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1. Introduction

Fixed point theory, a captivating area of study, is useful across many areas of research,
most especially in engineering and sciences. With its wide range of applications, mathemati-
cal analysis depends heavily on this popular and very effective method for problem solving.

Maurice Fréchet [1], in his seminal work, introduced the concept of a metric space as
a generalization of the traditional notion of distance. In the literature, through a variety
of methodologies and alterations to the underlying axioms, the idea of metrics has been
broadened and diversified. Out of the many generalizations, only a few are genuine, such as
the semi-metric (proposed by Wilson [2]), quasi-metric (proposed in [3]), b-metric (proposed
in [4,5]), dislocated quasi-metric (dq-metric) (proposed in [6]), S-metric (proposed by
Sedghi et al. [7] through alterations to the symmetry property), parametric (proposed
by Hussain et al. [8]), parametric S-metric (proposed by Taş and Özgür [9]), Sb-metric
(proposed by Souayah and Mlaiki [10] and modified by Rohen et al. [11] in 2017), extended
Sb-metric [12], generalized dq-metric (proposed in [13]), and parametric Sb-metric spaces
(proposed by Taş and Özgür [14]). Recently, Mani et al. [15] introduced the notion of
an extended parametric Sb-metric space and derived some well-known classical fixed
point theorems along with its topological property. Numerous scholars have thoroughly
investigated these spaces and derived several kinds of results on the existence of fixed
points; a few of them are [16–19].

In 1976, Jungck [20] proved a fixed point result for a pair of maps (assuming that one of
them must be continuous) by generalizing the Banach contraction principle. A considerable
amount of study has been focused on the analysis of common fixed points of mappings
that satisfy certain contractive conditions. Some authors have demonstrated the existence
of a fixed point for a map that may exhibit a discontinuity in its domain. Nevertheless,
the maps in consideration were continuous at the fixed point. Recent years have seen
numerous authors using similar ideas to obtain coincidence point results for different kinds
of mappings on metric spaces. We refer the reader to see [21–24].
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Prior to discussing the primary findings of this research, it is necessary to provide sev-
eral essential theories that include crucial definitions, illustrative instances, and supporting
lemmas, all of which will significantly contribute to the proof of our main theorems.

2. Basic Principles and Relevant Literature

Definition 1 ([7]). A function S : X3 → [0, ∞) is said to be S-metric on a nonempty set X, if it
satisfies the following axioms for each ν, ρ, µ, τ ∈ X:

1. S(ν, ρ, µ) ≥ 0;
2. S(ν, ρ, µ) = 0 if and only if ν = ρ = µ;
3. S(ν, ρ, µ) ≤ S(ν, ν, τ) + S(ρ, ρ, τ) + S(µ, µ, τ).

The pair (X, S) is called an S-metric space.

Definition 2 ([11]). A function Sb : X3 → [0, ∞) is said to be Sb-metric on a nonempty set X,
with b ≥ 1, if it satisfies the following axioms for each ν, ρ, µ, τ ∈ X:

1. Sb(ν, ρ, µ) = 0 if and only if ν = ρ = µ;
2. Sb(ν, ρ, µ) ≤ b[Sb(ν, ν, τ) + Sb(ρ, ρ, τ) + Sb(µ, µ, τ)].

The pair (X, Sb) is said to be an Sb-metric space.

The subsequent definition was given by Mani et al. [25].

Definition 3 ([25]). A function SN : X3 × (0, ∞) → [0, ∞) is said to be extended parametric
Sb-metric on a nonempty set X, where N : X3 → [1, ∞) is a positive real-valued function, if it
satisfies the following axioms for each ν, ρ, µ, τ ∈ X:

SN-1. SN(ν, ρ, µ, λ) = 0 for all λ > 0 if and only if ν = ρ = µ;
SN-2. SN(ν, ρ, µ, λ) ≤ N(ν, ρ, µ)[SN(ν, ν, τ, λ) + SN(ρ, ρ, τ, λ) + SN(µ, µ, τ, λ)].

The pair (X,SN) is called an extended parametric Sb-metric (EPSb) space .

Example 1 ([25]). Let X = R. Define function N : X3 → [1, ∞) by

N(ν, ρ, µ) = 1+ | ν | + | ρ |

and a function SN : X3 × (0, ∞) → [0, ∞) by

SN(ν, ρ, µ, λ) = λ2[| ν − ρ | + | ρ − µ | + | ν − µ |]

for each ν, ρ, µ ∈ R and for all λ > 0. Then, SN is an extended parametric Sb-metric space.

Example 2. Let X = { f | f : (0, ∞) → R} and define function N : X3 → [1, ∞) by

N(ν, ρ, µ) = 1 + |ν|

and the function SN : X3 × (0, ∞) → [0, ∞) by

SN(ν, ρ, µ, λ) = (|ν(λ)− ρ(λ)|+ |ν(λ)− µ(λ)|+ |ρ(λ)− µ(λ)|)2

for each ν, ρ, µ ∈ X and for all λ > 0. Then, (X,SN) is an extended parametric Sb-metric space.

Remark 1. It is important to mention here that a parametric S-metric space is a generalization of
an S-metric space that introduces a parameter to the distance function. This parameter modifies
the way distances are measured between points in the space. Some more examples of parametric
S-metric and parametric Sb-metric spaces can be found in [8,9,14,25].

Remark 2. It is also worth it to note that every extended parametric Sb-metric space, in general, is
not a parametric S-metric space. Indeed, let us consider the following functions for each λ ∈ (0, ∞)
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and N(ν, ρ, µ) = 1 + |ν| for all ν ≥ 3:

ν(λ) = 5, ρ(λ) = 7, µ(λ) = 9 and τ(λ) = 6.

This is not a parametric S-metric space.

Definition 4 ([25]). Suppose (X,SN) is an extended parametric Sb-metric space. The pair (X,SN)
is said to be a symmetric extended parametric Sb-metric space, if for all ν, ρ ∈ X, where λ ∈ (0, ∞)
is a parameter, it satisfies the following condition:

SN(ν, ν, ρ, λ) = SN(ρ, ρ, ν, λ).

Definition 5 ([25]). A sequence <νn> in an extended parametric Sb-metric space (X,SN) is said
to be the following:

1. Convergent if it converges to ν if and only if SN(νn, νn, ν, λ) < ϵ for all n ≥ n0 and for all
λ > 0.

2. Cauchy sequence if limn,m→∞ SN(νn, νn, νm, λ) = 0 for all n and m, with n > m, and for all
λ > 0.

Definition 6 ([25]). The space “(X,SN) is called complete if every Cauchy sequence is convergent
in X”.

