
Citation: Turki, T.; Al Habib, S.;

Taguchi, Y.-h. Novel Automatic

Classification of Human Adult Lung

Alveolar Type II Cells Infected with

SARS-CoV-2 through the Deep Transfer

Learning Approach. Mathematics 2024,

12, 1573. https://doi.org/10.3390/

math12101573

Academic Editors: Chao Tong and

Xiaojun Wang

Received: 20 April 2024

Revised: 9 May 2024

Accepted: 15 May 2024

Published: 17 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Novel Automatic Classification of Human Adult Lung Alveolar
Type II Cells Infected with SARS-CoV-2 through the Deep
Transfer Learning Approach
Turki Turki 1,* , Sarah Al Habib 1,2 and Y-h. Taguchi 3

1 Department of Computer Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
shabib0003@stu.kau.edu.sa

2 Department of Computer Science, King Khalid University, Abha 62529, Saudi Arabia
3 Department of Physics, Chuo University, Tokyo 112-8551, Japan; tag@granular.com
* Correspondence: tturki@kau.edu.sa

Abstract: Transmission electron microscopy imaging provides a unique opportunity to inspect the
detailed structure of infected lung cells with SARS-CoV-2. Unlike previous studies, this novel study
aims to investigate COVID-19 classification at the lung cellular level in response to SARS-CoV-2.
Particularly, differentiating between healthy and infected human alveolar type II (hAT2) cells with
SARS-CoV-2. Hence, we explore the feasibility of deep transfer learning (DTL) and introduce a highly
accurate approach that works as follows: First, we downloaded and processed 286 images pertaining
to healthy and infected hAT2 cells obtained from the electron microscopy public image archive.
Second, we provided processed images to two DTL computations to induce ten DTL models. The first
DTL computation employs five pre-trained models (including DenseNet201 and ResNet152V2)
trained on more than one million images from the ImageNet database to extract features from hAT2
images. Then, it flattens and provides the output feature vectors to a trained, densely connected
classifier with the Adam optimizer. The second DTL computation works in a similar manner, with
a minor difference in that we freeze the first layers for feature extraction in pre-trained models
while unfreezing and jointly training the next layers. The results using five-fold cross-validation
demonstrated that TFeDenseNet201 is 12.37× faster and superior, yielding the highest average
ACC of 0.993 (F1 of 0.992 and MCC of 0.986) with statistical significance (P < 2.2 × 10−16 from a
t-test) compared to an average ACC of 0.937 (F1 of 0.938 and MCC of 0.877) for the counterpart
(TFtDenseNet201), showing no significance results (P = 0.093 from a t-test).

Keywords: SARS-CoV-2; COVID-19; human alveolar type 2 cells; transmission electron microscopy;
deep transfer learning; AI applications in respiratory diseases

MSC: 92B05; 68T09

1. Introduction and Related Work

SARS-CoV-2 is the virus behind a respiratory disease, named COVID-19, in which
the main target organ is the human lung [1]. When SARS-CoV-2 binds to the ACE2
receptor in alveolar type II (AT2) cells of alveoli in the lungs, the ACE2 receptor becomes
occupied, leading to more lung injuries and thereby impaired lung function, which is
attributed to damaging the alveoli [2–4]. As the number of COVID-19 patients with
lung infections significantly outnumbered healthcare workers, researchers developed AI-
based techniques to accurately detect lung infections in COVID-19 patients using different
imaging modalities. Hussein et al. [5] proposed a custom convolutional neural network
(custom-CNN) to accurately classify COVID-19 patients using two previously studied
chest X-ray image datasets from Kaggle and GitHub. In the first dataset, the images were
categorized into three class labels, including COVID-19, normal (non-COVID-19), and

Mathematics 2024, 12, 1573. https://doi.org/10.3390/math12101573 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12101573
https://doi.org/10.3390/math12101573
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9491-2435
https://orcid.org/0000-0003-0867-8986
https://doi.org/10.3390/math12101573
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12101573?type=check_update&version=4

