37,38], long short-term memory
(LSTM) [6,11], Transformer [26,39], and so on. The prediction models based on RNN usually
cannot capture the long-term dependence in the input sequences, and it is accompanied by
a gradient explosion and gradient disappearance during the training process [40]. RNNs are
challenged by long-term dependencies and gradient issues, shortcomings mitigated by GRU
and LSTM interventions [6,41]. However, GRU and LSTM confront obstacles in parallel
processing and managing long-distance dependencies. Recent methodologies incorporating
multi-head attention mechanisms present promising resolutions [26,39,42]. Diverging
from RNN and LSTM, the Transformer model exclusively relies on the self-attention
mechanism, adept at assimilating global information and modeling extensive dependencies.
Exemplarily, Reza, et al. proposed a multi-attention-based Transformer model for traffic
flow prediction, demonstrating efficacy in forecasting prolonged patterns [43]. Pundir et al.
utilized the Transformer model for air quality index prediction and showed that the
Transformer model outperforms the widely used RNN-LSTM model and regression model
compared to these two models [44]. These inquiries underscore the Transformer’s prowess
in handling protracted time series for air quality predictive learning. Nonetheless, for
heightened precision in air quality predictive learning, a diligent consideration of temporal
correlation characteristics and comprehensive analysis of spatial and temporal features
remain imperative.

2.4. Spatial–Temporal Feature Extraction

While deep learning methods have significantly enhanced air quality prediction
accuracy, the performance of individual models may be limited for complex non-linear
problems [25]. Typically, a single model can only capture either the spatial or temporal
characteristics of air pollutants, making it challenging to simultaneously extract deep spatial
and temporal dependencies [45]. Hence, coupling-based spatial–temporal joint prediction
models have become pivotal in air quality predictive learning. Specifically, the hybrid
deep learning model that combines CNN and LSTM finds widespread application in air
quality predictive learning. For instance, Zhang et al. integrated CNN and LSTM for air
quality predictive learning, demonstrating superior prediction performance compared to
the standalone CNN and LSTM models [5]. Wen et al. employed a combination of 3D-CNN
and LSTM to extract advanced spatial–temporal features for PM2.5 concentration prediction,
outperforming other models [46]. Additionally, the fusion of GCN and LSTM has gained
popularity for air quality spatial–temporal prediction modeling [10,47]. In these studies,
CNN and GCN are employed for extracting spatial features between air quality monitoring
stations, while LSTM models are typically used to uncover temporal dependencies in
historical time series. With the recent introduction of attentional mechanisms, incorporating
these mechanisms to capture future spatial–temporal relationships in potential spaces has
become a prominent research focus. For example, Huang et al. introduced SpAttRNN,
a novel spatial attention-embedded recurrent neural network for AQI prediction [48].
Wang et al. combined spatial and channel attention to enhance the extraction of global
information in air quality predictive learning [33]. Despite the recent success of joint
prediction models in air quality predictive learning, limited attention has been given to
the application of spatial attention and Transformer technology in air quality predictive
learning. Furthermore, CNN, a typical deep learning model, effectively capturing local
features, integrating convolutional networks, spatial attention, and Transformer techniques
to enhance air quality prediction accuracy, poses a challenging task, requiring a comprehensive
exploration of their synergistic effects.



Mathematics 2024, 12, 1457 6 of 24

3. Methodology
3.1. The Framework of The Proposed Approach

The overall framework is depicted in Figure 2. The proposed approach followed
multi-source data collection, feature selection, and spatial–temporal dependency extraction
to conduct air quality predictive learning. The multi-source data collection segment details
the data utilized in this study. The feature selection part outlines the process of completing
the correlation stations following the Third Law of Geography. The spatial–temporal
feature extraction elucidates the modeling process of this study. The detailed process of the
three main stages is shown below.
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Stage 1: Multi-source data collection
In this stage, multi-source data in the study area are collected. Firstly, the study

area’s POI data are obtained through Baidu’s (http://api.map.baidu.com, accessed on
25 January 2024) open API. The rectangular box search method given by official Baidu
Maps is chosen for POI retrieval. Based on the POI industry classification provided by
Baidu Maps, we used the rectangular box search method to obtain various types of POI
information for each administrative district in the study area. For densely populated POIs
such as schools and supermarkets, we further refined the latitude and longitude intervals
of the delineation grid to enhance the completeness of POI acquisition. This ensures the
reliability and completeness of the acquired POI data. POI data are categorized into 14 types
such as restaurant and food, business and residential, tourist attractions, etc. Each POI
point contains six attributes: the name, first-level classification, second-level classification,
longitude, latitude, and region. Each POI point includes six attributes. This study selects
the first-level classification, longitude, and latitude for application. The POI data are used
for the spatial clustering analysis of all monitoring stations. The latitude and longitude are
used to calculate the distance between each POI and each monitoring station in the study
area. In addition, the number of each type of POI around each station is counted to be used
for the spatial clustering analysis. Secondly, six air pollutant factors and five meteorological
factors are collected from the monitoring stations in the study area.

http://api.map.baidu.com
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Stage 2: Feature selection
The target pollutant (e.g., PM2.5) at the target stations, serving as a pivotal indicator for

the direct assessment of air quality, is utilized as an input feature. Additional air pollutants
and meteorological factors at the target station are considered for predictive learning,
potentially influencing PM2.5 concentration. This study assesses the impact of all stations
on the target stations from two perspectives as spatial anisotropy and spatial clustering.
Initially, the spatial variability of PM2.5 concentrations at various time points across all
monitoring stations in the study area is analyzed. Spatial clustering at all monitoring
stations, based on POI data using hierarchical clustering, is then conducted. The clustering
containing the target station is selected and further analyzed, considering the results of the
spatial variability analysis, to identify stations with a strong correlation and synergy.

