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Abstract: Asymptotic analysis for an elastic layer under light fluid loading was developed. The ratio
of fluid and solid densities was chosen as the main small parameter determining a novel scaling. The
leading- and next-order approximations were derived from the full dispersion relation corresponding
to long-wave, low-frequency, antisymmetric motions. The asymptotic plate models, including the
equations of motion and the impenetrability condition, motivated by the aforementioned shortened
dispersion equations, were derived for a plane-strain setup. The key findings included, in particular,
the necessity of taking into account transverse plate inertia at the leading order, which is not the case
for heavy fluid loading. In addition, the transverse shear deformation, rotation inertia, and a number
of other corrections appeared at the next order, contrary to the previous asymptotic developments for
fluid-loaded plates not assuming a light fluid loading scenario.
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1. Introduction

Numerous problems involving vibrating structures under fluid loading have been
studied in the literature since the late nineteenth century; for example, see “Theory of
Sound” [1] by Lord Rayleigh. The theoretical analysis on the subject most often makes use
of 2D structural theories such as the classical Kirchhoff theory for thin elastic plates, e.g.,
see the 1988 Rayleigh medal lecture [2] and the books [3,4]. Ideally, approximate coupled
models in fluid–structure interaction have to be mathematically justified starting from
3D dynamic theory in linear elasticity. At the same time, until recently, there have been
limited attempts to address this matter, mainly using the traditional formulations based
on 2D engineering structural theories using analytical methods [5–9], as well as [10–14]
promoting experimental and numerical techniques. As an exception, we mention the
paper by Johansson et al. [15], attempting to address this problem in the context of a fluid-
loaded elastic plate but lacking an asymptotic consistency. We also mention a previous
effort to adapt refined asymptotic setups for thin elastic shells not in contact with fluid to
fluid–structure interaction problems; e.g., see [16]. A fresh work by Kaplunov et al. [17]
developed a hierarchy of asymptotic models for a fluid-loaded elastic layer, emphasising
the point that such a layer requires a special treatment, extending the well-established setup
of Neumann boundary conditions for a layer with traction-free or mechanically loaded
faces; e.g., see [18]. In this case, the effect of fluid loading supports the so-called fluid-borne
bending wave; e.g., see [19], which assumed a novel asymptotic scaling. The methodology
developed in [17] was next extended to low-frequency acoustic wave scattering by a circular
cylindrical shell in [20].

It is worth noting that the aforementioned scaling does not cover the important
scenario of light fluid loading, for which the ratio of the density of the fluid to the density
of the solid is small. The general understanding of the related asymptotic limit from the
prospects of dynamic elasticity seems to be of significant interest for modelling various
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fluid-loaded elastic structures. A special focus on the light fluid loading limit is given by
Craster [21], establishing a perturbation scheme to obtain a robust approximate solution
for a fluid-loaded elastic solid; see also [22,23], tackling both light and heavy fluid loading
limits. A detailed asymptotic analysis of a Kirchhoff plate under light fluid loading was
reported by Chapman and Sorokin [24] using the same small parameter as in the cited
paper [21], involving the product of not only the ratio of densities of fluid and plate, but
also the related wave speeds. The aforementioned small parameter was also adopted
in [25], dealing with acoustic radiation due to harmonic vibrations of an elastic layer over a
broad frequency range.

The proposed analysis is motivated by a lack of consistent fluid-structure models
taking into account the effect of fluid loading. In particular, the dimension reduction for
immersed thin-walled structures has not been yet asymptotically validated. To this end,
the considerations in [17,20] have to be extended to the case of light fluid loading.

As an example, in this paper, we study a plane-strain time-harmonic problem for
an elastic layer immersed into compressible fluid. The ratio of densities is chosen as the
main small parameter. It seems to be more appropriate for the considered framework than
that adopted in [21,24]. Below, for the sake of simplicity, we determine the long-wave
scale through the above-mentioned small parameter. Its presence affects the asymptotic
analysis of fluid-borne wave dictation taking into account the plate transverse inertia at the
leading order. The transverse shear deformation, rotation inertia, and similar corrections,
including those in the impenetrability condition, also appear at lower-order approximations
in comparison with the treatment in paper [17].