Definition 7. A function T : (X,SN) → (X′,S ′
N) is said to be continuous at a point ν ∈ X,

where (X,SN) and (X′
,S ′

N) are two extended parametric Sb-metric spaces, if for every sequence
{νn} in X and for all λ > 0,

SN(νn, νn, ν, λ) → 0

implies that
S ′

N(T (νn), T (νn), T (ν), λ) → 0.

Remark 3. A function T is said to be continuous at X if and only if it is continuous for all ν ∈ X.

Definition 8. Let (X,SN) be an extended parametric Sb-metric space. A pair of self-mappings
{T ,U} is said to be compatible if and only if

lim
n→∞

SN(T Uνn, T Uνn,UT νn, λ) = 0,

whenever {νn} is a sequence in X such that

lim
n→∞

T νn = lim
n→∞

Uνn = ν

for some ν ∈ X and for all λ > 0.

This study aims to establish the existence and uniqueness of a common fixed point
by presenting two theorems in complete symmetric extended parametric Sb-metric spaces.
In later sections, we provide some examples along with graphical representations, several
corollaries, and an application to discuss the existence of a common solution to a system of
integral equations and substantiate the main findings. The results obtained not only gener-
alize but also expand some well-known results from the existing literature on symmetric
extended parametric Sb-metric spaces.

3. Common Fixed Point Theorems for Pair of Self Maps

This section aims to provide a collection of significant lemmas that are valuable in the
endeavor of demonstrating our fundamental theorems.
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Lemma 1. Let (X,SN) be a symmetric extended parametric Sb-metric space. Suppose there exist
two sequences {νn} and {ρn} such that for all λ > 0,

lim
n→∞

SN(νn, νn, ρn, λ) = 0.

If the sequence {νn} ∈ X exists such that limn→∞ νn = ν for some ν ∈ X, then limn→∞ ρn = ν.

Proof. Given that for any sequences {νn}, {ρn} ∈ X,

lim
n→∞

SN(νn, νn, ρn, λ) = 0. (1)

limn→∞ νn = ν gives that

lim
n→∞

SN(νn, νn, ν, λ) = 0. (2)

Claim: limn→∞ ρn = ν.
To prove this, we show that

lim
n→∞

SN(ρn, ρn, ν, λ) = 0.

Suppose that on the contrary, limn→∞ SN(ρn, ρn, ν, λ) ̸= 0.
Since (X,SN) is a symmetric extended parametric Sb-metric space,

SN(ρn, ρn, ν, λ) ≤ N(ρn, ρn, ν){2SN(ρn, ρn, νn, λ) + SN(ν, ν, νn, λ)}
≤ N(ρn, ρn, ν){2SN(νn, νn, ρn, λ) + SN(νn, νn, ν, λ)}.

In taking the lim sup as n → ∞ in the above inequality and making use of Equations (1)
and (2), we have

lim sup
n→∞

SN(ρn, ρn, ν, λ) ≤ 0.

Hence, limn→∞ ρn = ν.

Lemma 2. Let (X,SN) be an extended parametric Sb-metric space and suppose that there exists a
sequence {ρn} ∈ X such that for all λ > 0, it satisfies

SN(ρn, ρn, ρn−1, λ) ≤ θSN(ρn−1, ρn−1, ρn−2, λ). (3)

If for any ν0 ∈ X,

lim
n,m→∞

N(νn, νn, νm) <
1
2θ

, (4)

where 0 < θ < 1, then {ρn} is a Cauchy sequence in an extended parametric Sb-metric space.

Proof. Using iterations on Equation (3), we obtain

SN(ρn, ρn, ρn−1, λ) ≤ θnSN(ρ1, ρ1, ρ0, λ). (5)
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For all m, n ∈ N with m > n and λ > 0, in using condition SN-2 from Definition 3 and
applying Equation (4), we obtain

SN(ρn, ρn, ρm, λ) ≤ N(ρn, ρn, ρm)(2θ)nSN(ρ1, ρ1, ρ0, λ)

+ N(ρn, ρn, ρm)N(ρn+1, ρn+1, ρm)(2θ)n+1SN(ρ1, ρ1, ρ0, λ)

...

+ N(ρn, ρn, ρm)N(ρn+1, ρn+1, ρm) · · · N(ρm−1, ρm−1, ρm)

(2θ)m−1SN(ρ1, ρ1, ρ0, λ).

Consequently, we obtain

SN(ρn, ρn, ρm, λ)

≤ SN(ρ1, ρ1, ρ0, λ)



N(ρ1, ρ1, ρm)N(ρ2, ρ2, ρm) · · ·
N(ρn−1, ρn−1, ρm)N(ρn, ρn, ρm)(2θ)n

+ N(ρ1, ρ1, ρm)N(ρ2, ρ2, ρm) · · ·
N(ρn, ρn, ρm)N(ρn+1, ρn+1, ρm)(2θ)n+1

...
+ N(ρ1, ρ1, ρm)N(ρ2, ρ2, ρm) · · ·

N(ρm−2, ρm−2, ρm)N(ρm−1, ρm−1, ρm)(2θ)m−1


≤ SN(ρ1, ρ1, ρ0, λ)

m−1

∑
j=n

(2θ)j
j

∏
i=1

N(ρi, ρi, ρm) (6)

Suppose we have a series

B =
∞

∑
n=1

(2θ)n
n

∏
i=1

N(ρi, ρi, ρm)

and its partial sum

Bn =
n

∑
j=1

(2θ)j
j

∏
i=1

N(ρi, ρi, ρm).

In applying the ratio test and using Equation (4), the series

n

∑
n=1

(2θ)n
n

∏
i=1

N(ρi, ρi, ρm)

converges.
Hence, from Equation (6), for m > n, we have

SN(ρn, ρn, ρm, λ) ≤ SN(ρ1, ρ1, ρ0, λ)[Bm−1 −Bn]

Thus, SN(ρn, ρn, ρm, λ) → 0 as n, m → ∞. In what follows, {ρn} is a Cauchy se-
quence.

Let us begin with our first result.

Theorem 1. Suppose that T ,U ,W , and V are self-maps defined on a complete symmetric extended
parametric Sb-metric space (X,SN), with T (X) ⊆ V(X) and U (X) ⊆ W(X) such that for each
ν, ρ, µ ∈ X and for all λ > 0 with 0 < k < θ < 1, the following is satisfied:

SN(T ν, T ρ,Uµ, λ) ≤ θM(ν, ρ, µ, λ), (7)
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where

M(ν, ρ, µ, λ) = max
{

SN(Uµ,Uµ,Vµ, λ),SN(T ν, T ν,Wν, λ),SN(Wν,Wρ,Vµ, λ)
SN(T ρ, T ρ,Uµ, λ), kSN(Wν,Wρ,Uµ, λ)

}
.

Further, assume that for any ν0 ∈ X,

lim
n,m→∞

N(νn, νn, νm) <
1
2θ

. (8)

Moreover, let the pairs {T ,W} and {U ,V} be compatible. Then, T ,U ,W , and V have a
unique common fixed point in X provided that W and V are continuous.