Stage 3: Spatial–temporal dependency extraction
Combine spatial attention mechanism (SAM), convolutional neural network (CNN), and

Transformer techniques through a fusion mechanism for comprehensive spatial–temporal
dependency extraction. The entire process comprises two primary components. In terms of
modeling, spatial distribution features between strongly correlated stations are extracted
using SAM. Specifically, self-attention computations are performed in the spatial dimension
and spatial–temporal features are extracted from the strong-correlation 3D matrix. SAM is
able to capture the spatial–temporal correlation information in air quality data well. The
SAM is initially employed to perform self-attention calculations in the spatial dimension,
extracting spatial–temporal features from the embedded data. Subsequently, CNN is
utilized to capture local information and relationships among each input feature. Finally,
the Transformer is applied to capture time dependencies across long-distance time series.
Concerning model optimization, the Bayesian optimization is employed to fine-tune
hyperparameters, ensuring optimal prediction performance.

3.2. Analysis of Spatial Anisotropy

Various geographic phenomena significantly impact the spatial variation of air pollutant
concentrations. An anisotropy analysis can help to understand the differences in the
distribution of air pollutants in different geographic directions, thus revealing the mechanisms
by which multiple factors in geographic space affect air quality. This analytical method
primarily examines the variation patterns of spatial data in different directions, assessing
whether the data exhibit differences or variations along various directions. The core
of an anisotropy analysis is the variogram, also known as the semi-variogram, which
describes the degree of variation in the data within a specific distance range. The formula
for calculating semi-variance is as follows:

Y(h) =
1

2N(h)

N

∑
i=1

(Z(xi)− Z(xi + h))2 (1)

where Y(h) is the semi-variance at lag distance h; N(h) is the number of pairs of sample
points separated by lag distance h; Z(xi) and Z(xi + h) are the values of the variable at
locations xi and xi + h, respectively.

The semi-variance function describes the average semi-variance between pairs of
spatial points at a distance h. By calculating the semi-variant at different distances h,
semi-variograms can be constructed for visualizing the variability of spatial data.

3.3. Spatial Clustering

It is clear from the Third Law of Geography that a synergistic relationship often exists
between one element of a geographic phenomenon and other geographic elements. To
explore the similarity and spatial association patterns among monitoring stations, this
study acquires POI data of the study area through Baidu’s open API. The POI data
encompasses various geographical entities such as commercial districts, cultural facilities,
transportation hubs, etc. Subsequently, hierarchical clustering is applied to spatially
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group all monitoring stations. Hierarchical clustering methods construct a dendrogram by
grouping spatially adjacent and similar stations into clusters. This approach circumvents
the need to pre-determine the number of clusters, facilitating the exploration of potential
geographical patterns within the research area without prior knowledge. Analyzing
the clustering results contributes to a comprehensive understanding of the geographic
relationships among monitoring stations, revealing combinations of stations that exhibit
spatially close correlations with synergistic changes. The pseudo-code of the module spatial
clustering is shown as Algorithm 1, and the formulas involved in the algorithm are given
in Equations (2)–(4).

d(Si, Pj) = 2arcsin

√
sin2 (plat − slat)

2
+ cos(plat)× cos(slat)× sin2 (p ln g − s ln g)

2
× 6378.137 (2)

dist(pa, qb) =

√√√√√∑n
k=1

 x(pa)
k − x(qb)

k
sk

2

(3)

D(Ci, Cj) =
1

|Ci| ·
∣∣Cj

∣∣ ∑
pa∈Ci ,qb∈Cj

dist(pa, qb) (4)

where p ln g, plat denote the latitude and longitude of the POI. s ln g, slat denote the latitude
and longitude of the monitoring stations. The radius of the Earth’s equator in kilometers is
6378.137. dist(pa, qb) represents the Normalized Euclidean distance between data points
pa and qb; n represents the number of dimensions for the data point; x(pa)

k and x(qb)
k ,

respectively, represent the values of data points pa and qb in the k dimension; sk is the
standard deviation on the k dimension; D(Ci, Cj) represents the similarity between clusters
Ci and Cj; and |Ci| and

∣∣Cj
∣∣, respectively, represent the number of samples in the cluster.

Algorithm 1 Proposed “Spatial clustering” Approach

Input: S = {S1, S2, · · ·, Sn}(n ∈ 1, · · · , N);P = {P1, P2, · · · , Pm}(m ∈ 1, · · · , M).//Sn, Pm
represents station location information and POI Information, respectively;

Output: C;

1 : S∗ =
{

S∗
1 , S∗

2 , · · · , S∗
n
}

//initialize S∗ to a matrix of n × k dimensions, S∗
n to a matrix of

1 × k dimensions;
2: for Si in {S1, S2, · · ·, Sn} do
3: forPj in {P1, P2, · · · , Pm} do
4: compute d(Si, Pj). according to Equation (2);
5: if d(Si, Pj) < 1km do
6: update S∗

i ;
7: C = {C1, · · · , Cn}//Each S∗

n is regarded as a separate cluster;
8: while n > 1 do
9: for Ci in {C1, · · · , Cn} do
10: for Cj in {C1, · · · , Cn} do
11: M(i, j) = D(Ci, Cj) according to Equations (3) and (4);
12: M(j, i) = M(i, j);
13: find the most similar clusters: Ci∗ and Cj∗;
14: merge Ci∗ and Cj∗: Ci∗ = Ci∗ ∪ Cj∗;
15: for k = j ∗+1, j ∗+2, · · · , n do
16: Ck = Ck+1;
17: n = n − 1;
18: return C;
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3.4. SAM–CNN–Transformer Network