This paper is organised as follows. The governing equations are given in Section 2.
Section 3 is concerned with the derivation of the leading and first-order approximations to
the full dispersion relation over the low-frequency range in the light fluid loading limit. This
motivates the scaling for further asymptotic analysis of the problem. Section 4 aims at the
formulation of the asymptotic models, supporting the above-mentioned approximations of
the dispersion relation. The presentation in this section is structured similar to that in [17],
which does not assume light fluid loading. The concluding remarks are summarised in
Section 5.

2. Governing Equations

Consider small-amplitude free vibrations of an isotropic linearly elastic layer of thick-
ness 2h immersed in a non-viscous compressible fluid. The Cartesian coordinate system
is set up in such a way that axis x1 goes through the midplane of the layer; see Figure 1.
The axis x2, perpendicular to the plane (x1, x3), is not shown in the figure. The following
notation is used throughout the paper: E is Young’s modulus, ν is the Poisson’s ratio, ρ
and ρ0 are the solid and fluid densities, respectively, c0 is the wave speed in fluid, and
c2 =

√
E/2ρ(1 + ν) is the shear wave speed in solid.

We limit ourselves to a plane-strain problem in the coordinates (x1, x3). Thus, the
equations of motion in linear elasticity may be written as

∂σ11

∂x1
+

∂σ31

∂x3
− ρ

∂2v1

∂t2 = 0,

∂σ13

∂x1
+

∂σ33

∂x3
− ρ

∂2v3

∂t2 = 0.
(1)

Here and below, vk (k = 1, 3) are displacements, σmn (m, n = 1, 2, 3) are stresses, and
t denotes time. The stresses and displacements given in the above equations satisfy the
following relations, e.g., see [18]
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σ11 =
E

1 − ν2
∂v1

∂x1
+

ν

1 − ν
σ33,

σ22 =
Eν

1 − ν2
∂v1

∂x1
+

ν

1 − ν
σ33,

∂v3

∂x3
=

1
E

(
σ33 − ν(σ11 + σ22)

)
,

∂v1

∂x3
= − ∂v3

∂x1
+

2(1 + ν)

E
σ31,

(2)

adapted for the forthcoming asymptotic analysis.

x1

x3

0 2h

Figure 1. Elastic layer immersed in fluid.

In addition, the fluid velocity potential φ(x1, x3, t), see for example [25–27], satisfies
the wave equation

∂2 φ

∂x2
1
+

∂2 φ

∂x2
3
− 1

c2
0

∂2 φ

∂t2 = 0, (3)

with the interfacial conditions at x3 = ±h, given by

σ31 = 0, σ33 = ρ0
∂2 φ

∂t2 , v3 =
∂φ

∂x3
. (4)

The main objective of this paper is to derive asymptotic models of the formulated
problem over a long-wave low-frequency region under the conditions of light fluid loading.
For this, ρ0 ≪ ρ, and h ≪ L and h/c2 ≪ T, with L and T denoting a typical wavelength
and time scale, respectively. We also restrict ourselves to bending vibrations. Prior to
proceeding with the asymptotic treatment of the equations of motion, we first study the
associated shortened forms of the dispersion relation corresponding to (1)–(4).

3. Asymptotic Analysis of the Dispersion Relation

In this section, we analyse the antisymmetric dispersion relation, e.g., see [28]

Ω4r cosh(A) cosh(B) + H

(
(2K2 − Ω2)2 sinh(A)

A
cosh(B)− 4K2B2 sinh(B)

B
cosh(A)

)
= 0, (5)

with
A =

√
K2 − Ω2κ2, B =

√
K2 − Ω2, H =

√
K2 − Ω2δ2, (6)

and
Ω =

ωh
c2

, K = kh, (7)
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where ω and k are angular frequency and wavenumber, respectively; δ =
c2

c0
and κ =√

1 − 2ν

2 − 2ν
.