Proof. Let ν0 ∈ X. Since T (X) ⊆ V(X), therefore, there exists ν1 ∈ X such that T ν0 = Vν1,
and also, U (X) ⊆ W(X) implies that one can choose ν2 ∈ X such that Uν1 = Wν2.
In general, we can construct sequences {ν2n+1}, {ν2n+2} ∈ X such that T ν2n = Vν2n+1 and
Uν2n+1 = Wν2n+2.

Let us assume that ν2n+1 ̸= ν2n+2. Therefore, we can choose a sequence {ρn} ∈ X
such that for all n ≥ 0,

ρ2n = T ν2n = Vν2n+1,

ρ2n+1 = Uν2n+1 = Wν2n+2,

Let us substitute ν = ν2n, ρ = ν2n, and µ = ν2n+1 in Equation (7). We obtain

SN(ρ2n, ρ2n, ρ2n+1, λ) = SN(T ν2n, T ν2n,Uν2n+1, λ)

≤ θM(ν2n, ν2n, ν2n+1, λ), (9)

where

M(ν2n, ν2n, ν2n+1, λ) = max


SN(Uν2n+1,Uν2n+1,Vν2n+1, λ),

SN(T ν2n, T ν2n,Wν2n, λ),
SN(Wν2n,Wν2n,Vν2n+1, λ),
SN(T ν2n, T ν2n,Uν2n+1, λ)
kSN(Wν2n,Wν2n,Vν2n, λ),


= max


SN(ρ2n+1, ρ2n+1, ρ2n, λ),SN(ρ2n, ρ2n, ρ2n−1, λ),
SN(ρ2n−1, ρ2n−1, ρ2n, λ),SN(ρ2n, ρ2n, ρ2n+1, λ),

kSN(ρ2n−1, ρ2n−1, ρ2n+1, λ)


= max


SN(ρ2n−1, ρ2n−1, ρ2n, λ),SN(ρ2n, ρ2n, ρ2n+1, λ),

kN(ρ2n−1, ρ2n−1, ρ2n+1){2SN(ρ2n−1, ρ2n−1, ρ2n, λ)
+SN(ρ2n+1, ρ2n+1, ρ2n, λ)}


≤ max


SN(ρ2n−1, ρ2n−1, ρ2n, λ),SN(ρ2n, ρ2n, ρ2n+1, λ),

kN(ρ2n−1, ρ2n−1, ρ2n+1)
max{2SN(ρ2n−1, ρ2n−1, ρ2n, λ),SN(ρ2n+1, ρ2n+1, ρ2n, λ)}


In using Equation (8) and the fact that k < θ, we have

M(ν2n, ν2n, ν2n+1, λ) = max
{

SN(ρ2n−1, ρ2n−1, ρ2n, λ),
SN(ρ2n, ρ2n, ρ2n+1, λ)

}
(10)

Here, two possibilities arise:

Choice-1 SN(ρ2n, ρ2n, ρ2n+1, λ) > SN(ρ2n−1, ρ2n−1, ρ2n, λ);
Choice-2 SN(ρ2n, ρ2n, ρ2n+1, λ) ≤ SN(ρ2n−1, ρ2n−1, ρ2n, λ).
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Suppose Choice 1 is true; then, from Equations (9) and (10), we arrive at a contradiction.
Thus, Choice 2 must be true. Hence, from Equation (9), we have

SN(ρ2n, ρ2n, ρ2n+1, λ) ≤ θSN(ρ2n−1, ρ2n−1, ρ2n, λ). (11)

Again, upon substituting ν = ν2n, ρ = ν2n, and µ = ν2n−1, in Equation (7), we obtain

SN(ρ2n−1, ρ2n−1, ρ2n, λ) = SN(y2n, ρ2n, ρ2n−1, λ)

= SN(T ν2n, T ν2n,Uν2n−1, λ)

≤ θM(ν2n, ν2n, ν2n−1, λ), (12)

where

M(ν2n, ν2n, ν2n−1, λ) = max


SN(Uν2n−1,Uν2n−1,Vν2n−1, λ),

SN(T ν2n, T ν2n,Wν2n, λ),
SN(Wν2n,Wν2n,Vν2n−1, λ),
SN(T ν2n, T ν2n,Uν2n−1, λ)

kSN(Wν2n,Wν2n,Uν2n−1, λ),


= max


SN(ρ2n−1, ρ2n−1, ρ2n−2, λ),SN(ρ2n, ρ2n, ρ2n−1, λ),
SN(ρ2n−1, ρ2n−1, ρ2n−2, λ),SN(ρ2n, ρ2n, ρ2n−1, λ),

kSN(ρ2n−1, ρ2n−1, ρ2n−1, λ)


= max{SN(ρ2n−2, ρ2n−2, ρ2n−1, λ),SN(ρ2n, ρ2n, ρ2n−1, λ)}.

By following an argument similar to that above, we can obtain

SN(ρ2n−1, ρ2n−1, ρ2n, λ) ≤ θSN(ρ2n−2, ρ2n−2, ρ2n−1, λ). (13)

From Equations (11) and (27), we obtain

SN(ρ2n, ρ2n, ρ2n+1, λ) ≤ θSN(ρ2n−1, ρ2n−1, ρ2n, λ) ≤ θ2SN(ρ2n−2, ρ2n−2, ρ2n−1, λ)

Consequently, for n ≥ 2, it follows that

SN(ρn, ρn, ρn+1, λ) ≤ θSN(ρn−1, ρn−1, ρn, λ) ≤ θ2SN(ρn−2, ρn−2, ρn−1, λ)

Reiterating the process n times, we obtain

SN(ρn, ρn, ρn−1, λ) ≤ θnSN(ρ1, ρ1, ρ0, λ) (14)

Lemma 2 guarantees that the sequence {ρn} is a Cauchy sequence.
Since X is a complete extended parametric Sb-metric space, there exists some ρ ∈ X

such that

lim
n→∞

T ν2n = lim
n→∞

Vν2n+1 = lim
n→∞

Uν2n+1 = lim
n→∞

Wν2n+2 = ρ. (15)

The continuity property of W provides that

lim
n→∞

W2ν2n+2 = Wρ, lim
n→∞

WT ν2n = Wρ.

