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Abstract: Prevailing crowd counting approaches primarily rely on density map regression methods.
Despite wonderful progress, significant scale variations and complex background interference within
the same image remain challenges. To address these issues, in this paper we propose a novel DETR-
based crowd counting framework called Crowd Counting DETR (CC-DETR), which aims to extend
the state-of-the-art DETR object detection framework to the crowd counting task. In CC-DETR, a
DETR-like encoder–decoder structure (Hybrid Context DETR, i.e., HCDETR) is proposed to tackle
complex visual information by fusing features from hybrid semantic levels through a transformer.
In addition, we design a Coordinate Dilated Convolution Module (CDCM) to effectively employ
position-sensitive context information in different scales. Extensive experiments on three challenging
crowd counting datasets (ShanghaiTech, UCF-QNRF, and NWPU) demonstrate that our model is
effective and competitive when compared against SOTA crowd counting models.

Keywords: crowd counting; transformer; DETR

MSC: 68U10

1. Introduction

Crowd counting pertains to the estimation of individual presence within a specified
area utilizing images as the primary data source [1]. This discipline has garnered substantial
interest due to its extensive applicability across diverse sectors such as surveillance, crowd
management, urban planning, and retail analytics.

In the realm of crowd counting via images, two primary challenges persist. As
illustrated in Figure 1, larger scales are proximal to the camera, while smaller scales are
located in more distant areas. Currently, two predominant methods are utilized. The first
approach employs multiple columns with distinct convolutional kernel networks to extract
features, subsequently fusing them to generate feature maps [2]. However, the constrained
receptive field of mainstream CNN networks presents difficulties in capturing optimal
global information. A novel enhancement method was introduced in [3] which involves
merging semantic features extracted at varying resolutions from the backbone. As features
at different resolutions express characteristics differently across various scales, higher-
resolution feature maps are more apt for representing small-scale features. Savner et al. [4]
achieved crowd estimation by merging features from four distinct resolutions, followed
by a straightforward regression head. Nevertheless, modeling global feature information
yields suboptimal results. Furthermore, in traditional convolutional neural networks, the
perception of positional information during image processing primarily originates from
the local receptive field of the convolution operations. This local receptive field may not

Mathematics 2024, 12, 1562. https://doi.org/10.3390/math12101562 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12101562
https://doi.org/10.3390/math12101562
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0005-4329-9414
https://orcid.org/0000-0001-9604-7564
https://doi.org/10.3390/math12101562
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12101562?type=check_update&version=1


Mathematics 2024, 12, 1562 2 of 14

provide ample global positional information, particularly when dealing with large inputs,
necessitating more comprehensive global background information.

High crowd density and small-scale regions

Low crowd density and large-scale regions

Figure 1. An illustration of the challenge of crowd counting concerning the simultaneous presence of
low density in nearer large-scale regions and high density in more distant small-scale regions.

The recent surge in transformer models [5], which employ global self-attention mech-
anisms, has significantly improved the performance of numerous natural language pro-
cessing tasks. However, it was not until the advent of vision transformers (ViT) [6] and
the segmentation of images into patches to address local structural inductive biases that
transformer models could compete with and even outperform CNN models in visual tasks.
The evolution of vision transformers underscores the pivotal role of global self-attention
mechanisms and local inductive biases in visual tasks. Such models adeptly capture the
global context of crowds to model long-distance dependencies, thereby enhancing counting
performance. In crowd counting tasks, most methods [7,8] feed the highest-level features
extracted from the backbone into the transformer in order to further capture the global
context of the crowd. However, this approach does not fully exploit the influence of feature
maps extracted at different resolutions by the backbone network in capturing multi-scale
information about the crowd. Capturing multi-scale information about crowds presents a
significant challenge.