Let us assume that r = ρ0/ρ ≪ 1 for a light fluid loading scenario and try the
long-wave low-frequency scaling

Ω = Ω∗ r2, K = K∗ r, (8)

where Ω∗ and K∗ are assumed so far to be of order unity. In this case, the relation Ω ∼ K2,
characteristic of the bending wave on a free elastic plate, is satisfied; e.g., see [18].

Expanding Equation (5) into a Taylor series and taking into account the scaling (8), we
obtain a two-term expansion in the small parameter, r,(

(K∗ + 1)Ω2
∗ +

2K5
∗

3(ν − 1)

)
+

(
−15δ2(ν − 1)Ω4

∗ +
((
−10δ2 + 20(ν − 2)

)
K∗ + 30(ν − 1)

)
K3
∗Ω2

∗ + 4K8
∗
)

30K∗(ν − 1)
r2 = 0.

(9)

At the leading order, it yields

Ω2
∗ =

2K5
∗

3(K∗ + 1)(1 − ν)
. (10)

Now, by replacing the Ω2
∗ and Ω4

∗ terms in the coefficient at r2 in (9) using (10), we obtain
an O(r2) correction to the leading-order estimation. It takes the form of

Ω2
∗ =

2K5
∗

3(K∗ + 1)(1 − ν)
+

2
(
(7ν − 17)K2

∗ − (5δ2 − 19ν + 29)K∗ + 12(ν − 1)
)
K7
∗

45(K∗ + 1)3(1 − ν)2 r2. (11)

Next, consider two limiting behaviours, for which K∗ ≪ 1 and K∗ ≫ 1, in order to elucidate
the relation with previous results. For the first case, we obtain from (10) and (11)

Ω2
∗ =

2K5
∗

3(1 − ν)
, (12)

and

Ω2
∗ =

2K5
∗

3(1 − ν)
− 2K6

∗
3(1 − ν)

, (13)

respectively. In terms of parameters K and Ω, the latter becomes

Ω2 =
2K5

3r(1 − ν)
− 2K6

3r2(1 − ν)
. (14)

It is worth noting that it is identical to the two-term expansion in [28], not assuming light
fluid loading.

For K∗ ≫ 1 we have from (10) and (11)

Ω2
∗ =

2K4
∗

3(1 − ν)
, (15)

and

Ω2
∗ =

2K4
∗

3(1 − ν)
+

2(7ν − 17)r2K6
∗

45(1 − ν)2 . (16)



Mathematics 2024, 12, 1465 5 of 14

We remark that for a plate without fluid loading, the two-term expansion of the
Rayleigh–Lamb dispersion relation for the bending wave in the long-wave low-frequency
region (Ω ∼ K2, K ≪ 1) is given by, see [18],

Ω2 =
2K4

3(1 − ν)
+

2(7ν − 17)K6

45(1 − ν)2 . (17)

The last formula, rewritten in terms of K∗ and Ω∗, coincides with (16).
The rest of this section reports on numerical results for a steel layer immersed in water,

illustrated by Figures 2 and 3. The graphs presented in this paper have been produced using
Python and Maple 2021 software. The problem parameters utilised are c0 = 1480 m s−1,
ν = 0.2, c2 = 3156 ms−1, ρ = 7800 kgm−3, and ρ0 = 1000 kgm−3. Hence, the small
parameter, characteristic of the light fluid loading, is r = ρ0/ρ ≈ 0.128. Indeed, this type of
small parameter could be relevant to other materials, not just a steel/water combination.
The latter is chosen in this paper to illustrate the behaviour corresponding to light fluid
loading. For other materials with the same parameter r, the graphs will look similar.