The compatibility property on (T ,W) and Lemma 1 provide that

lim
n→∞

T Wν2n = Wρ (16)
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Further, from Equation (7) and upon substituting ν = ρ = Wν2n and µ = ν2n+1,
we obtain

SN(T Wν2n, T Wν2n,Uν2n+1, λ) ≤ θM(Wν2n,Wν2n, ν2n+1, λ) (17)

where

M(Wν2n,Wν2n, ν2n+1, λ) = max


SN(Uν2n+1,Uν2n+1,Vν2n+1, λ),
SN(T Wν2n, T Wν2n,W2ν2n, λ),
SN(W2ν2n,W2ν2n,Vν2n+1, λ),
SN(T Wν2n, T Wν2n,Uν2n+1, λ),
kSN(W2ν2n,W2ν2n,Uν2n+1, λ)

 (18)

Now, by taking the upper limit as n → ∞ in Equations (17) and (18), we obtain

SN(Wρ,Wρ, ρ, λ) = lim
n→∞

SN(T Wν2n, T Wν2n,Uν2n+1, λ)

≤ θ lim
n→∞

M(Wν2n,Wν2n, ν2n+1, λ)

≤ θ max
{

0, 0,SN(Wρ,Wρ, ρ, λ),
SN(Wρ,Wρ, ρ, λ), kSN(Wρ,Wρ, ρ, λ)

}
= θSN(Wρ,Wρ, ρ, λ).

Since 0 < θ < 1, it follows that Wρ = ρ.
Also, the continuity of V implies that

lim
n→∞

V2ν2n+1 = Vρ, lim
n→∞

VUν2n+1 = Vρ.

Since the pair (U ,V) is compatible, in using Lemma (1), we obtain

lim
n→∞

UV2n+1 = Vρ

Upon substituting ν = ρ = ν2n and µ = Vν2n+1 in Equation (7), we obtain

SN(T ν2n, T ν2n,UVν2n+1, λ) ≤ θM(ν2n, ν2n,Vν2n+1, λ) (19)

where

M(ν2n, ν2n,Vν2n+1, λ) = max


SN(UVν2n+1,UVν2n+1,V2ν2n+1, λ),

SN(T ν2n, T ν2n,Wν2n, λ),
SN(Wν2n,Wν2n,V2ν2n+1, λ),
SN(T ν2n, T ν2n,UVν2n+1, λ)

kSN(Wν2n,Wν2n,UVν2n+1, λ)

 (20)

By taking the upper limit as n → ∞ in Equations (19) and (20), we obtain

SN(ρ, ρ,Vρ, λ) = lim
n→∞

SN(T ν2n, T ν2n,UVν2n+1, λ)

≤ θ lim
n→∞

M(ν2n, ν2n,Vν2n+1, λ)

= max{0, 0,SN(ρ, ρ,Vρ, λ),SN(ρ, ρ,Vρ, λ), kSN(ρ, ρ,Vρ, λ)},

≤ SN(ρ, ρ,Vρ, λ).

This is possible if Vρ = ρ.
Once again, from Equation (7),

SN(T ρ, T ρ,Uν2n+1, λ) ≤ θM(ρ, ρ, ν2n+1, λ) (21)
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where

M(ρ, ρ, ν2n+1, λ) = max


SN(Uν2n+1,Uν2n+1,Vν2n+1, λ),SN(T ρ, T ρ,Wρ, λ),
SN(Wρ,Wy,Vν2n+1, λ),SN(T ρ, T ρ,Uν2n+1, λ),

kSN(Wρ,Wρ,Uν2n+1, λ)


And by taking the upper limit as n → ∞ in (11) and making use of Wρ = Vρ = ρ,

we obtain

SN(T ρ, T ρ, ρ, λ) ≤ θ max


SN(ρ, ρ, ρ, λ),SN(T ρ, T ρ, ρ, λ),

SN(Wρ,Wρ, ρ, λ),SN(T ρ, T ρ, ρ, λ),
kSN(Wρ,Wρ, ρ, λ)


= SN(T ρ, T ρ, ρ, λ).

Since 0 < θ < 1, it follows that S(T ρ, T ρ, ρ, λ) = 0 and T ρ = ρ.
Similarly, using the same argument, from Equation (7), we can deduce that

SN(ρ, ρ,Uρ, λ) = SN(T ρ, T ρ,Uρ, λ)

≤ θ max


SN(Uρ,Uρ,Vρ, λ),SN(T ρ, T ρ,Wρ, λ),
SN(Wρ,Wρ,Vρ, λ),SN(T ρ, T ρ,Uρ, λ)

kSN(Wρ,Wρ,Uρ, λ)


= θSN(Uρ,Uρ, ρ, λ).

which implies that SN(ρ, ρ,Uρ, λ) = 0 and Uρ = ρ.
Thus, we proved that

Wρ = Vρ = T ρ = Uρ = ρ.

If there exists another common fixed point ν in X of all T ,U ,W , and V , then

SN(ν, ν, ρ, λ) = SN(T ν, T ν,Uρ, λ) ≤ θM(ν, ν, ρ, λ)

where

M(ν, ν, ρ, λ) = max


SN(Uρ,Uρ,Vρ, λ),SN(T ν, T ν,Wν, λ),
SN(Wν,Wν,Vρ, λ),SN(T ν, T ν,Uρ, λ)

kSN(Wν,Wν,Uρ, λ).


= SN(ν, ν, ρ, λ).

which implies that SN(ν, ν, ρ, λ) = 0 and ν = ρ. Thus, ρ is a unique common fixed point of
T ,U ,W , and V .

Remark 4. If we eliminate the variable k from Theorem 1, then the certainty of the existence of a
fixed point is doubtful.

In the following result, we used an auxiliary function ϕ, described below, to establish a
common fixed point theorem in a symmetric complete extended parametric Sb-metric space.

Definition 9. Let Φ denote the class of all functions ϕ : [0, ∞) → [0, ∞), which is increasing and
continuous, such that for each fixed t > 0, ∑∞

n=1 ϕn(t) < ∞, ϕn(t) → 0 as n → ∞.

Theorem 2. Suppose (X,SN) is an extended parametric Sb-metric space, which is symmetric
and complete. Let T ,U ,V ,W : X → X be four self-mappings such that the following conditions
are satisfied:

1. T (X) ⊆ V(X),U (X) ⊆ W(X);
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2. V and W are continuous;
3. The pair (T ,W) and (U ,V) are compatible;
4. For all ν, ρ, µ ∈ X and for all λ > 0, there exists a function ϕ ∈ Φ such that

SN(T ν, T ρ,Uµ, λ) ≤ ϕ(M(ν, ρ, µ, λ)), (22)

where

M(ν, ρ, µ, λ) = max
{

SN(Wν,Wρ,Vµ, λ),SN(T ν, T ρ,Wν, λ),
SN(Uµ,Uµ,Vµ, λ),SN(T ρ, T ρ,Uµ, λ).

}
.

Further, assume that there exists 0 < θ < 1 such that for every ν ∈ X, we have

lim
n→∞

N(νn, νn, ν) <
1
2θ

.

Then, the maps T ,U ,V , and W have a unique common fixed point.