This study utilizes multivariate series data from the target stations as well as the
historical time of strongly correlated stations to predict the target pollution concentrations
at future time points. This study employs a spatial variogram analysis and spatial clustering
to identify the correlated stations that exhibit mutual interaction with the target station,
denoted by X∗ = {X1, X2, . . . , Xk}(k ∈ 1, · · · , K), where Xk ∈ RD×L denotes the feature
matrix of the target station as well as the kth station associated with it, D denotes the size of
the historical time step, and L denotes the feature variable for each time step. X∗ ∈ RK∗D∗L

denotes the 3D feature matrix consisting of the target station and the correlated stations,
where K ≤ N and N denotes the number of all stations.

The network structure is shown in Figure 3. The specific steps are as follows:
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Firstly, the 3D strong correlation matrix X∗ ∈ RK∗D∗L serves as input to the spatial
attention module (SAM), enabling the extraction of spatial distribution features among
the strong stations by computing feature and weight maps in the spatial dimension. The
specific workflow is as follows: Feature maps and weight maps are computed by SAM
using the input matrix. The feature map reflects the feature relationships at different
spatial locations, and the weight map indicates the degree of feature attention between
different spatial locations. Specifically, the SAM applies average pooling and maximum
pooling operations along the channel of each feature point X∗, stacks the results, and
obtains a spatial attention weight distribution Ms(X∗). Finally, this weight distribution
is multiplied by the input features, yielding the weighted feature layer X′

∗. This allows
the SAM to focus more on important spatially distributed features, which improves the
model’s ability to understand the input features. The calculation formula for this process is
presented below:

Ms(X∗) = σ(Conv([AvgPool(X∗); MaxPool(X∗)])) (5)

X′
∗ = Ms(X∗)⊗ X∗ (6)

where Ms(X∗) denotes the spatial attention weights, AvgPool(·) denotes the average
pooling operation, MaxPool(·) denotes the maximum pooling operation, σ denotes the
activation function, Conv(·) denotes the convolutional layer, and X′

∗ denotes the final
spatial feature map of the station obtained by multiplying the spatial attention weights
with the weighted input feature layer.

Secondly, CNN is utilized in order to efficiently extract local spatial information
between strongly correlated stations, and the extracted features are input to Transformer for
further prediction. Specifically, a feature capture is further performed using local receptive
fields using the CNN. The tensor is projected to a higher-dimensional space for more object
representations through a 1 × 1 convolutional layer. Then, a 3 × 3 depth-wise convolution
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is performed to process the feature maps for each channel. The number of channels in the
feature maps is reduced using a 1 × 1 convolutional layer to obtain a two-dimensional
matrix X′′

∗ ∈ RD×L after dimensionality reduction.
Finally, the spatially extracted 2D feature matrix X′′

∗ ∈ RD×L is input to the Transformer
model as a time series. When addressing time series forecasting, the Transformer captures
dependencies among different locations in the input series through self-attention. This
enhances the model’s understanding of the long-term dependencies in the series. A critical
component of the Transformer is the multi-head self-attention mechanism, illustrated in
Figure 4. Specifically, for each position in the input sequence, the self-attention mechanism
calculates correlation weights with other positions, applying them to obtain a representation
of that position. The formula for the self-attention mechanism is as follows:

Attention(Q, K, V) = So f tmax(
QKT
√

dk
)V (7)

where Q, K, and V denote the query vector, key vector, and value vector, respectively; dk
denotes the dimensionality of the key; and

√
dk is used to scale the dot product and is the

activation function that maps the input to the interval [0, 1]. The self-attention mechanism
obtains the attention weights by calculating the similarity between the query and the keys
and obtains the final representation by weighted summation.
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Compared to the original Transformer structure, the model omits the need to calculate
the probabilities through So f tmax in the end. Instead, by mapping the resulting feature
maps to the output values, the final predicted value of the target pollutant concentration at
the station at time t is obtained.

4. Results
4.1. Data and Study Area

The city of Haikou, China, serves as the study area, with a dataset comprising POI data,
air quality data, and meteorological data. Among these, the POI data, obtained through
Baidu’s open API, cover 14 different types. Each POI point contains six attributes, where
first-level classification, longitude, and latitude are selected for the application, resulting
in a total of 92,108 POI points. Air quality data include hourly air pollution concentration
data from 95 air quality monitoring stations in Haikou City, spanning from 26 May 2021
to 11 March 2023, along with corresponding meteorological data. The distribution of
monitoring stations is illustrated in Figure 5. In this study, S9 is chosen as the target station,
marked in red in Figure 5. S9, located in the city center and surrounded by numerous stores,
offers a better response to the influence of spatial–temporal correlation on the model’s
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prediction and is representative to a certain extent. In addition, S6, S25, and S41 are used in
the third group of experiments to further validate the generalization ability of the proposed
approach, and their geographic locations are shown in Figure 5. The data are explicitly
described in Table 1. Data collection may encounter issues such as equipment damage
and transmission errors, leading to outliers and missing values. Therefore, preprocessing
is essential for air quality predictive learning. Three different approaches are utilized to
handle missing values based on the varying durations of the missing values. Specifically,
the forward-filling method is used for missing values in the short time periods (e.g., within
4 h) of the original data, the multiple interpolation method is used to fill in the missing
values in the medium and long time periods (e.g., more than 4 h and less than 72 h), and
the missing values in the long time periods (e.g., more than 72 h) are directly deleted
and processed.