Mathematics 2024, 12, 1573 2 of 16

viral pneumonia. For the second dataset, the images were categorized into COVID-19 and
normal (non-COVID-19). Their custom-CNN consisted of a series of convolution and max
pooling layers, followed by flattening the extracted feature vectors provided to a densely
connected classifier composed of a stack of five dense layers interleaved with three dropout
layers and two BatchNormalization layers. Custom-CNN was trained on a random split
of the dataset images while testing the performance on the remaining split. The reported
results on a random 20% testing split of the first dataset demonstrated that custom-CNN
achieved an accuracy of 0.981, a precision of 0.976, a recall of 0.983, and an F1 of 0.973. For
the second dataset, the custom-CNN achieved an accuracy of 0.998, a precision of 0.999, a
recall of 0.997, and an F1 of 0.998.

To identify pulmonary diseases using X-ray and CT scan images, Abdullahi et al. [6]
presented a CNN named PulmoNet, composed of 26 layers using wide residual blocks (of
two convolutional layers with a dropout layer), followed by a GlobalAveragePooling layer
and one dense layer with SoftMax activation to yield predictions. The Adam optimizer
was used with categorical cross-entropy loss. They formulated the classification problem
into a multiclass classification of pulmonary diseases and also reported the results for the
binary class classification task pertaining to pulmonary diseases, described as follows:
The dataset had 16,435 images: 883 images for bacterial pneumonia, 1478 images for
viral pneumonia, 3749 for COVID-19, and 10,325 images for healthy cases. They divided
the dataset and utilized an 85:15 training-to-testing split ratio. Then, they conducted a
cross-validation based on randomly assigning examples according to the predefined split
ratio and averaging the results of the testing according to five runs of the cross-validation.
Particularly, for the task of testing the performance using four classes, they achieved an
average accuracy of 0.940. For testing three-class classification pertaining to bacterial
pneumonia, COVID-19, and healthy cases, the presented model achieved an average
accuracy of 0.954. Also, they achieved an average accuracy of 0.994 for the binary class
classification pertaining to discrimination between COVID-19 and healthy image cases. For
the binary class classification between pneumonia and healthy image cases, their model
achieved an average accuracy of 0.983.

Talukder et al. [7] presented a deep transfer learning (DTL) approach to detecting
COVID-19 using X-ray images, working as follows: First, they used two datasets, where
the first had 2000 COVID-19 X-ray images pertaining to COVID-19 and normal cases, and
the second had 4352 chest X-ray images pertaining to these four classes: COVID-19, normal,
lung opacity, and viral pneumonia. They divided the two datasets and utilized an 80:10
training-to-validation split ratio, while the remaining was used for testing. Image augmen-
tation was performed through operation, such as shears, rotation, flipping, and zooming.
For DTL, six pre-trained models (Xception, InceptionResNetV2, ResNet50, ResNet50V2,
EfficientNetB0, and EfficientNetB4) were used. Then, they unfroze the first layers in the
feature extraction part of pre-trained models and unfroze the next layers, including the
GlobalAveragePool layer, two BatchNormalization layers, and two dense layers for pre-
diction. The results demonstrated that EfficientNetB4, when applied to 208 testing images
from the first dataset, achieved the highest accuracy of 1.00. Moreover, EfficientNetB4,
when applied to 480 testing images from the second dataset, achieved an accuracy of 0.9917
and an F1 of 0.9914.