Proof. Let ν0 ∈ X be arbitrary point in X. We can construct a sequence {ρn} in X as follows:

ρ2n = T ν2n = Vν2n+1, ρ2n+1 = Uν2n+1 = Wν2n+2, n ≥ 0.

Now, we show that {ρn} is a Cauchy sequence.
Let dn+1 = SN(ρn, ρn, ρn+1, λ).
Then, using Equation (22), we have

d2n+1 = SN(ρ2n, ρ2n, ρ2n+1, λ) = SN(T ν2n, T ν2n,Uν2n+1, λ)

≤ ϕ(M(ν2n, ν2n, ν2n+1, λ)) (23)

where

M(ν2n, ν2n, ν2n+1, λ) = max


SN(Wν2n,Wν2n,Vν2n+1, λ),
SN(T ν2n, T ν2n,Wν2n, λ),

SN(Uν2n+1,Uν2n+1,Vν2n+1, λ),
SN(T ν2n, T ν2n,Uν2n+1, λ).


= max

{
SN(ρ2n−1, ρ2n−1, ρ2n, λ),SN(ρ2n, ρ2n, ρ2n−1, λ),
SN(Uρ2n+1, ρ2n+1, ρ2n, λ),SN(ρ2n, ρ2n, ρ2n+1, λ).

}
= max{d2n, d2n, d2n+1, d2n+1}
= max{d2n, d2n+1} (24)

Here, two possibilities arise:

Choice-1 d2n+1 > ϕ(d2n);

Choice-2 d2n+1 ≤ ϕ(d2n).

Suppose Choice 1 is true; then, from Equations (23) and (24), we arrive at a contradic-
tion. Thus, Choice 2 must be true. Hence, from Equation (23), we have

d2n+1 ≤ ϕ(d2n) (25)

Further,

d2n = S(ρ2n−1, ρ2n−1, ρ2n, λ) = SN(ρ2n, ρ2n, ρ2n−1, λ)

= SN(T ν2n, T ν2n,Uν2n−1, λ)

≤ ϕ(M(ν2n, ν2n, ν2n−1, λ))
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where

M(ν2n, ν2n, ν2n−1, λ) = max


SN(Wν2n,Wν2n,Vν2n−1, λ),
SN(T ν2n, T ν2n,Wν2n, λ),

SN(Uν2n−1,Uν2n−1,Vν2n−1, λ),
SN(T ν2n, T ν2n,Uν2n−1, λ).


= max

{
SN(ρ2n−1, ρ2n−1, ρ2n−2, λ),SN(ρ2n, ρ2n, ρ2n−1, λ),
SN(Uρ2n−1, ρ2n−1, ρ2n−2, λ),SN(ρ2n, ρ2n, ρ2n−1, λ).

}
= max{d2n−1, d2n, d2n−1, d2n}.

= max{d2n−1, d2n}.

Using similar arguments as above, we have

d2n ≤ ϕ(d2n−1). (26)

In combining (25) and (26), we have

d2n+1 ≤ ϕ(d2n) ≤ ϕ2(d2n−1)

More precisely, for all n ≥ 2, we have

SN(ρn, ρn, ρn+1, λ) ≤ ϕ(SN(ρn−1, ρn−1, ρn, λ)) ≤ · · · ≤ ϕn(SN(ρ0, ρ0, ρ1, λ)).

For all m > n (from Definition 3), we have

SN(ρn, ρn, ρm, λ)

= N(ρn, ρn, ρm)[2SN(ρn, ρn, ρn+1, λ) + SN(ρn+1, ρn+1, ρm, λ)]

≤ 2N(ρn, ρn, ρm)SN(ρn, ρn, ρn+1, λ) + N(ρn, ρn, ρm)N(ρn+1, ρn+1, ρm)

[2SN(ρn+1, ρn+1, ρm, λ) + SN(ρn+2, ρn+2, ρm, λ)]

≤ 2{[N(ρn, ρn, ρm)ϕ
n(SN(ρ0, ρ0, ρ1, λ))]

+ [N(ρn, ρn, ρm)[N(ρn+1, ρn+1, ρm)ϕ
n+1(SN(ρ0, ρ0, ρ1, λ))

...

+ [N(ρn, ρn, ρm)N(ρn+1, ρn+1, ρm) · · · N(ρn−1, ρn−1, ρm)ϕ
m−2(SN(ρ0, ρ0, ρ1, λ))}

≤ 2
m−2

∑
j=n

ϕj(SN(ρ0, ρ0, ρ1, λ))
n

∏
i=1

N(ρi, ρi, ρm)

Since ∑∞
n=1 ϕn(t) < ∞ for all t > 0, SN(ρn, ρn, ρm, λ) → 0 as n → ∞. Hence, {ρn} is a

Cauchy sequence in X. Since X is a complete extended parametric Sb-metric space, there
exists u ∈ X such that

lim
n→∞

T ν2n = lim
n→∞

Vν2n+1 = lim
n→∞

Uν2n+1 = lim
n→∞

Wν2n+1 = u.

Since W is continuous, we have

lim
n→∞

W2ν2n+2 = Wu and lim
n→∞

WT ν2n = Wu.

Also, as (T ,W) is compatible, then limn→∞ SN(T Wν2n, T Wν2n,WT ν2n, λ) = 0. So,
using Lemma 1, we have limn→∞ T Wν2n = Wu.

Suppose that Wu ̸= u. Then, condition (22) gives that

SN(T Wν2n, T Wν2n,UWν2n+1, λ) ≤ ϕ(M(Wν2n,Wν2n,Wν2n+1, λ)). (27)
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where

M(Wν2n,Wν2n,Wν2n+1, λ) ≤ max


SN(W2ν2n,W2ν2n,Vν2n+1, λ),
SN(T Wν2n, T Wν2n,W2ν2n, λ),
SN(Uν2n+1,Uν2n+1,Vν2n+1), λ),
SN(T Wν2n, T Wν2n,Uν2n+1, λ).

 (28)

Taking the upper limit as n → ∞ in (27), we obtain

SN(Wu,Wu, u, λ) ≤ ϕ(SN(Wu,Wu, u, λ)).

Using ϕ ∈ Φ, we obtain that Wu = u, i.e., u is a fixed point of W .
Similarly, the continuity of V and compatibility of the pair (U ,V) imply that

lim
n→∞

V2ν2n+1 = Vu and VUν2n+1 = Vu.

lim
n→∞

SN(UVν2n+1,UVν2n+1,VUν2n+1, λ) = 0.

Therefore, using Lemma (1), we have limn→∞ UVν2n+1 = Vu.
Further, assume that Vu ̸= u. Therefore, by condition (22), we obtain

SN(T ν2n, T ν2n,UVν2n+1, λ) ≤ ϕ(M(ν2n, ν2n,Vν2n+1, λ)), (29)

where

M(ν2n, ν2n,Vν2n+1, λ) ≤ max


SN(Wν2n,Wν2n,V2ν2n+1, λ),
SN(T ν2n, T ν2n,Wν2n, λ),

SN(UVν2n+1,UVν2n+1,V2ν2n+1), λ),
SN(T ν2n, T ν2n,UVν2n+1, λ).