Mathematics 2024, 12, x FOR PEER REVIEW 12 of 25 
 

 

SO2 μg/m3 
O3 μg/m3 

Meteorological data Meteorological factor 

Pressure hPa 
Humidity % 

Temperature °C 
Wind_direction - 

Wind_speed km/h 

 
Figure 5. Study area and spatial distribution of air monitoring stations (the base of the map is from 
ESRI (https://hub.arcgis.com/maps/0c539fdb47d34b17bd1452f6b9f49e97/explore, accessed on 25 
January 2024)): (a) The green part is the boundary map of Hainan Province. (b) The green part is the 
boundary map of Hainan Province, and the gray part is the boundary map of Haikou city. (c) Dis-
tribution of air monitoring stations in Haikou city. 

4.2. Evaluation Metrics 
To comprehensively evaluate the performance of the proposed approach in this 

study, three evaluation metrics as Root Mean Square Error (RMSE), Mean Absolute Error 
(MAE), and R-Square (R2) are used. These metrics are calculated as shown in Equations 
(8)–(10). RMSE measures the deviation between the predicted value and actual value, 
while MAE provides a better reflection of prediction errors. The smaller values of RMSE 
and MAE indicate the higher model accuracy. R2 assesses the fitting ability of the model, 
and the value closer to 1 indicates better fitting of the predictive learning result. 

2

t 1

1RMSE (y )
N

N

t ty
=

= −∑   (8) 

1

1MAE
N

t t
t

y y
N =

= −∑   (9) 

2
2 0

2
0

( )
R 1

( )

N
t tt

N
tt

y y

y y
=

=

−
= −

−

∑
∑



 (10) 

Figure 5. Study area and spatial distribution of air monitoring stations (the base of the map is
from ESRI (https://hub.arcgis.com/maps/0c539fdb47d34b17bd1452f6b9f49e97/explore, accessed
on 25 January 2024)): (a) The green part is the boundary map of Hainan Province. (b) The green
part is the boundary map of Hainan Province, and the gray part is the boundary map of Haikou city.
(c) Distribution of air monitoring stations in Haikou city.

Table 1. Dataset description.

Type Variable Unit

POI data POI
First-level classification -

Longitude -
Latitude -

Air quality data

Particulate pollutant
PM2.5 µg/m3

PM10 µg/m3

Gaseous pollutant

CO µg/m3

NO2 µg/m3

SO2 µg/m3

O3 µg/m3

https://hub.arcgis.com/maps/0c539fdb47d34b17bd1452f6b9f49e97/explore
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Table 1. Cont.

Type Variable Unit

Meteorological data Meteorological factor

Pressure hPa
Humidity %

Temperature ◦C
Wind_direction -

Wind_speed km/h

4.2. Evaluation Metrics

To comprehensively evaluate the performance of the proposed approach in this study,
three evaluation metrics as Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
and R-Square (R2) are used. These metrics are calculated as shown in Equations (8)–(10).
RMSE measures the deviation between the predicted value and actual value, while MAE
provides a better reflection of prediction errors. The smaller values of RMSE and MAE
indicate the higher model accuracy. R2 assesses the fitting ability of the model, and the
value closer to 1 indicates better fitting of the predictive learning result.

RMSE =

√√√√ 1
N

N

∑
t=1

(yt −
⌢
y t)

2
(8)

MAE =
1
N

N

∑
t=1

∣∣∣yt −
⌢
y
∣∣∣ (9)

R2 = 1 − ∑N
t=0 (yt −

⌢
y t)

2

∑N
t=0 (yt − y)2 (10)

where N denotes the total number of samples, yt denotes the true value,
⌢
y t denotes the

predicted value, and y denotes the mean value.

4.3. The Software and Hardware Details

In this study, the proposed deep learning and baseline models are implemented using
Python packages (including PyTorch, an open-source deep learning framework that can
accelerate the training process using GPUs and distributed computing; Pandas and Numpy
are used for data processing and analysis; Scikit-gstat is used for spatial variability analysis;
and Matplotlib and Seaborn are used to visualize the results). Heavier workloads are run
on a computer equipped with Intel(R) Core (TM) i9-10900X CPU @ 3.70 GHz 3.70 GHz
64.0 GB RAM. The rest of the models are conducted on a server equipped with Intel(R)
Core (TM) i75600U CPU @ 2.60 GHz 3.2 GHz 16.0 GB RAM.

4.4. Hyperparameter Tuning Based on Bayesian Optimization

Hyperparameter tuning plays a crucial role in optimizing model performance, and
Bayesian optimization serves as a valuable tool for selecting hyperparameters during the
model training process. It is a global optimization method grounded in the principles of
Bayesian inference, featuring a core algorithm that includes the probabilistic agent model
and the sampling function. First, the probabilistic agent model employs Gaussian process
regression to approximate the objective function, computing the mean and variance of
function values at each point to establish a likely distribution. Second, a sampling function
determines points for sampling in the current iteration, aiming to balance the exploration of
unknown regions with the utilization of known high-performance regions. By leveraging
both prior and posterior models, Bayesian optimization theoretically ensures eventual
convergence, finding the input parameter combination that optimizes the objective function
within a finite number of iterations.
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In this study, the model’s hyperparameters are categorized into two groups. One group
defines the model and its structure, and the other group is for the objective function and the
optimization algorithm (solver). The group of parameters defining the model and structure
includes num_layers, num_heads, d_model, d_ff, and dropout. Specifically, num_layers
indicates the stacked encoder and decoder layers in the Transformer, num_heads represents
the amount of multi-head attention, d_model denotes the model’s dimensionality, d_ff
corresponds to the hidden layer’s dimensionality in the feedforward neural network, and
dropout signifies the proportion of randomly dropped nodes in each iteration. The group
of hyperparameters required for the objective function and optimization algorithm includes
batch size, learning rate, time step, and optimizer. Specifically, batch size denotes the size of
the data input to the model for training in each iteration, learning rate determines the step
size for each iteration, time step represents the size of the historical time series window,
and optimizer signifies the adaptive learning rate optimization algorithm. In the Bayesian
optimization process, RMSE serves as the objective function. The scikit-optimize library’s
Bayesian optimization algorithm is employed to adjust these parameters. The ultimately
optimized values for hyperparameters are presented in Table 2.