The dispersion curves for leading-order (10) and first-order (11) approximations are
shown in Figure 2, along with that for the full dispersion relation (5), rewritten in terms
of (8). As can be observed, the first-order approximation works better in comparison with
the leading order one due to the fact that it takes into account higher-order terms in the
expansions and hence is in better agreement with the full dispersion relation.

Figure 3 demonstrates the limiting cases K∗ ≪ 1 and K∗ ≫ 1 of the leading-order
approximation (10). It shows the comparison of the leading-order approximation (10)
with the one-term expansions (12) and (15), oriented to the regions K∗ ≪ 1 and K∗ ≫ 1,
respectively. The intersection of the blue and red curves in Figure 3 arises due to the
approximation error being equal for both dispersion curves.

Figure 2. Comparison of the exact (solid black line) dispersion relation ((5) rewritten in terms of (8))
with the leading order-approximation (10) (dashed blue line) and the first-order approximation (11)
(dashed red line).
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Figure 3. Comparison of the leading-order approximation (10) (solid black line) with one-term
expansion (12) for K∗ ≪ 1 (dashed blue line) and one-term expansion (15) for K∗ ≫ 1 (dashed
red line).

4. Asymptotic Models
4.1. Scaling

Below, for the first time, we proceed with the asymptotic dimension reduction for the
dynamic equations in linear elasticity using the small ratio of densities r, typical for light
fluid loading, as the main small parameter. The developed procedure amends the approach
delivered in the recent paper [17].

First, scale the independent variables specified in the previous section by

t = Tτ, x1 = Lξ, x3 =

{
Lrζ, if |x3| < h,
Lγ, otherwise,

(18)

where for the sake of simplicity L = h/r, (L ≫ h) is a typical wavelength and T =
h

r2c2
,

(T ≫ h/c2), which is motivated by the relation ωh/c2 ∼ (kh)5/2 between angular frequency
ω and wave number k for a fluid-borne bending wave; see [28] as well as Formula (8) in
Section 3.

Next, introduce the dimensionless stresses, displacements, and fluid potential setting

σ11 = Erσ∗
11, σ22 = Erσ∗

22, σ31 = Er2σ∗
31, σ33 = Er3σ∗

33,

v1 = hv∗1 , v3 =
h
r

v∗3 , φ =
h2

r2 φ∗.
(19)

The starred quantities above are assumed to be of order unity. Hence, Equations (1) and (2)
can be written in the following dimensionless form

∂σ∗
31

∂ζ
= −

∂σ∗
11

∂ξ
+

1
2(1 + ν)

r2 ∂2v∗1
∂τ2 ,

∂σ∗
33

∂ζ
= −

∂σ∗
31

∂ξ
+

1
2(1 + ν)

∂2v∗3
∂τ2 ,

(20)
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and

σ∗
11 =

1
1 − ν2

∂v∗1
∂ξ

+
ν

1 − ν
r2σ∗

33,

σ∗
22 =

ν

1 − ν2
∂v∗1
∂ξ

+
ν

1 − ν
r2σ∗

33,

∂v∗3
∂ζ

= r4σ∗
33 − νr2(σ∗

11 + σ∗
22),

∂v∗1
∂ζ

= −
∂v∗3
∂ξ

+ 2(1 + ν)r2σ∗
31.

(21)

In addition, the dimensionless form of relations (3) and (4) becomes

∂2 φ∗

∂ξ2 +
∂2 φ∗

∂γ2 − r2δ2 ∂2 φ∗

∂τ2 = 0, (22)

and

σ∗
31

∣∣∣
ζ=±1

= 0, σ∗
33

∣∣∣
ζ=±1

=
1

2(1 + ν)

∂2 φ∗

∂τ2

∣∣∣∣∣
γ=±r

,

∂φ∗

∂γ

∣∣∣∣∣
γ=±r

= v∗3
∣∣∣
ζ=±1

.