 (30)

Taking the upper limit as n → ∞ in (29), we obtain

SN(u, u,Vu, λ) ≤ ϕ(SN(u, u,Vu, λ)) < SN(u, u,Vu, λ).

This is possible only if Vu = u. Thus, so far, we have Wu = Vu = u.
Again, upon considering condition (22), we have

SN(T u, T u,Uν2n+1, λ) ≤ ϕ(M(u, u, ν2n+1, λ)), (31)

where

M(u, u, ν2n+1, λ) ≤ max


SN(Wu,Wu,Vν2n+1, λ),
SN(T u, T u,Wu, λ),

SN(Uν2n+1,Uν2n+1,Vν2n+1, λ),
SN(T u, T u,Uν2n+1, λ).

 (32)

Taking the upper limit as n → ∞ in (31), we obtain

SN(T u, T u, u, λ) ≤ ϕ(SN(T u, T u, u, λ)). (33)

If T u ̸= u, then in based on the property of ϕ, we obtain a contradiction. This gives
that T u = u.

One more time, condition (22) gives that

SN(u, u,Uu, λ) = SN(T u, T u,Uu, λ)

≤ ϕ(M(T u, T u,Uu, λ)), (34)
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where

M(T u, T u,Uu, λ) = max
{

SN(Wu,Wu,Vu, λ),SN(T u, T u,Wu, λ),
SN(Uu,Uu,Vu, λ),SN(T u, T u,Uu, λ).

}
= SN(u, u,Uu, λ). (35)

If Uu ̸= u, then upon combining the above two inequalities, we have Uu = u.
Thus, we have deduced that Wu = Vu = T u = Uu = u; that is, u is a common fixed

point of the maps T ,U ,V , and W .
To guarantee the uniqueness, suppose that p is another common fixed point of T ,U ,V ,

and W ; that is,
p = T p = U p = V p = W p.

If u ̸= p, condition (22) implies that

SN(u, u, p, λ) = SN(T u, T u,U p, λ)

≤ ϕ(M(T u, T u,U p, λ))

where

M(T u, T u,U p, λ) = max
{

SN(Wu,Wu,V p, λ),SN(T u, T u,Wu, λ)
SN(U p,U p,V p, λ),SN(T u, T u,U p, λ).

}
= max{SN(u, u, p, λ),SN(u, u, u, λ),SN(p, p, p, λ),SN(u, u, p, λ)}
= SN(u, u, p, λ).

Thus, we obtain that

SN(u, u, p, λ) ≤ ϕ(SN(u, u, p, λ)) < SN(u, u, p, λ),

which is a contradiction. Hence, u = p. Therefore, u is the one and only fixed point of
T ,U ,V , and W .

4. Corollaries and Numerical Illustrations

In this part, we discuss the consequential outcomes of our primary findings and
provide only a few instances with graphical representations that highlight the soundness
of our findings.

In letting V = W in Theorem 1, we have the following result.

Corollary 1. Suppose that T ,U , and W are self-maps defined on a complete symmetric extended
parametric Sb-metric space (X,SN), with T (X) ⊆ W(X) and U (X) ⊆ W(X), such that for each
ν, ρ, µ ∈ X and for all λ > 0 with 0 < k < θ < 1, the following is satisfied:

SN(T ν, T ρ,Uµ, λ) ≤ θM(ν, ρ, µ, λ),

where

M(ν, ρ, µ, λ) = max


SN(Uµ,Uµ,Wµ, λ),SN(T ν, T ν,Wν, λ),

SN(Wν,Wρ,Wµ, λ)
SN(T ρ, T ρ,Uµ, λ), kSN(Wν,Wρ,Uµ, λ)

.

Further, assume that for any ν0 ∈ X,

lim
n,m→∞

N(νn, νn, νm) <
1
2θ

,

Moreover, if the pairs {T ,W} and {U ,W} are compatible, then the maps T ,U , and W have
a unique common fixed point in X provided that W is continuous.
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If we set U = T in Corollary 1, we have the following important result as an extension
and generalization of the result of Jungck [20].

Corollary 2. Suppose that T and W are self-maps defined on a complete symmetric extended
parametric Sb-metric space (X,SN), with T (X) ⊆ W(X), such that for each ν, ρ, µ ∈ X and for
all λ > 0 with 0 < k < θ < 1, the following is satisfied:

SN(T ν, T ρ, T µ, λ) ≤ θM(ν, ρ, µ, λ),

where

M(ν, ρ, µ, λ) = max


SN(T µ, T µ,Wµ, λ),SN(T ν, T ν,Wν, λ),

SN(Wν,Wρ,Wµ, λ)
SN(T ρ, T ρ, T µ, λ), kSN(Wν,Wρ, T µ, λ)

.

Further, assume that for any ν0 ∈ X,

lim
n,m→∞

N(νn, νn, νm) <
1
2θ

,

Moreover, if the pair {T ,W} is compatible and W is continuous, then the maps T and W
have a unique common fixed point in X.

Corollary 3. Suppose that T ,U , and W are self-maps defined on a complete symmetric extended
parametric Sb-metric space (X,SN), with T (X) ⊆ W(X) and U (X) ⊆ W(X). For all ν, ρ, µ ∈ X
and for all λ > 0, there exists a function ϕ ∈ Φ such that

SN(T ν, T ρ,Uµ, λ) ≤ ϕ(M(ν, ρ, µ, λ)),

where

M(ν, ρ, µ, λ) = max
{

SN(Wν,Wρ,Wµ, λ),SN(T ν, T ρ,Wν, λ),
SN(Uµ,Uµ,Wµ, λ),SN(T ρ, T ρ,Uµ, λ).

}
.

Further, assume that there exists 0 < θ < 1 such that for every ν ∈ X, we have

lim
n→∞

N(νn, νn, ν) <
1
2θ

.

Moreover, if the pairs {T ,W} and {U ,W} are compatible, then the maps T ,U , and W have
a unique common fixed point in X provided that W is continuous.

Proof. If we take V = W , then from Theorem 2, it follows that T ,U , and W have a unique
common fixed point.

Corollary 4. Suppose that T and W are self-maps defined on a complete symmetric extended
parametric Sb-metric space (X,SN), with T (X) ⊆ W(X). For all ν, ρ, µ ∈ X and for all λ > 0,
there exists a function ϕ ∈ Φ such that

SN(T ν, T ρ, T µ, λ) ≤ ϕ(M(ν, ρ, µ, λ)),

where

M(ν, ρ, µ, λ) = max
{

SN(Wν,Wρ,Wµ, λ),SN(T ν, T ρ,Wν, λ),
SN(T µ, T µ,Wµ, λ),SN(T ρ, T ρ, T µ, λ).