In this paper, we tackle the shortcomings of traditional convolutions’ weak global
capture ability and transformers’ multi-scale constraints in crowd information capture.
We introduce CC-DETR, a novel framework to extend DETR (DEtection TRansformer) [9],
a popular recent object detection method, to crowd counting tasks. The proposed CC-
DETR has two novel modules, i.e., HCDETR and CDCM. Our proposed Hybrid Context
DETR (HCDETR) module enhances DETR’s global information utilization through its
attention mechanism. We employ an encoder–decoder structure for feature extraction,
where the encoder processes information extracted from the backbone and provides it
as input to the decoder. The decoder then extracts features from both the backbone and
the encoder’s output. Notably, we incorporate feature information from the backbone
into the decoder’s input for the first time, significantly aiding the decoder in learning
semantic crowd information. Moreover, by utilizing inputs from various levels of the
backbone in both the encoder and decoder, we effectively mitigate scale variation issues.
Additionally, we propose a Coordinate Dilated Convolution Module (CDCM) to manage
scale variations and convolutional coordinate transformations [10]. Our approach exhibits
exceptional performance in high-density and small-scale areas as well as in low-density
and large-scale areas.

In summary, the contributions of this paper are threefold:

• We propose a novel method called CC-DETR which extends the recent DETR-based
object detection framework into crowd counting task.
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• To handle complex semantics we propose the HCDETR module, which utilizes a
DETR-like encoder–decoder structure for hybrid context understanding. By em-
ploying features from hybrid levels of the backbone as inputs for the encoder and
decoder, it accomplishes simultaneous learning of global features and fusion across
different scales.

• We propose a regression head with a CDCM module, which integrates coordinate
convolution and parallel dilated convolution with different dilation factors to achieve
location-sensitive multi-scale information modeling.

• We conduct extensive experiments on multiple benchmark datasets to demonstrate the
effectiveness of the proposed method, revealing that CC-DETR outperforms several
SOTA crowd counting methods.

2. Related Works

Presently, mainstream crowd counting methodologies can be broadly categorized into
two types: detection-based methods and density-based methods.

2.1. Detection-Based Methods

Early approaches relied on human detection [11,12], in which a detection model was
constructed using Convolutional Neural Networks (CNN) to predict bounding boxes
for each person. The count of people was represented by the number of detected boxes.
However, these methods face challenges in scenes with severe occlusion. In densely
populated areas, the accumulation of detection boxes often leads to inaccuracies.

2.2. Density-Based Methods

To achieve high performance in crowded scenes, density-based methods were intro-
duced to regress density maps from input images [13]. The density map [14] reflects the
probability estimate of the crowd, with each pixel value representing the likelihood of
a person being at that location. The sum of pixel values indicates the count of people.
This approach largely avoids detection errors caused by an excessive number of bound-
ing boxes [12,15]. The primary focus of this method is on extracting a feature map that
effectively captures the semantic features of the crowd.

CNNs are popularly used to generate predicted density maps, as they possess trans-
lation equivariance and are effective in extracting local details. To tackle scale variations,
employing multiple receptive fields is effective for learning from people of various sizes.
Sam et al. [16] applied multi-column operations to integrate features of different resolutions
for regression in order to obtain the predicted count of the crowd. Zeng et al. [17] intro-
duced further improvements, including multi-scale mechanisms. Optimal transport [18],
another CNN-based approach, has also shown its effectiveness.

With the vision transformer (ViT) algorithm attempting to directly apply the standard
transformer structure to images, a significant amount of work in the field of crowd count-
ing tasks has begun to leverage transformer structures. Liu et al. [19] and Yan et al. [20]
both proposed using a scale attention mechanism [5], which relies on Gaussian or con-
volutional kernels of different sizes to generate density maps for scale variation regions,
to alleviate the impact of scale variations on crowd counting. Lin et al. [7] introduced
Learnable Region Attention, dynamically assigning specialized attention to each feature
position. Sun et al. [21] incorporated tokens to learn crowd features in images for better
feature extraction. Du et al. [22] divided the crowd into different density levels, assigning
different weights to predictions based on density levels. Tian et al. [23] employed con-
volution with different dilation factors to better integrate multi-scale information. Visual
transformers have recently gained popularity in computer vision. In particular, DETR
utilizes a transformer decoder to model object detection in an end-to-end pipeline [24].
Building upon DETR, Conditional DETR further incorporates spatial queries and keywords
associated with objects’ endpoints or regions, thereby expediting the convergence of DETR.
In the context of crowd analysis, Liang et al. [25] proposed TransCrowd, which redefines
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the weakly supervised counting problem from a sequence-to-count perspective. Several
approaches have demonstrated the effectiveness of visual transformers in point-supervised
crowd counting tasks. These methods employ attention from the Swin Transformer [26] for
crowd counting.