Table 2. Hyperparameter values after Bayesian-based optimization.

Hyperparameter Value

num_ layers 2

num_heads 8

d_model 512

d_ff 2048

dropout 0.05

batch size 1

learning rate 1 × 10−4

time step 11

optimizer Adam

4.5. Correlated Station Selection
4.5.1. Analysis of Spatial Anisotropy

This study employs the variational function to analyze the spatial change process
of PM2.5 concentrations at all monitoring stations in the study area. The variational
function is computed using an open-source Python library, scikit-gstat (https://scikit-gstat.
readthedocs.io, accessed on 28 February 2024)). This approach included the calculation
of the semi-variance function, spatial interpolation, analysis of orientation dependence,
and visualization of results. The spatial dependence of PM2.5 concentration variations in
different directions is demonstrated in Figure 6. Overall, the spatial variation of PM2.5
concentrations in different directions is very similar. Specifically, Figure 6 shows that over
the initial 10 km distance, the shape of the variograms is very similar in each direction. At
this range, the anisotropy is not significant. However, the effective range of the variograms
in the north–south and southeast–northwest directions extends only up to about 10 km,
suggesting that observations become statistically more independent at greater distances in
these directions. In contrast, the east–west variograms demonstrate a significantly larger
effective range, indicating more substantial correlation lengths in this orientation. Such
differences in spatial variation can be attributed to the distribution of pollution sources,
meteorological conditions, etc. The analysis of spatial anisotropy provides essential clues
for the subsequent selection of strongly correlated stations.

https://scikit-gstat.readthedocs.io
https://scikit-gstat.readthedocs.io
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Figure 6. The result of spatial anisotropy.

4.5.2. Spatial Clustering

By utilizing the hierarchical clustering method and incorporating POI data, all
95 monitoring stations are clustered, resulting in four distinct clusters, as shown in Figure 7.
Among these, stations in Cluster 1 and Cluster 3 are situated in the city center, characterized
by dense architectural facilities, including prominent urban structures like commercial
buildings, cultural institutions, and shopping centers. Stations in Cluster 2 are situated in
the peripheral zone, primarily surrounded by schools and parks. Stations in Cluster 3 are
situated in comprehensive areas, featuring a convergence of various activity facilities in the
vicinity. Based on the clustering results, it is observed that the target monitoring station
(S9) belongs to Cluster 1. Combined with the spatial variability analysis, the stations within
Cluster 1 are further filtered to identify the correlated stations in the east–west direction of
the target station. The final selections of strongly correlated stations including S2, S3, S8,
S39, and S45 are shown in Figure 7.
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4.6. Implementation Details and Comparative Analysis

To verify the effectiveness and robustness of the proposed approach, Table 3
outlines four sets of comparison experiments. The first set of experiments analyzes
the predictive performance of six baseline models (ARIMA, SVR, GRU, LSTM, TCN,
and Informer) in comparison with the proposed approach, validating its effectiveness.
The second set of experiments conducts ablation experiments, evaluating the impact of
incorporating meteorological factors and integrating the Third Law of Geography with
SAM–CNN–Transformer for air quality predictive learning. The third set of experiments
randomly selects stations S6, S25, and S41 from each of the remaining three clusters
to examine the predictive performance of the proposed approach for the stations in
different clusters. The fourth set of experiments further validates the effectiveness of
each module of the proposed model.

Table 3. Model description of the four groups of experiments.

Experiments Station Model Notation Model Description

Ours The proposed approach

Experiment I:
verifying the

effectiveness of the
proposed approach

S9

model1 ARIMA

model2 SVR

model3 GRU

model4 LSTM

model5 TCN

model6 Informer

Experiment II:
testing the predictive

ability of various
exogenous variables

S9

model7 The proposed approach, disregarding
meteorological influencing factors

model8 The proposed approach, disregarding
regional influencing factors

Experiment III:
verifying the

different modules of
the proposed

approach

S9

model9 Transformer

model10 CNN–Transformer

model11 SAM–Transformer

Experiment IV:
verifying the

generalization ability
of the proposed

approach

S6, S25, S41

model1 ARIMA

model2 SVR

model3 GRU

model4 LSTM

model5 TCN

model6 Informer

4.6.1. Experiment I: Verifying The Effectiveness of The Proposed Approach

To validate the effectiveness of the proposed approach in Experiment I, it is compared
with several baseline models, namely ARIMA, SVR, GRU, LSTM, TCN, and Informer,
denoted as model1 to model6. The target station selected for the experiment is S9 in Cluster
1. Table 4 gives the prediction results of the proposed model and the baseline model for
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PM2.5 and PM10 on the test dataset of the station. The proposed model achieved better
performance for both PM2.5 and PM10, with the lowest prediction errors for RMSE and
MAE and the highest R2 score. Taking PM2.5 as an example, the values of RMSE, MAE,
and R2 of the proposed model are 2.168, 1.454, and 0.953, respectively. Compared with
the baseline model, the proposed model reduces RMSE and MAE by 15.8% and 12.23%
on average, while improving R2 by 2.6% on average. In particular, the Informer (model6)
in the baseline model is a modification based on the Transformer, which achieves good
predictive performance on ETT (Electricity Transformer Temperature) data, outperforming
the Transformer [49]. However, in conducting air quality predictive learning experiments,
the Transformer-based predictive learning model proposed in this study is significantly
better than the Informer-based model.