}
.
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Further, assume that there exists 0 < θ < 1 such that for every ν ∈ X, we have

lim
n→∞

N(νn, νn, ν) <
1
2θ

.

Moreover, if the pair {T ,W} is compatible and W is continuous, then the maps T and W
have a unique common fixed point in X.

Proof. By letting U = T and V = W in Theorem 2, we obtain the result.

Corollary 5. Suppose (X,SN) is an extended parametric Sb-metric space, which is symmetric and
complete. Let T ,U ,V ,W : X → X be four self-mappings such that it satisfies the following conditions:

1. T (X) ⊆ V(X),U (X) ⊆ W(X);
2. V and W are continuous;
3. The pair (T ,W) and (U ,V) are compatible;
4. For all ν, ρ, µ ∈ X and for all λ > 0, suppose that

SN(T ν, T ρ,Uµ, λ) ≤ M(ν, ρ, µ, λ),

where

M(ν, ρ, µ, λ) = max
{

SN(Wν,Wρ,Vµ, λ),SN(T ν, T ρ,Wν, λ),
SN(Uµ,Uµ,Vµ, λ),SN(T ρ, T ρ,Uµ, λ).

}
.

Further, assume that there exists 0 < θ < 1 such that for every ν ∈ X, we have

lim
n→∞

N(νn, νn, ν) <
1
2θ

.

Then, the maps T ,U ,V , and W have a unique common fixed point.

Proof. By letting ϕ(t) = t in Theorem 2, we obtain the result.

Remark 5. Note the following:

1. Corollary 2 is an extension of the result of Jungck [20] in an EPSb-metric space.
2. Corollary 4 is an extension of the result of Saluja [26] in an EPSb-metric space.
3. Corollary 5 is an extension of the result of Sedghi et al. [27] in an EPSb-metric space.

Example 3. Let X = [0, 1]. Define function N : X3 → [1, ∞) by

N(ν, ρ, µ) = max{ν, ρ}+ µ + 1

and a function SN : X3 × (0, ∞) → [0, ∞) by

SN(ν, ρ, µ, λ) = λ(max{ν, ρ} − µ)2

where each λ ∈ (0, ∞) is a parameter, and ν, ρ, µ ∈ X. Then, SN is an EPSb space.
Define self-maps T ,U ,V , and W on X by

T (ν) =
ν

32
,U (ν) = ν

16
,V(ν) = ν

4
,W(ν) =

ν

2
.

Obviously, T (X) ⊆ W(X) and U (X) ⊆ V(X). Furthermore, the pairs {T ,V} and {U ,W}
are compatible mappings.
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We have

SN(T ν, T ρ,Uµ, λ) = λ(max{T ν, T ρ} − Uµ)2

= λ(max{ ν

32
,

ρ

32
} − µ

16
)2

≤ 63
64

SN(Vν,Vρ,Wµ, λ)

≤ 63
64

M(ν, ρ, µ, λ),

where

M(ν, ρ, µ, λ) = max


SN(Uµ,Uµ,Wµ, λ),SN(T ν, T ν,Vν, λ),
SN(Vν,Vρ,Wµ, λ),SN(T ρ, T ρ,Uµ, λ),

kSN(Vν,Vρ,Uµ, λ)

.

Meanwhile, for each ν, ρ, µ ∈ X, let

T n = (
ν

32
)n,Un = (

ν

16
)n,Vn = (

ν

16
)n,Wn = (

ν

2
)n.

Then,

lim
n,m→∞

N(T nν, T nρ,Umµ) = 1 <
1
2θ

, ∀ θ ∈ (0,
1
2
).

Thus, all the necessities of Theorem 1 have been accomplished. Also, the behavior of inequal-
ity (7) of Example 3 is shown graphically in Figure 1. The number 0 is the only fixed point that is
common to the mappings T ,U ,V , and W .

10 15 20 25 30 35 40 45

0

50

100

150

200

250

300

350

400

450

RHS

LHS

Figure 1. Graphical behavior of inequality (7) of Example 3.

Example 4. Let X = [0, 1). Define function N : X3 → [1, ∞) by

N(ν, ρ, µ) = 1+ | ν | + | ρ |

and a function SN : X3 × (0, ∞) → [0, ∞) by

SN(ν, ρ, µ, λ) = λ[| ν − ρ | + | ρ − µ | + | ν − µ |]

where each λ ∈ (0, ∞) is a parameter, and ν, ρ, µ ∈ X. Then, SN is an EPSb space.
Define self-maps T ,U ,V , and W on X by

T (ν) =
ν

16
,U (ν) = ν

8
,V(ν) = ν

2
,W(ν) = ν.
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Obviously, T (X) ⊆ W(X) and U (X) ⊆ V(X).
Furthermore, the pairs {T ,V} and {U ,W} are compatible mappings.
From inequality (7), we have

SN(T ν, T ρ,Uµ, λ) = λ[| T (ν)− T (ρ) | + | T (ρ)−U (µ) | + | T (ν)−U (µ) |]

= λ[| ν

16
− ρ

16
| + | ρ

16
− µ

8
| + | ν

16
− µ

8
|]

= λ
1
8
[| V(ν)− V(ρ) | + | V(ρ)−W(µ) | + | V(ν)−W(µ) |]

≤ 7
8
SN(V(ν),V(ρ),W(µ), λ)

≤ 7
8

M(ν, ρ, µ, λ);

where

M(ν, ρ, µ, λ) = max


SN(Uµ,Uµ,Wµ, λ),SN(T ν, T ν,Vν, λ),
SN(Vν,Vρ,Wµ, λ),SN(T ρ, T ρ,Uµ, λ),

kSN(Vν,Vρ,Uµ, λ)

.

Also, for every ν, ρ, µ ∈ X, consider

T n = (
ν

16
)n,Un = (

ν

8
)n,Vn = (

ν

2
)n,Wn = (ν)n.

Then,

lim
n,m→∞

N(T nν, T nρ,Umµ) = 1 <
1
2θ

, ∀ θ ∈ (0,
1
2
).

Thus, all the necessities of Theorem 1 have been accomplished. Also, the behavior of inequal-
ity (7) of Example 4 is shown graphically in Figure 2. The number 0 is the only fixed point that is
common to the mappings T ,U ,V , and W .

0 10 20 30 40 50 60 70 80 90

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

LHS

RHS

Figure 2. Graphical behavior of inequality (7) of Example 4.