3. Our Method

The architecture of our proposed method is depicted in Figure 2. Initially, the input
image is processed through a feature extraction network based on the Pyramid Transformer
backbone, producing features at varying resolutions. Following this, the feature map
corresponding to the lowest resolution is introduced into the transformer encoder of the
HCDETR module to extract global features. The output from both the transformer encoder
and the higher-resolution feature map derived from the Pyramid Transformer backbone
are subsequently flattened into a one-dimensional sequence, which serves as the input for
the transformer decoder within the HCDETR module. Subsequently, the output from the
HCDETR module is amalgamated with the upsampled features from the lower resolution
of the backbone and fed into the Coordinate Dilated Convolution Module (CDCM) for
density map regression. The final density map is utilized along with the cumulative sum of
all its pixel values to construct the loss function in a fully supervised manner.
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Figure 2. Overview of the proposed CC-DETR. Initially, the input image is transformed into a
one-dimensional sequence, then the output is fed into a backbone-based architecture. We employ a
Pyramid Transformer to capture global context through various downsampling stages. Subsequently,
Stage 2 and Stage 4 serve as the inputs for the decoder and encoder, respectively, of the HCDETR.
The resulting sequence is reshaped into a 2D feature map, which is fused with the upsampled output
from Stage 3. This combined input is then passed into the CDCM module for regression, resulting in
the final predicted density map. The loss is computed by comparing it with the ground truth labels.

3.1. Backbone

We adopt the Twins Pyramid Transformer backbone from [27], which is distinguished
by alternating local and global attention. Thanks to possessing both local and global
receptive fields, Twins can capture both short-term and long-term relationships. As an
extension of the Transformer architecture, Twins introduces the Spatially Separable Self-
Attention (SSSA) model to enhance computational efficiency. In the Locally-grouped
Self-Attention (LSA) stage, the input sequence is reshaped into a 2D feature map and
local windows perform self-attention calculations independently. This results in local
features. The Global Sub-sampled Attention (GSA) stage further reduces computational
cost by generating representatives for each sub-window through convolutional operations.
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These representatives consolidate key information, enabling communication between sub-
windows and capturing global features. In summary, Twins combines LSA for local features
and GSA for global features, enhancing efficiency in self-attention calculations.

For an input image with dimensions H × W × 3, after undergoing processing in
five layers, we obtain feature maps with different resolutions. In layer 0, the input image
RH×W×3 is processed to yield an output with a shape of R

H
2 ×W

2 × d
16 . Similarly, the output

for layer 1 is R
H
4 ×W

4 × d
8 , layer 2 is R

H
8 ×W

8 × d
4 , layer 3 is R

H
16×

W
16×

d
2 , and layer 4 is R

H
32×

W
32×d.

The spatially separable self-attention (SSSA) for each stage can be expressed as follows.

zl
ij = LSA(LayerNorm(zl−1

ij )) + zl−1
ij (1)

zl
ij = MLP(LayerNorm(zl

ij)) + zl
ij (2)

Zl = GSA(LayerNorm(Zl)) + Zl (3)

Zl = MLP(LayerNorm(Zl)) + Zl (4)

i ∈ 1, 2..., k1, j ∈ 1, 2..., k2

Here, zl
ij represents the small sub-window in the i-th row and j-th column of layer l, LSA

represents local grouped self-attention within each sub-window, and GSA interacts with
the global sub-sampled attention through representative keys from each sub-window
(generated by the sub-sampling function).