(23)

Next, expand the starred displacement and stress components as well as the fluid
displacement potential in an asymptotic series as

v∗1 = v(0)1 + r2v(1)1 + r4v(2)1 + . . .

v∗3 = v(0)3 + r2v(1)3 + r4v(2)3 + . . .

σ∗
11 = σ

(0)
11 + r2σ

(1)
11 + r4σ

(2)
11 + . . .

σ∗
22 = σ

(0)
22 + r2σ

(1)
22 + r4σ

(2)
22 + . . .

σ∗
33 = σ

(0)
33 + r2σ

(1)
33 + r4σ

(2)
33 + . . .

σ∗
31 = σ

(0)
31 + r2σ

(1)
31 + r4σ

(2)
31 + . . .

φ∗ = φ(0) + r2 φ(1) + r4 φ(2) + . . .

(24)

leading to shortened forms of the original plane-strain problem in hydro-elasticity.
In what follows, we restrict ourselves to antisymmetric motion about the midplane

x3 = 0. In this case, due to the symmetry of the problem, only the interfacial conditions
along the upper face x3 = h are considered.

4.2. Leading-Order Approximation

Here, we focus on the leading-order approximation of the problem formulated in the
previous subsection, retaining only the terms with the suffix (0) in the asymptotic series (24).
Firstly, integrating (21)3–(21)4 along the thickness variable ζ, we obtain, respectively,

v(0)3 = V(0)
3 (ξ, τ) and v(0)1 = −ζ

∂V(0)
3

∂ξ
. (25)
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Upon substituting the displacements (25) into (21)1–(21)2, we obtain

σ
(0)
11 = −ζ

1
1 − ν2

∂2V(0)
3

∂ξ2 and σ
(0)
22 = −ζ

ν

1 − ν2
∂2V(0)

3
∂ξ2 . (26)

Next, integrating (20)1 along ζ, taking into account (25) and (26), leads to

σ
(0)
31 = ζ2 1

2(1 − ν2)

∂3V(0)
3

∂ξ3 + C(0)(ξ, τ), (27)

where C(0) is an arbitrary function. Finally, inserting (25)–(27) into (20)2 and integrating
along ζ yields

σ
(0)
33 = −ζ3 1

6(1 − ν2)

∂4V(0)
3

∂ξ4 − ζ
∂C(0)

∂ξ
+ ζ

1
2(1 + ν)

∂2V(0)
3

∂τ2 . (28)

Furthermore, the fluid potential at the leading order can be obtained by inserting (24)7 into
(22), arriving at the Laplace equation

∂2 φ(0)

∂ξ2 +
∂2 φ(0)

∂γ2 = 0, (29)

which governs incompressible fluid. On the other hand, inserting (24) into (23), leads to
the interfacial conditions

σ
(0)
31

∣∣∣
ζ=1

= 0, σ
(0)
33

∣∣∣
ζ=1

=
1

2(1 + ν)

∂2 φ(0)

∂τ2

∣∣∣∣∣
γ=r

,
∂φ(0)

∂γ

∣∣∣∣∣
γ=r

= v(0)3 . (30)

By applying (30)1 and (30)2 to (27) and (28), respectively, we arrive at

C(0) = − 1
2(1 − ν2)

∂3V(0)
3

∂ξ3 , (31)

and
2

3(1 − ν)

∂4V(0)
3

∂ξ4 +
∂2V(0)

3
∂τ2 − ∂2 φ(0)

∂τ2

∣∣∣∣∣
γ=r

= 0. (32)

The derived equation corresponds to a fluid-loaded Kirchhoff plate, which is similar
to the one derived at the first (not leading) order in [17]. It is worth noting that the leading-
order approximation in [17], dealing with a non-contrast case, does not contain transverse
plate inertia, given by the second term in (32).