Abdullah et al. [8] presented a hybrid DTL approach to detect COVID-19 using chest
X-ray images. First, they downloaded the images from the COVID-19 radiography database
at Kaggle, selecting 2413 images pertaining to COVID-19 and 6807 images related to normal
cases. They divided the dataset and utilized a 70:30 training (including validation)-to-
testing split ratio. To induce the hybrid model, they utilized VGG16 and VGG19 pre-trained
models, in which they applied the feature extraction part of these two pre-trained models to
extract features from the image training set. Then, they concatenated the output of the two
flattened feature vectors provided as inputs to train densely connected classifiers of two
dense layers and one dropout layer. Also, the input feature vectors were provided to train
machine learning algorithms including random forest, naive Bayes, KNN, neural network

Mathematics 2024, 12, 1573 3 of 16

(NN), and support vector machines (SVMs) with several kernels, including linear, sigmoid,
and radial. Applying the experimental results to the 30% testing data (i.e., 2766 images out
of 9220) demonstrates the superiority of the hybrid DTL approach when coupled with NN,
achieving the highest MCC of 0.814, followed by SVM with a linear kernel, which yielded
an MCC of 0.805 when compared to existing pre-trained models of densely connected
classifiers in the binary classification task. Others have proposed deep learning approaches
to detect COVID-19 using X-ray and CT images [9–14]. Table 1 provides an overview of the
existing works compared to our proposed work.

Although these recent studies aimed to detect lungs infected with SARS-CoV-2 in
COVID-19 patients, the novelty of our study is attributed to the summarized contributions
as follows:

(1) Unlike the existing studies that aim to detect lungs infected with SARS-CoV-2 using
different imaging modalities (e.g., CT and X-rays), to the best of our knowledge, this
is the first study to investigate the feasibility of DTL in lungs infected with SARS-
CoV-2 at the cellular level within alveoli in human lungs using transmission electron
microscopy (TEM) images.

(2) The images generated via TEM unveiled the detailed structures of hAT2 cells and other
characteristics of SARS-CoV-2, including viral particles dispersed inside the cell cyto-
plasm. We downloaded and processed 286 images pertaining to infected and healthy
(control) human alveolar type II (hAT2) cells in alveoli from the electron microscopy
public image archive (EMPIAR) at https://www.ebi.ac.uk/empiar/EMPIAR-10533/
(accessed on 13 March 2023).

(3) We formulated the problem as a binary class classification problem and induced
ten DTL models using two DTL computations [15], where in the first DTL compu-
tation, we applied five pre-trained models (DenseNet201 [16], NasNetMobile [17],
ResNet152V2 [18], VGG19 [19], and Xception [20]) to extract features from hAT2
images, followed by flattening the extracted features into feature vectors provided
as inputs to train a densely connected classifier of three layers, including two dense
layers and one dropout layer. We refer to the induced models via the first DTL
computation as TFeDenseNet201, TFeNasNetMobile, TFeResNet152V2, TFeVGG19,
and TFeXception. For the second DTL computation, we froze the first layers in the
pre-trained models while unfreezing and jointly training the next layers, including
a densely connected classifier. The induced models via such DTL computation are
referred to as TFtDenseNet201, TFtNasNetMobile, TFtResNet152V2, TFtVGG19, and
TFtXception.

(4) For fairness of performance comparisons among the ten studied DTL models, we
evaluated the performance on the whole dataset of 286 images using five-fold cross-
validation, in which we provided the same training and testing images in each run to
each model. Then, we reported the average performance results of the five runs on
testing folds and reported the standard deviation.

(5) Our experimental study demonstrated that TFeDenseNet201 achieved the highest
average ACC of 0.993, the highest F1 of 0.992, and the highest MCC of 0.986 when
utilizing five-fold cross-validation. Moreover, these performance results were sta-
tistically significant (P < 2.2 × 10−16, obtained from a t-test), demonstrating the
generalization ability of TFeDenseNet201. In terms of measuring the training running
time, TFeDenseNet201 was 12.37× faster than its peer, TFtDenseNet201, induced via
the second DTL method. These high-performance results demonstrate that our DTL
models can act as (1) an assisting AI tool in diagnostic pathology and (2) a reliable
AI tool for automatic annotation when used with TEM. We provide details about the
experimental study, including the processed datasets, in the Supplementary Materials.

https://www.ebi.ac.uk/empiar/EMPIAR-10533/

Mathematics 2024, 12, 1573 4 of 16

Table 1. A summary of the literature studies against our proposed work. VP is viral pneumonia. BP is bacterial pneumonia. LO is lung opacity. AT2 is alveolar type
II. CT is computed tomography. TEM is transmission electron microscopy. ACC is accuracy; MCC is the Matthews correlation coefficient. CV is cross-validation.