3.2. Hybrid Context DETR

Hybrid Context DETR consists of two parts: a transformer encoder and a transformer
decoder.

3.2.1. Transformer Encoder

Initially, the encoder takes a sequence as input. During this process, the spatial dimen-
sions of the feature map R

H
32×

W
32×d from layer 3 are compressed to one dimension, resulting

in a R
HW
322 ×d feature map. A learnable position encoding is then added to the feature map.

Adding extra learnable parameters (initialized to zero by default) as position encodings
is intended to provide more spatial information for spatial perception tasks, thereby en-
hancing the neural network’s ability to perceive spatial information and improving both
performance and robustness in handling spatial perception tasks. The transformer encoder
is composed of N stacked multi-head self-attention layers and a feed-forward (FC) layer.
The input sequence passes through these transformer encoder layers to produce the final
output feature Fe(R

H
32×

W
32×d). The multi-head self-attention is defined as follows:

Qi = QWQ
i , Ki = KWK

i , Vi = VWV
i (5)

headi = softmax

(
QiKT

i√
dk

)
Vi (6)

MSA(Q, K, V) = Concat(head1, . . . , headi)WO (7)

where Q, K, and V are obtained from the same input (F0), headi denotes the i-th attention
head, WQ

i , WK
i , WV

i , and WO represent learnable weight matrices, and
√

dk stands for the
scaling factor, which is numerically equivalent to the channels.

3.2.2. Transformer Decoder

In the transformer decoder stage, the channel count of inputs derived from the en-
coder’s output Fe and the layer 2 output R

H
32×

W
32×

d
4 from the backbone is adjusted to

R
H
8 ×W

8 ×d through convolution. The transformer decoder is composed of N concatenated
decoder layers, with each layer comprising three sub-layers: (1) the Multi-Head Self-
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Attention (MSA) layer; (2) the Cross-Attention (CA) layer; and (3) a Feedforward (FC) layer.
Initially, we compress the spatial dimensions of R

H
8 ×W

8 × d
4 into one dimension, obtaining

a feature map R
HW
82 ×d, which is then input into the Multi-Head Self-Attention layer to

produce an output. Subsequently, the output features Fe(R
H
32×

W
32×d) from the transformer

encoding layer are utilized as the K and V for the Cross-Attention layer. The output Qn
from the Multi-Head Self-Attention layer serves as the Q for the Cross-Attention layer. Fd
is computed using the formula below:

Fd = softmax
(

QKT
√

dk

)
V. (8)

The output Fd from the Cross-Attention (CA) layer is fed into the Feedforward (FC) layer

to obtain the final decoder output Fh(R
HW
82 ×d

). We reshape Fh(R
HW
82 ×d

) into R
H
8 ×W

8 ×d and
perform elementwise addition by upsampling the output R

H
16×

W
16×

d
2 from layer 3 of the

backbone; the result is then used for regression in the CDCM module.

3.3. Coordinate Dilated Convolution Module

At this point, our transformer-based backbone and the HCDETR module have already
captured sufficient global information. Therefore, we utilize an efficient regression head to
precisely regress the density map. Specifically, we construct a multi-scale receptive field
module to detect the global scale and density variance. A straightforward approach is to
stack dilated convolutional layers. The DConv (Dilated Convolution) layer can expand the
receptive field while maintaining spatial resolution. However, this design requires careful
consideration of the dilation factors for each layer to avoid grid effects [28], resulting in
some pixels being lost in subsequent convolutions. Grid effects significantly impact crowd
counting results, as a missing pixel in advanced feature maps causes the regression head to
lose valuable crowd information. CNN models primarily rely on convolutional operations
for spatial information perception, lacking a mechanism to directly process global coordi-
nate information from the input. In crowd counting tasks, global coordinate information
may be crucial for ensuring the model’s resilience against background interference.