4.3. First-Order Approximation

In this subsection, the first-order approximation is derived, also retaining the terms
with the suffix (1) in the asymptotic series (24). The procedure is essentially the same as in
the previous subsection; hence, some of the intermediate computations are omitted. Now,
we have

∂2 φ(1)

∂ξ2 +
∂2 φ(1)

∂γ2 − δ2 ∂2 φ(0)

∂τ2 = 0, (33)
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and

v(1)3 = ζ2 ν

2(1 − ν)

∂2V(0)
3

∂ξ2 + V(1)
3 (ξ, τ),

v(1)1 =
1

6(1 − ν)
((2 − ν)ζ3 − 6ζ)

∂3V(0)
3

∂ξ3 − ζ
∂V(1)

3
∂ξ

,

σ
(1)
11 =

1
6(1 − ν)(1 − ν2)

(2(1 − ν)ζ3 + 3(ν − 2)ζ)
∂4V(0)

3
∂ξ4

− ζ
1

1 − ν2
∂2V(1)

3
∂ξ2 + ζ

ν

2(1 − ν2)

∂2V(0)
3

∂τ2 ,

σ
(1)
22 =

ν

6(1 − ν)(1 − ν2)
((1 − ν)ζ3 − 3ζ)

∂4V(0)
3

∂ξ4

− ζ
ν

1 − ν2
∂2V(1)

3
∂ξ2 + ζ

ν

2(1 − ν2)

∂2V(0)
3

∂τ2 ,

σ
(1)
31 = − 1

12(1 − ν)(1 − ν2)
((1 − ν)ζ4 + 3(ν − 2)ζ2)

∂5V(0)
3

∂ξ5

+ ζ2 1
2(1 − ν2)

∂3V(1)
3

∂ξ3 − ζ2 1
4(1 − ν2)

∂3V(0)
3

∂ξ∂τ2 + C(1)(ξ, τ),

σ
(1)
33 =

1
60(1 − ν)(1 − ν2)

((1 − ν)ζ5 + 5(ν − 2)ζ3)
∂6V(0)

3
∂ξ6

− ζ3 1
6(1 − ν2)

∂4V(1)
3

∂ξ4 + ζ3 1
12(1 − ν)

∂4V(0)
3

∂ξ2∂τ2

− ζ
∂C(1)

∂ξ
+ ζ

1
2(1 + ν)

∂2V(1)
3

∂τ2 ,

(34)

where C(1) is an arbitrary function; the interfacial conditions are given by

σ
(1)
31

∣∣∣∣
ζ=1

= 0, σ
(1)
33

∣∣∣∣
ζ=1

=
1

2(1 + ν)

∂2 φ(1)

∂τ2

∣∣∣∣∣
γ=r

,
∂φ(1)

∂γ

∣∣∣∣∣
γ=r

= v(1)3 . (35)

Furthermore, applying (35)1 and (35)2 to (34)5 and (34)6, respectively, we obtain

C(1) =
2ν − 5

12(1 − ν)(1 − ν2)

∂5V(0)
3

∂ξ5 − 1
2(1 − ν2)

∂3V(1)
3

∂ξ3 +
1

4(1 − ν2)

∂3V(0)
3

∂ξ∂τ2 , (36)

and

2
3(1 − ν)

∂4V(1)
3

∂ξ4 +
∂2

∂τ2

(
V(1)

3 +
7ν − 17

15(1 − ν)

∂2V(0)
3

∂ξ2

)

+
∂2

∂τ2

(
8 − 3ν

10(1 − ν)

∂2 φ(0)

∂ξ2 − φ(1)

)∣∣∣∣∣
γ=r

= 0.