Table 4. Experimental results of the proposed approach and the baseline models in Experiment I.

Model
PM2.5 PM10

RMSE MAE R2 RMSE MAE R2

model1 3.638 1.553 0.882 5.521 2.698 0.883

model2 2.382 1.913 0.928 3.318 2.376 0.939

model3 2.353 1.645 0.939 3.521 2.429 0.941

model4 2.244 1.524 0.946 4.583 3.365 0.911

model5 2.336 1.583 0.942 3.451 2.340 0.945

model6 2.501 1.722 0.935 4.436 3.166 0.914

Ours 2.168 1.454 0.953 3.331 2.230 0.948

4.6.2. Experiment II: Testing The Predictive Ability of Various Exogenous Variables

Various factors usually affect air pollutant concentrations, making it difficult to achieve
highly accurate predictions by relying only on air pollutant data from a single monitoring
station. Most current research uses meteorological data and information from surrounding
stations as influencing factors for predictive learning. However, simply incorporating
information about surrounding stations into model inputs can be problematic. Namely,
the spatial patterns of geographical phenomena and their variations are often influenced
by uncontrollable factors, resulting in no correlation between the target station and the
selected stations, thus introducing redundant information and negatively affecting the
prediction performance. Therefore, when considering the selection of correlated stations in
this study, the results based on the Third Law of Geography as well as spatial variability
analysis are used to support the selection of the surrounding stations that are closely
correlated to the target station (S9), specifically S2, S3, S8, S39, and S45, as shown in
Figure 7. Figure 8 demonstrates the correlation between air pollutants, meteorological
factors, and the correlated stations. As can be seen from the figure, the selected correlated
stations have a strong correlation with PM2.5 concentrations.

In Experiment II, model7 and model8 are established to explore in depth the influence
of meteorological factors and consideration of the Third Law of Geography on the predictive
performance of the proposed approach. Specifically, in model7, the air pollutant concentrations
at the target station and the air pollutant concentrations at the surrounding stations
associated with it are used as input features to verify the effect of meteorological factors on
the prediction performance. In model8, only air pollutant concentrations and meteorological
factors at the target station are considered as input features, and information from the
remaining stations that have synergistic variations with the target station is not included in
the modeling based on the Third Law of Geography.
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The results obtained from the experiment are shown in Table 5. The prediction
performance of the proposed approach (ours) is significantly better than that of model7
and model8. Taking the PM2.5 prediction results as an example, the RMSE and MAE are
reduced by 7.7% and 11.23% on average, respectively, and the R2 is improved by 1.27%.
In particular, the results of model7 are better than those of model8, which indicates that
utilizing the selected stations as features to aid prediction with a full consideration of the
environmental similarity theory is superior to utilizing meteorological factors as features.

Table 5. Experimental results of the proposed approach and the baselines in Experiment II.

Model
PM2.5 PM10

RMSE MAE R2 RMSE MAE R2

model7 2.193 1.507 0.946 3.455 2.351 0.939
model8 2.505 1.769 0.936 4.122 2.909 0.930

Ours 2.168 1.454 0.953 3.331 2.230 0.948

Figure 9 plots the prediction results of the proposed model, model7, and model8
for PM2.5. Notably, there are relatively significant changes and frequent fluctuations in
PM2.5 concentrations due to various environmental factors. Generally, all three methods
can produce accurate overall trend predictions. However, for the sudden increase in the
PM2.5 concentration, there may be a slight accuracy bias near the trend change point and
a time lag phenomenon. By comparing the ability of the proposed model (ours), model7,
and model8 in dealing with abrupt changes, it can be seen that the prediction trend of
the proposed approach is more consistent with the actual observed shapes. The time lag
phenomenon is weaker compared with the other two models, which indicates that the
integrated consideration of meteorological factors and regional influences can deal with
abrupt changes more effectively.
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4.6.3. Experiment III: Verifying The Different Modules of The Proposed Approach

The employed network modules such as spatial attention mechanisms, convolutional
neural networks, and Transformer are thoroughly tested to assess their effectiveness in
extracting input features. The experimental results are shown in Table 6. The results
show that combining CNN with Transformer and SAM with Transformer improves the
predictive learning performance compared to relying only on Transformer for predictive
learning. The fusion of these three modules, i.e., the hybrid model proposed in this study,
significantly outperforms model9 to model11. This proves that the proposed approach has
a high degree of fitting ability with significant advantageous performance in air quality
predictive learning verification.

Table 6. Experimental results of the different modules of the proposed approach in Experiment III.

Model
PM2.5 PM10

RMSE MAE R2 RMSE MAE R2

model9 3.432 2.292 0.945 3.431 2.255 0.945
model10 2.173 1.458 0.950 3.426 2.286 0.945
model11 2.128 1.416 0.952 3.436 2.263 0.947

Ours 2.168 1.454 0.953 3.331 2.230 0.948

4.6.4. Experiment IV: Verifying The Generalization Ability of The Proposed Approach

To further evaluate the generalization ability of the proposed approach, one station is
selected from Cluster 2, Cluster 3, and Cluster 4, respectively, for a series of experiments.
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The datasets for the three stations are independent of each other. To maintain the experiment
consistency, the same setup as in Experiment I is maintained in terms of data preprocessing,
feature selection, model input, and output structure. It is clear from Table 7 that the two
error indicators, RMSE and MAE, are relatively small for the three stations in the prediction
of PM2.5. The value of the R2 indicator, which represents the accuracy, basically reaches
results more than 90% (0.934, 0.933, 0.939), and the proposed model has obvious advantages
compared with the other baseline models.