Therefore, our proposed CDCM module is mainly composed of two parts: an added
croodconv and a set of four parallel dilated convolutions with dilation rates of 0, 1, 2,
and 3. First, we concatenate two croodconv layers on the feature map output by the
HCDETR. This introduces the coordinate information of the feature map as additional
channels, allowing the network to better understand the spatial structure of the feature
map. We design multi-scale dilated convolutions by stacking DConv layers with different
dilation rates in parallel to avoid grid effects, preventing the loss of crowd information
during training. To address the multiscale issue, we considered various choices of kernel
size and dilation rate in our model design. Considering that feature maps shrink after
feature extraction, we opted to set the corresponding kernel size and dilation rate to be as
small as possible in order to accommodate crowd counting scenes filled with small-scale
objects. This approach facilitates better capture of fine-grained features in images, thereby
enhancing the model’s ability to detect small-scale objects. Additionally, the utilization
of different kernel sizes and dilation rates helps to augment the model’s perception of
information across various scales, thereby enhancing its adaptability in handling multiscale
scenes. Each convolutional layer is followed by a batch normalization (BN) layer and a
ReLU activation function. We concatenate the output feature maps of dilation rates 1, 2,
and 3, then add them to the column with dilation rate 0 to leverage multi-scale features.
Finally, we use a 1 × 1 convolutional layer to regress the density map.

3.4. Loss Function Design

Our design is based on popular loss functions [29] used in crowd counting, comprising
a weighted sum of the counting loss (Lcount), optimal transport loss (LOT), and total varia-
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tion loss (LTV). While LOT performs well in dense regions, its performance is suboptimal
in low-density areas. To address this issue, we introduce LTV . LTV penalizes differences
between adjacent pixels, resulting in a smoother density map. In low-density regions where
the population distribution is sparse, LOT may be susceptible to extreme values, leading to
overfitting and producing unreasonable density estimates. The smoothing penalty of LTV
can mitigate this overfitting phenomenon, making the model’s density estimation more
stable in low-density areas. For the predicted density map D and its ground truth, the loss
function is defined as follows:

Ltotal = Lcount(P, G) + λ1LOT + λ2LTV(D, D′) (9)

where P and G represent the counts of D and D′, respectively (with P obtained by summing
all pixels in the predicted density map D), the Lcount calculates the L1 loss between P and G,
and λ1 and λ2 are the loss coefficients, which were set to 0.01 and 0.1, respectively, in our
experiments. We explored alternative values for optimal selection; these experimental
comparisons are presented in the Experiments section.

4. Experiments
4.1. Datasets

Following previous crowd counting work [23,30], we evaluated our model on three
widely used datasets: ShanghaiTech, UCF_QNRF, and NWPU-Crowd. Several images
selected from these datasets are shown in Figure 3. The sources, scenes, colors, shooting
angles, and number of people in these datasets are all different, as can be seen from the
following specific information about each.

ShanghaiTech Part A ShanghaiTech Part B UCF_QNRF NWPU-Crowd

Figure 3. Example images from the different datasets.

ShanghaiTech [2] is divided into two parts, A and B. Part A consists of 300 training
images and 182 test images, both sourced from the internet, depicting densely populated
scenes. Part B contains 400 training images and 316 test images. Part B captures real-life
scenes of bustling streets in Shanghai, with objects relatively sparsely distributed.

UCF_QNRF [31] is a dense dataset, comprising 1535 images (1201 for training and
334 for testing) and around one million annotations. The average number of pedestrians
per image is 815, with a maximum of 12,865. UCF-QNRF serves as a valuable resource
for training and evaluating models designed for large-scale crowd density estimation.
UCF-QNRF is distinguished from similar datasets by its diverse array of scenes, multiple
perspectives, varying lighting conditions, and density fluctuations in annotated human
figures. Consequently, it is highly conducive for training neural networks.

NWPU-Crowd [32] is a large-scale dataset collected from various scenes, totaling
5109 images. These images are randomly distributed into training (3109), validation (500),
and test (1500) sets. The dataset provides both point-level and box-level annotations.
NWPU-Crowd stands out as the largest dataset for crowd density estimation to date. It
encompasses some negative samples, such as extremely dense crowds, which enhance
the robustness of trained models. Additionally, the images in this dataset exhibit higher
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resolutions compared to others, and the range of annotated entities per image is notably
broad, spanning from 0 to 20,033.