(37)

The comparison of (37) with the refined equation for an elastic plate in the absence of
fluid but subject to prescribed mechanical loading, as articulated in [18,29], manifests that
the two equations are in complete agreement. At this order, the terms involving transverse
shear deformation, plate rotatory inertia, and fluid compressibility have to be kept, unlike
in [17], where these terms did not appear until the third-order approximation.
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4.4. Asymptotically Consistent Equations

This subsection is concerned with the formulation of asymptotic models, i.e., shortened
equations of motion for a thin elastic plate immersed in fluid together with the impen-
etrability conditions along the interfaces, originating from the results entrenched in the
previous section. At the leading order, we obtain from (29), (30)3 and (32)

2
3(1 − ν)

∂4v∗3
∂ξ4 +

∂2v∗3
∂τ2 − ∂2 φ∗

∂τ2

∣∣∣∣∣
γ=r

= 0, (38)

∂2 φ∗

∂ξ2 +
∂2 φ∗

∂γ2 = 0, (39)

and
∂φ∗

∂γ

∣∣∣∣∣
γ=r

= v∗3 , (40)

where v∗3(ξ, 0, τ) = V(0)
3 (ξ, τ) and φ∗(ξ, γ, τ) = φ(0)(ξ, γ, τ). In original variables,

Equations (38)–(40) become

Eh3

3(1 − ν2)

∂4v3

∂x4
1
+ ρh

∂2v3

∂t2 − ρ0
∂2 φ

∂t2

∣∣∣∣∣
x3=h

= 0, (41)

∂2 φ

∂x2
1
+

∂2 φ

∂x2
3
= 0, (42)

and
∂φ

∂x3

∣∣∣∣∣
x3=h

= v3. (43)

It is important to note that here and for the rest of this section, v3 (the transverse displace-
ment) is taken at the midplane x3 = 0, i.e., v3 = v3(x1, 0, t). Hence, Equations (41)–(43)
correspond to the traditional setup of a Kirchhoff plate submerged in incompressible fluid.

Next, consider the sum of Equations (32) and (37), multiplied by the small parameter
r2, to obtain

2
3(1 − ν)

∂4

∂ξ4

(
V(0)

3 + r2V(1)
3

)
+

∂2

∂τ2

(
V(0)

3 + r2V(1)
3

)

− ∂2

∂τ2

(
φ(0) + r2 φ(1)

)∣∣∣∣∣
γ=r

+ r2 7ν − 17
15(1 − ν)

∂4

∂ξ2∂τ2

(
V(0)

3 + r2V(1)
3

)

+ r2 8 − 3ν

10(1 − ν)

∂4

∂ξ2∂τ2

(
φ(0) + r2 φ(1)

)∣∣∣∣∣
γ=r

+ O(r4) = 0.

(44)

In a similar manner, we have from Equations (29), (33), (30)3 and (35)3, respectively

∂2

∂ξ2

(
φ(0) + r2 φ(1)

)
+

∂2

∂γ2

(
φ(0) + r2 φ(1)

)
− r2δ2 ∂2

∂τ2

(
φ(0) + r2 φ(1)

)
+ O(r4) = 0, (45)

and

∂

∂γ

(
φ(0) + r2 φ(1)

)∣∣∣∣∣
γ=r

= V(0)
3 + r2V(1)

3 + r2 ν

2(1 − ν)

∂2

∂ξ2

(
V(0)

3 + r2V(1)
3

)
+ O(r4). (46)
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By neglecting terms of O(r4), Formulas (44)–(46) can be rewritten as

2
3(1 − ν)

∂4v∗3
∂ξ4 +

∂2v∗3
∂τ2 − ∂2 φ∗

∂τ2

∣∣∣∣∣
γ=r

+ r2 7ν − 17
15(1 − ν)

∂4v∗3
∂ξ2∂τ2

+ r2 8 − 3ν

10(1 − ν)

∂4 φ∗

∂ξ2∂τ2

∣∣∣∣∣
γ=r

= 0,

(47)

and
∂2 φ∗

∂ξ2 +
∂2 φ∗

∂γ2 − r2δ2 ∂2 φ∗

∂τ2 = 0, (48)

with
∂φ∗

∂γ

∣∣∣∣∣
γ=r

= v∗3 + r2 ν

2(1 − ν)