Table 7. Experimental results of the proposed approach and the baselines in Experiment IV.

Station Model
PM2.5 PM10

RMSE MAE R2 RMSE MAE R2

S6

model1 5.749 2.452 0.814 9.137 5.849 0.801
model2 6.405 5.597 0.638 8.909 5.613 0.811
model3 4.113 2.561 0.895 5.439 3.314 0.927
model4 3.670 2.241 0.918 5.207 2.991 0.932
model5 4.102 2.417 0.862 5.303 3.414 0.921
model6 4.461 2.588 0.871 7.647 4.850 0.868

Ours 3.435 1.959 0.934 5.124 2.877 0.935

S25

model1 2.625 1.282 0.831 5.192 2.026 0.837
model2 2.781 2.299 0.674 4.203 2.725 0.873
model3 1.693 1.101 0.904 3.389 2.447 0.905
model4 1.663 1.096 0.929 3.383 2.201 0.927
model5 1.471 0.872 0.932 3.949 2.599 0.881
model6 1.843 1.158 0.901 4.389 2.850 0.864

Ours 1.444 0.853 0.933 2.897 1.687 0.939

S41

model1 3.121 2.368 0.879 4.237 4.237 0.797
model2 3.584 2.739 0.832 11.567 7.540 0.654
model3 2.879 2.018 0.893 10.099 5.188 0.634
model4 2.417 1.623 0.935 9.073 4.697 0.746
model5 2.363 1.518 0.922 10.004 5.674 0.638
model6 2.698 1.825 0.907 9.282 5.080 0.739

Ours 2.410 1.617 0.939 8.536 4.367 0.788

4.7. Shapley’s Analysis

Shapley’s analysis is a model interpretation method grounded in game theory principles.
It assesses the importance of different features by examining their average contribution
in all possible combinations. This analysis quantifies the importance of features into
specific values, allowing us to gain insight into the relative contribution of each feature
to the model’s predictive learning. Compared to other interpretation methods, Shapley’s
analysis provides more accurate results by calculating feature weights from both local
and global perspectives. In this study, Shapley’s analysis is employed to comprehensively
assess the importance of 15 characteristic variables including air pollutant concentrations,
meteorological factors, and the correlated station factors in predicting PM2.5 at the S9 station.

Figure 10 provides a localized view of Shapley’s analysis for a single dataset sample.
The vertical axis represents the input features, including PM10, wind speed, S8, etc., and the
horizontal coordinate represents the time window 1–11, where 1 represents the first 1 h of
the current moment, and 11 represents the first 11 h. In the figure, the region corresponding
to (x, y) reflects the impact of feature y on the model output in the first x hours; red indicates
that the specified input feature positively affects the model output, while purple indicates
the magnitude of the negative impact, with darker colors indicating larger impact values.
The figure shows that PM10, wind_speed, and S8 positively affect the model predictions,
while O3 negatively impacts the PM2.5 concentration. In contrast, the predictive effect of
CO, pressure, and S3 on the target is weak and can be ignored. Concurrently, as time passes,
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the influence of features from periods farther apart gradually diminishes for the current
moment. This indicates the diminishing impact of air quality conditions in past periods on
the current moment.
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Figure 10. Influence of input features on PM2.5 prediction (from local perspective).

Figure 11 shows a global view of Shapley’s analysis for all dataset samples. The
vertical axis represents the 15 different input features, the horizontal axis represents the
weight of each feature’s influence on the model output, and the right vertical axis is colored
with different colors to indicate the high or low feature values. The results show that
PM10 has the most significant effect on the prediction of PM2.5, probably because they
both belong to atmospheric particulate matter and have similar trends. The correlation
analysis in Figure 8 also shows a strong correlation between PM10 and PM2.5. In addition,
wind speed and direction, as well as the S8 station, significantly impact PM2.5 predictions,
with changes in wind speed affecting the transmission distance of PM2.5 concentrations
at surrounding stations. Higher wind speeds usually encourage a faster dispersion of
pollutants, while wind direction changes the direction of PM2.5 transport. Combining the
above analysis, the predictive power of the features through Shapley’s analysis illustrates
the rationality of this study based on the Third Law of Geography and combined with
the spatial variability analysis to select the surrounding correlated stations as the model
feature inputs.
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5. Discussion
5.1. Analysis of The Impact of The Third Law of Geography in Predictive Learning

Sections 4.5.2 and 4.6 quantify the impact of multiple influencing factors on model
predictive learning results through ablation experiments and Shapley’s analysis, focusing
on the role of the Third Law of Geography. The experimental results show that the
stations selected based on this law, strongly correlated with the target pollutants, can
effectively improve the prediction accuracy. Meanwhile, some meteorological factors also
significantly affect the prediction of air pollutant concentrations. The experimental results
align with common sense, as air pollutants are typically influenced by human activities,
air circulation, and atmospheric circulation, leading to uncontrollable spatial variations
and differences in pollutant concentration changes. The current experimental findings
suggest that considering the Third Law of Geography and integrating multiple influencing
factors positively contributes to the model’s predictive performance. However, due to the
current limitations of the data, this study still lacks universally applicable conclusions in
the process of a spatial clustering analysis. Additionally, regarding the selection of target
monitoring stations, the experiments in this study are conducted only for four stations (S9,
S6, S25, S41). Further research on the remaining monitoring stations is needed, following
the proposed approach in this study. How to conduct experiments on all monitoring
stations and quantify the degree of influence of each influencing factor on the model
prediction results for different types of monitoring stations is an important direction for
future research in this study.