4.2. Implementation Details

The backbone was the official Twins-SVT-large model pretrained on the ImageNet-1k
dataset. Only random cropping and random horizontal flipping operations were used as
data augmentations for all experiments. The crop size of both ShanghaiTech Part B and
UCF_QNRF was 512. The crop sizes for ShanghaiTech Part A and NWPU-Crowd were
set to 256 and 384, respectively. Our model was optimized end-to-end with the AdamW
optimizer using a batch size of 8. The initial learning rate was set to 1 × 10−5. We set the
value of d in the HCDETR module to 1024. Meanwhile, an L2 regularization term with a
weight of 0.0001 was adopted to avoid overfitting. All experiments were based on PyTorch
and used two NVIDIA RTX3090 GPUs.

4.3. Evaluation Metrics

The Mean Absolute Error (MAE) and Mean Square Error (MSE) were used as the
counting metrics, while the mean Normalized Absolute Error (NAE) was used as an extra
metric, defined as follows:

MAE =
1
N

N

∑
i=1

|Pi − Gi| (10)

MSE =

√√√√ 1
N

N

∑
i=1

|Pi − Gi| (11)

NAE =
1
N

N

∑
i=1

|Pi − Gi|
Gi

(12)

where N is the number of testing images and Pi and Gi are the predicted and ground-truth
number of crowds in the i-th image, respectively.

4.4. Comparison With State-of-the-Art Methods

We compared our CC-DETR method with currently popular alternatives, including
both supervised and unsupervised approaches. Unsupervised methods can reduce the data
annotation workload to an extent, as they do not need to use positional information, but
tend to have slightly inferior performance compared to supervised methods. As shown in
Table 1, our proposed CC-DETR method outperforms unsupervised approaches, achieving
an improvement of no less than 8% on the ShanghaiTech Part A dataset, no less than 7% on
the ShanghaiTech Part B dataset, and no less than 3% on the UCF-QNRF dataset. Compared
to supervised methods, CC-DETR demonstrates an improvement of no less than 1% on the
ShanghaiTech Part A dataset, no less than 1.5% on the ShanghaiTech Part B dataset, and a
lower MAE on the UCF-QNRF dataset compared to the other datasets.

In addition, we compared our method with popular crowd counting approaches
on the NWPU-Crowd dataset, with our method exhibiting excellent performance. The
comparative results are presented in Table 2.

4.5. Visualizations

Below, we provide qualitative visualizations to analyze the effectiveness of our method.
The images depicted in Figure 4 were randomly selected from each dataset for presenta-
tion. It can be observed that our method exhibits outstanding performance in resisting
background interference. It effectively focuses more attention on crowd information, high-
lighting its ability to mitigate background distractions.
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Table 1. Comparison of counting performance on the UCF-QNRF, ShanghaiTech Part A, and Shang-
haiTech Part B datasets. MAE: Mean Absolute Error; MSE: Mean Square Error. The best results were
shown in boldface.

Method Position
Part A Part B QNRF

MAE MSE MAE MSE MAE MSE

L2SM [33] × 64.2 98.4 7.2 11.1 104.7 173.6
TransCrowd [25] × 66.1 105.1 9.3 16.1 97.2 168.5
MATT [34] × 80.1 129.4 11.7 17.5 - -
AMSNet [35] × 56.7 93.4 6.7 10.2 101.8 163.2
KDMG [36] × 63.8 99.2 7.8 12.7 99.5 173.0

DSSI-Net [37] ✓ 60.6 96.0 6.8 10.3 99.1 159.2
LibraNet [38] ✓ 55.9 97.1 7.3 11.3 88.1 143.7
AMRNet [39] ✓ 61.5 98.3 7.0 11.0 86.6 152.2
DM-Count[29] ✓ 59.7 95.7 7.4 11.8 85.6 148.3
BCCT [21] ✓ 53.1 82.2 7.3 11.3 83.3 143.4
P2PNet [30] ✓ 52.7 85.1 6.3 9.9 85.3 154.5
CCTrans [23] ✓ 52.3 84.9 6.2 9.9 82.8 142.3
CC-DETR (ours) ✓ 51.8 83.3 6.1 9.7 82.2 144.6

Table 2. Counting results of various methods on the NWPU validation and test sets. MAE: Mean
Absolute Error; MSE: Mean Square Error; NAE: Normalized Absolute Error. The best results were
shown in boldface.