∂2v∗3
∂ξ2 , (49)

where v∗3 = V(0)
3 + r2V(1)

3 and φ∗ = φ(0) + r2 φ(1). In terms of original variables,
Equations (47) and (49) take the form

Eh3

3(1 − ν2)

∂4v3

∂x4
1
+ ρh

(
1 + h2 7ν − 17

15(1 − ν)

∂2

∂x2
1

)
∂2v3

∂t2

− ρ0

(
1 − h2 8 − 3ν

10(1 − ν)

∂2

∂x2
1

)
∂2 φ

∂t2

∣∣∣∣∣
x3=h

= 0,

(50)

with
∂φ

∂x3

∣∣∣∣∣
x3=h

=

(
1 +

νh2

2(1 − ν)

∂2

∂x2
1

)
v3, (51)

together with Equation (3), governing the compressible fluid motion (Equation (48) in
original variables).

Hence, Equations (3), (50) and (51) correspond to the first-order asymptotic model,
which incorporates three corrections, including transverse shear deformation, plate rotation
inertia, and fluid compressibility. We re-iterate that the aforementioned first-order model
coincides with the third-order model derived in [17], which does not assume that r is a
small parameter.

4.5. Comparison of Dispersion Relations

The focus of this subsection is to derive the dispersion relations corresponding to the
approximate formulations established in the previous Section 4.4 and to establish the link
between these and the leading- and first-order approximations obtained in Section 3.

Begin with the travelling wave solution of the leading-order problem (41)–(43), setting

v3 = ei(kx1−ωt),

φ = −1
k

e−k(x3−h)+i(kx1−ωt),
(52)

Upon substituting (52) into the aforementioned formulae, we arrive at the dispersion
relation

Ω2 =
2

3(1 − ν)

K5

r + K
, (53)

where K and Ω are dimensionless wavenumber and frequency, respectively, defined by (7).
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Next, we set

v3(x1, 0) = ei(kx1−ωt),

φ = −
(

k2 − ω2

c2
0

)− 1
2(

1 − νh2k2

2(1 − ν)

)
e
−
(

k2− ω2

c2
0

) 1
2
(x3−h)+i(kx1−ωt)

,
(54)

in Equations (3), (50) and (51), resulting in the dispersion relation for the first-order model,
given by

Ω2

(
60(1 − ν)2H + 3r(3ν − 8)(2(ν − 1) + νK2)K2 + 4(1 − ν)(17 − 7ν)K2H

− 30r(1 − ν)(2(ν − 1) + νK2)

)
= 40(1 − ν)K4H,

(55)

where H is defined in (6).
It can be easily verified that substituting (8) into (53) leads to the leading-order ap-

proximation given by Equation (10). On the other hand, when substituting (8) into (55) and
expanding for small r and retaining of two terms leads to the first-order approximation
given by (11). This clearly demonstrates the link between the asymptotic models and the
approximate equations given in Section 3. The comparison of (11) and (55) is displayed in
Figure 4, showing excellent agreement.

Figure 4. Comparison of the first-order dispersion relation (55) (solid black line) with the first-order
approximation (11) (dashed red line) for the same parameters as in Section 3.

5. Concluding Remarks

In this paper, the two-step asymptotic analysis of light fluid loading has been de-
veloped. The first step is concerned with the derivation of the leading- and first-order
approximations of the full dispersion relation. The second step is oriented towards the
leading- and first-order asymptotic models, including the equations of motion and im-
penetrability condition. The presence of a small parameter, expressing light fluid loading,
assumes the plate inertia to be incorporated into the leading-order model. At the same
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time, transverse shear deformation, plate rotation inertia, fluid compressibility, and other
similar corrections appear at the next order.

The model problem considered in this paper can be readily extended to more elabo-
rated setups, including one-side contact, fluid-loaded thin elastic shells, and radiation and
scattering by submerged structures.
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