5.2. Impact of Different Clustering Algorithms

This study utilizes POI data and employs the hierarchical clustering method to categorize
all monitoring stations into four distinct clusters, providing valuable information for
selecting correlated stations. As an unsupervised learning algorithm, the hierarchical
clustering method is based on grouping similar samples into clusters by measuring their
similarity. Among the factors influencing the effectiveness of hierarchical clustering algorithms,
the calculation method for distance and the metric used for similarity measurement are
particularly crucial.

Different distance calculation methods will lead to different segmentation results in
the subsequent similarity calculation. To consider the standardized differences in each
dimension comprehensively, this study chooses the Normalized Euclidean distance as the
distance metric to improve the robustness to noise and outliers in spatial data. Regarding
the similarity measurement method, the average-linkage method is employed, which
is relatively less sensitive to outliers than single-linkage and complete-linkage methods,
which contributes to obtaining more practically interpretable clustering results.

Compared to other clustering algorithms, the K-means algorithm requires the pre-
specification of the number of clusters to be divided as well as its sensitivity to the initial
cluster centers, which may lead to instability in the results. DBSCAN is suitable for
clustering with variable density and requires more tuning for its parameter selection and
noise handling. Spectral clustering is suitable for dealing with graphical data and flow
structures. Hierarchical clustering has the advantage of not requiring a pre-specified
number of clusters, automatically forming a hierarchical structure of clusters, and being
more robust to noise and outliers in the data. Therefore, the hierarchical clustering
algorithm is ideal for the spatial clustering of air quality monitoring stations in this study.

5.3. Advantages of The Proposed Approach

In terms of modeling, the currently popular methods include models based on CNN
and models based on LSTM. However, models based on CNN are limited to capturing
features in localized areas, resulting in irregular topological information in pollutant
monitoring networks that is difficult to fully mine [25]. Models based on LSTM still
have limitations in modeling long-range dependencies. The SAM–CNN–Transformer
model proposed in this study combines different deep learning models to overcome the
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problems of the above models by utilizing the advantages of each model. A spatial attention
mechanism (SAM) implements self-attention computation in the spatial dimension to
extract spatial features embedded in the data. CNN is utilized to mine the local information
between the relationships of each input feature, and the Transformer is employed to deeply
capture the temporal dependency between long-distance time series. Compared with
other deep learning models, this study introduces the spatial attention mechanism and
Transformer to enhance the capability to extract spatial–temporal features effectively.

6. Conclusions and Future Directions
6.1. Summary of Experimental Results

In this work, particulate pollutant data, gaseous pollutant data, and meteorological
data from the target stations are used as characterizing variables. In addition, according
to the Third Law of Geography, information about the surrounding stations is introduced
by spatial clustering and a spatial variability analysis of POI, which shows synergistic
variations with the pollutant concentrations at the target stations. Meanwhile, an innovative
air quality predictive learning method is proposed by integrating the advantages of SAM,
CNN, and Transformer.

The proposed approach is implemented as follows: Firstly, in the aspect of model
factor feature selection, based on the Third Law of Geography, the hierarchical clustering
algorithm is used to cluster all monitoring stations into four classes, and air pollutants,
meteorological factors, and pollutant concentrations of neighboring stations are used as
characterization variables based on the clustering area where the target stations are located and
the spatial anisotropy of air pollutant concentrations. Secondly, in terms of modeling, SAM,
CNN, and Transformer technology are combined to fully explore the spatial and temporal
dependence and complex relationship of air pollutant concentrations. Finally, regarding the
model interpretability analysis, Shapley’s analysis is used to analyze the importance of each
influencing factor in model predictive learning, providing direction for further modeling.

In order to verify the performance of the proposed approach, Haikou City is selected
as the study area, and four groups of comparative experiments are designed with RMSE,
MAE, and R2 as the evaluation indexes. The results of Experiment I and Experiment III
show that the proposed approach achieves optimal accuracy and stability compared to the
other baseline models, highlighting its effectiveness. The results of Experiment II verify that
meteorological factors and the consideration of synergistic changes between regions based
on the Third Law of Geography can effectively improve the model’s predictive learning
accuracy. Experiment IV trains the model on different stations with different data features,
and the effective predictive learning obtained proves the model’s generalizability.

In summary, the above experimental results and analysis demonstrate that the
proposed approach performs better in the air quality predictive learning task with good
prediction generalization ability and robustness, providing a new direction for air quality
predictive learning.

6.2. Caveats and Future Directions

There are still some limitations in this study. Firstly, this study has only performed
predictive modeling from a data-driven perspective without considering air pollutants’
physical and chemical mechanisms. Therefore, combining a priori knowledge of domain
experts with the proposed approach in this study is a promising research direction. In
the follow-up work, we will address the above research directions, and the air quality
predictive learning method currently proposed in this study will play an essential role in
the follow-up work. Secondly, it is necessary to explore the impact of different clustering
methods on spatial clustering results in depth and investigate a universally applicable
spatial clustering method to improve the accuracy of monitoring station classification.
Furthermore, conducting experiments on all monitoring stations in Haikou and other cities
and quantifying the impact of each influencing factor on the model’s predictive results for
different types of monitoring stations is also an important direction.
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