Method Position
Validation Set Test Set

MAE MSE MAE MSE NAE

MCNN [2] × 218.5 218.5 232.5 714.6 -
CSRNet [14] × 104.8 433.4 121.3 387.8 -
SFCN [40] × 95.4 608.3 105.4 424.1 -
TransCrowd [25] × 88.4 400.5 117.7 451.0 0.244

BL ✓ 93.6 470.4 105.4 454.2 0.203
DM-Count [29] ✓ 70.5 357.6 88.4 388.6 0.169
BCCT [21] ✓ 53.0 170.3 82.0 366.9 0.164
P2PNet [30] ✓ - - 77.4 362.0 -
CC-DETR (ours) ✓ 41.80 110.37 75.76 344.17 0.150

4.6. Ablation Studies

An ablation study was conducted on the ShanghaiTech Part A dataset, which encom-
passes images from various scenes and environments such as streets, squares, and malls.
This diversity aids in evaluating the model’s generalization performance under different
backgrounds and lighting conditions.

4.6.1. Effect of N

The model employs an encoder–decoder structure, with both the encoder and decoder
consisting of a multi-layer architectures. Through comparative experiments, we verified
that adopting an N = 8 structure yields optimal results. The comparison is presented in
Figure 5. Upon analyzing and comparing the above results, we posit that a smaller value of
N hinders the model’s ability to capture the intricate hierarchical structures and abstract
features within crowd data, thereby constraining the model’s representational capacity.
Conversely, a larger N may result in a deeper encoder, potentially leading to overfitting on
the training data and consequently restricting the model’s generalization capabilities.
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Image                                              Ground-truth                                   Prediction

Figure 4. A density map predicted by the model based on images containing various crowd densities,
ranging from large to medium to small.
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Figure 5. Impact of the choice of N on the ShanghaiTech Part A dataset.

4.6.2. Effect of HCDETR

The impact on performance of DETR with Hybrid Context is listed in Table 3. Upon
analyzing and comparing the above results, it is apparent that different scales of information
can capture features at various levels of granularity. Larger-scale information aids in
capturing global contextual details, while smaller-scale information focuses more on local
details. By introducing multiple scales of information into the model, a broader and richer
receptive field can be achieved, enhancing the model’s understanding of complex scenes.
This promotes the updating of the decoder.
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Table 3. Impact of DETR with Hybrid Context on the ShanghaiTech Part A dataset. MAE: Mean
Absolute Error; MSE: Mean Square Error.

Hybrid Context MAE MSE

× 54.8 92.7
✓ 51.8 83.3

4.6.3. Effect of CDCM

To validate the effectiveness of the CDCM module, we conducted comparative experi-
ments with the methods listed in Table 4. It is obvious that that both coordinate encoding
and dilated convolution contribute significantly to the enhancement of counting tasks.
Coordinate encoding enables the network to learn more flexible receptive fields, as each
position contains distinct coordinate information. This adaptability aids the network in
better accommodating the structure and shape of the data. Meanwhile, dilated convolution
allows the convolution operations to capture a broader range of input data, facilitating a
more comprehensive understanding of the global structure. The combined effect of both
significantly promotes the efficiency of model learning.

Table 4. The impact of coordinate encoding and dilated convolution on the ShanghaiTech Part A
dataset. MAE: Mean Absolute Error; MSE: Mean Square Error.