Example 5. Let X = [0, π
2 ). Define function N : X3 → [1, ∞) by

N(ν, ρ, µ) = 1+ | ν | + | ρ |

and a function SN : X3 × (0, ∞) → [0, ∞) by

SN(ν, ρ, µ, λ) = λ[| ν − ρ | + | ρ − µ | + | ν − µ |]

where each λ ∈ (0, ∞) is a parameter, and ν, ρ, µ ∈ X. Then, SN is an EPSb space.
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Define self-maps T ,U ,V , and W on X by

T (ν) =
sin ν

9
,U (ν) = sin ν

6
,V(ν) = sin ν

3
,W(ν) =

sin ν

2
.

Obviously, T (X) ⊆ W(X) and U (X) ⊆ V(X).
Furthermore, the pairs {T ,V} and {U ,W} are compatible mappings.
From inequality (7), we have

SN(T ν, T ρ,Uµ, λ) = λ[| T (ν)− T (ρ) | + | T (ρ)−U (µ) | + | T (ν)−U (µ) |]

= λ[| sin ν

9
− sin ρ

9
| + | sin ρ

9
− sin µ

6
| + | sin ν

9
− sin µ

6
|]

= λ
1
3
[| V(ν)− V(ρ) | + | V(ρ)−W(µ) | + | V(ν)−W(µ) |]

≤ 1
3
SN(V(ν),V(ρ),W(µ), λ)

≤ ϕ(M(ν, ρ, µ, λ)),

where ϕ(t) = 2t
3 , and

M(ν, ρ, µ, λ) = max


SN(Uµ,Uµ,Wµ, λ),SN(T ν, T ν,Vν, λ),
SN(Vν,Vρ,Wµ, λ),SN(T ρ, T ρ,Uµ, λ),

kSN(Vν,Vρ,Uµ, λ)

.

Alternatively, for every ν, ρ, µ ∈ X, let us consider

T n = (
sin ν

9
)n,Un = (

sin ν

6
)n,Vn = (

sin ν

3
)n,Wn = (

sin ν

2
)n.

Then,

lim
n,m→∞

N(T nν, T nρ,Umµ) = 1 <
1
2θ

, ∀ θ ∈ (0,
1
2
).

Thus, all the necessities of Theorem 2 have been accomplished. The number 0 is the only fixed
point that is common to the mappings T ,U ,V , and W .

5. Common Solution of System of Integral Equations: Existence and Uniqueness

Here, we use the results obtained in Section 3 to investigate the existence of a solution
for a Fredholm integral problem.

For a real number λ > 0 and for all ϕ1, ϕ2, ϕ3 ∈ [0, E], define SN : X3 × (0, ∞) → [0, ∞)
by

SN(ϕ1, ϕ2, ϕ3, λ) =| max{ϕ1(λ), ϕ2(λ)} − ϕ3(λ) |2

and N : X3 → [1, ∞) by

N(ϕ1, ϕ2, ϕ3) = max{| ϕ1 |, | ϕ2 |}+ ϕ3 + 1.

It is evident that (X,SN) is a complete extended parametric Sb-metric space for all
µ, ν ∈ [0, E].

Theorem 3. Let X = C[0, E] consists of all continuous real-valued functions defined on the
closed and bounded interval [0, E] in the real number system R. Then, the system of linear
integral equations

ϕ1(µ) = Ξ(µ) +
∫ E

0
R1(µ, ν, ϕ1(ν))dν

ϕ1(µ) = Ξ(µ) +
∫ E

0
R2(µ, ν, ϕ1(ν))dν (36)
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has a unique solution ϕ1(µ) ∈ [0, E] if it satisfies the following assumptions:

(i) Ξ : [0, E] → R is continuous;
(ii) R1, R2 : [0, E]× [0, E]×R → R is continuous;
(iii) For every µ, ν ∈ [0, E],

| R1(µ, ν, ϕ1(ν))− R2(µ, ν, ϕ2(ν) |≤
1
2
| ϕ1(ν)− ϕ2(ν) | .

Proof. Let us define T ,U : C([0, E]) → C([0, E]) by

T ϕ1(µ) =
∫ E

0
R1(µ, ν, ϕ1(ν)dν + Ξ(µ)

and

Uϕ1(µ) =
∫ E

0
R2(µ, ν, ϕ1(ν)dν + Ξ(µ),

where µ, ν ∈ [0, E], and ϕ1 ∈ C([0, E]).
Now,

| T ϕ1(µ)−Uϕ2(µ) | ≤
∫ E

0
| R1(µ, ν, ϕ1(ν)− R2(µ, ν, ϕ2(ν) | dν

≤ 1
2

∫ E

0
| ϕ1(ν)− ϕ2(ν) | dν. (37)

Consider

SN(T ϕ1, T ϕ1,Uϕ2, λ) =| max{T ϕ1(λ), T ϕ1(λ)} − Uϕ2(λ) |2

=| T ϕ1(λ)−Uϕ2(λ) |2 .

=
1
4

(∫ E

0
| ϕ1(ν)− ϕ2(ν) | dν

)2

[Using Equation (37)].

Using the Cauchy–Schwartz inequality, we obtain

SN(T ϕ1, T ϕ1,Uϕ2, λ) ≤ E2

4
SN(ϕ1(λ), ϕ1(λ), ϕ2(λ), λ).

For every E, 0 < E < 2, E2

4 < 1, and hence, all the conditions of Corollary 2 are
satisfied, and therefore, there exist a ϕ1 in C[0, E] that is a common fixed point of maps T
and U . That is, ϕ1 is a common solution of the integral in Equation (36).

6. Conclusions

This study presented a more comprehensive version of the conventional fixed point
problems within the context of symmetric extended parametric Sb-metric spaces. The dis-
cussion aimed to establish common fixed point theorems for two pairs of compatible
self-maps. This paper includes two theorems and a few examples. These examples high-
light the relevance and practicality of our findings. We have also shown that in the case
when all functions are real-valued and continuous, specified on a closed and bounded
interval [0, E], with the condition E2

4 < 1, the system of linear integral equations has a
unique common solution.

Author Contributions: All authors; conceptualization, N.M. and S.B.; methodology, N.M.; validation,
R.S., S.B. and A.S.; formal analysis, N.M.; investigation, S.B.; resources, R.S.; writin–original draft
preparation, S.B.; writing–review and editing, R.S.; visualization, A.S.; supervision, N.M.; project
administration, R.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Directorate of Research and Innovation, Walter
Sisulu University.



Mathematics 2024, 12, 1460 20 of 20

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors sincerely thank the reviewers for their careful reading, constructive
comments, and fruitful suggestions, which have been incorporated to improve the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fréchet, M. Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo 1906, 22, 1–74. [CrossRef]
2. Wilson, W.A. On Quasi-Metric Spaces. Am. J. Math. 1931, 53, 675–684. [CrossRef]
3. Berinde, V. Generalized contractions in quasimetric spaces. In Seminar on Fixed Point Theory; “Babeş-Bolyai” University:
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