Method MAE MSE

Coord 54.4 91.5
Dilated Conv 53.6 86.7
Coord + Dilated Conv 51.8 83.3

4.6.4. Combined Effects of HCDETR and CDCM

In this section, we compare the combined effects of the HCDETR and CDCM modules
on the proposed CC-DETR. We contrast the individual impact of each module and eval-
uate the combined impact when both modules are applied, as outlined in Table 5, which
demonstrates that the proposed to modules enhance each other.

Table 5. Effects of HCDETR and CDCM on the ShanghaiTech Part A dataset. MAE: Mean Absolute
Error; MSE: Mean Square Error.

HCDETR CDCM MAE MSE

× ✓ 53.3 86.9
✓ × 53.8 88.6
✓ ✓ 51.8 83.3

4.6.5. Effect of Hyperparameters

During the loss computation process, determining the balance of weights for the three
losses is crucial. Thus, we conducted comparative experiments, as outlined in Table 6, to
explore the influence of hyperparameters on this weighting scheme. It is obvious that the
best performance is achieved when λ1 = 0.1 and λ2 = 0.01.

Table 6. Effects of HCDETR and CDCM on the ShanghaiTech Part A dataset. MAE: Mean Absolute
Error; MSE: Mean Square Error.

HCDETR CDCM MAE MSE

× ✓ 53.3 86.9
✓ × 53.8 88.6
✓ ✓ 51.8 83.3
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4.7. Complexity and Efficiency Analysis

Because the backbone used in our CC-DETR is Twins-large [27], CCTrans [23], which
also employs Twins-large as its backbone, was utilized as a comparative baseline for com-
plexity and computational efficiency. Specifically, we compared the two methods along
two dimensions: the number of model parameters, and the training iterations required to
achieve optimal performance. The results are shown in Table 7, where it can be seen that
the proposed CC-DETR exhibits superior performance compared to the baseline, with a
remarkable two-thirds reduction in training time despite a one-third increase in param-
eters. This improvement in efficiency is complemented by significant enhancements in
performance metrics, validating our model’s efficacy. Through comprehensive evaluations
across various datasets, our model demonstrates robustness and generalization capabilities,
showcasing its applicability to a wide range of scenarios.

Table 7. The number of model parameters (Mb) and number of iterations (Epoch) required to obtain
the optimal model. MAE: Mean Absolute Error; MSE: Mean Square Error. The best results were
shown in boldface.

Method Backbone Parameters Epoch
Part A Part B

MAE MSE MAE MSE

CCTrans [23] Twins-large 104 M 1500 52.3 84.9 6.2 9.9
CC-DETR (ours) Twins-large 154 M 500 51.8 83.3 6.1 9.7

4.8. Limitations

Although the quantitative and qualitative experimental results presented above fully
demonstrate the effectiveness of the proposed CC-DETR, significant flaws still exist in its
practical application. Due to the utilization of the main backbone from the DETR object
detection model in our proposed CC-DETR, which consists of a large number of transformer
encoding and decoding layers, the enormous parameter size and high computational
complexity of the end-to-end training method and attention mechanism result in relatively
slower training and inference speeds compared to convolutional neural networks. This
may limit its applicability on resource-constrained edge computing devices.

5. Conclusions

In this paper, we propose a DETR-based crowd counting framework (CC-DETR). We
first adopt a backbone network with alternating local and global attention mechanisms.
Inspired by the DETR architecture, our encoder–decoder structure improves feature fusion
ability through the proposed HCDETR module. Our regression head provides multiscale
receptive fields through the proposed CCDM module. Extensive experiments on three
crowd counting datasets demonstrate that our method significantly reduces background
interference and scale effects. We hope that our work can help to solve the problem of
crowd counting and provide new insights for future research. For example, crowd counting
can be utilized in public safety and security applications such as monitoring crowd density
in public spaces, transportation hubs, or large events to prevent overcrowding and ensure
that safety protocols are followed. In the future, crowd counting could aid in monitoring
patient waiting times, optimizing staffing levels in hospitals and clinics, and implementing
social distancing measures during pandemics or outbreaks.
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