Year Study Scanning Cell Type Best Architecture Class Evaluation Using Results

2022 Oğuz et al. [21] CT - ResNet-50+SVM 2-class (COVID-19, normal) Test set ACC (0.96); F1 (0.95); AUC (0.98)
2022 Haghanifar et al. [22] X-ray - COVID-CXNet 3-class (COVID-19, normal, pneumonia) Test set ACC (0.8788); F1 (0.97)
2022 Bhattacharyya et al. [23] X-ray - VGG19-BRISK-RF 3-class (COVID-19, normal, pneumonia) Test set ACC (0.966)
2022 Chouat et al. [24] X-ray; CT - VGGNet-19 2-class (COVID-19, normal) Test set ACC (0.905)
2022 Asif et al. [25] X-ray - Shallow CNN 2-class (COVID-19, normal) Test set ACC (0.9968)
2022 Ullah et al. [26] X-ray - CovidDetNet 3-class (COVID-19, normal, pneumonia) Test set ACC (0.9840)
2022 Zouch et al. [27] X-ray; CT - VGG19 2-class (COVID-19, normal) Test set ACC (0.9935)
2023 Haennah et al. [9] CT - DETS-ResNet101 2-class (COVID-19, normal) Five-fold CV ACC (0.967); F1 (0.969)
2023 Salama et al. [13] CT - Hybrid DL+ML 2-class (COVID-19, normal) Three test sets Average ACC (0.9869)
2023 Ayalew et al. [28] X-ray - CNN+SVM 2-class (COVID-19, normal) Test set ACC (0.991)
2023 Constantinou et al. [29] X-ray - ResNet101 3-class (COVID-19, non-COVID-19, normal) Test set ACC (0.96)
2023 Patro et al. [30] X-ray - SCovNet 2-class (COVID-19, normal) Test set ACC (0.9867)
2023 Zhu et al. [31] X-ray - CovC-ReDRNet 3-class (COVID-19, normal, pneumonia) Five-fold CV ACC (0.9756); F1 (0.9584)

2023 Chakraborty et al. [32] X-ray -

WAE 3-class (COVID-19, normal, VP)
Test set

ACC (0.9410); F1 (0.9404)
2-class (COVID-19, non-COVID-19) ACC (0.9725); F1 (0.9665)
3-class (COVID-19, normal, VP)

Five-fold CV
ACC (0.8605)

2-class (COVID-19, non-COVID-19) ACC (0.861)
2023 Gaur et al. [33] X-ray - EfficientNetB0 3-class (COVID-19, normal, VP) Test set ACC (0.9293); F1 (0.88)
2023 Kathamuthu et al. [34] CT - VGG16 2-class (COVID-19, normal) Test set ACC (0.98)

2024 Hussein et al. [5] X-ray - Custom-CNN 3-class (COVID-19, non-COVID-19, VP)
2-class (COVID-19, non-COVID-19) Test set

ACC (0.981); F1(0.973)
ACC (0.998); F1 (0.998)

2024 Abdulahi et al. [6] X-ray; CT -

PulmoNet 4-class (COVID-19, healthy, BP, VP)
CV on a random test
sets

ACC (0.940)
3-class (COVID-19, healthy, BP) ACC (0.954)
2-class (COVID-19, healthy) ACC (0.994)
2-class (pneumonia, healthy) ACC (0.983)

2024 Talukder et al. [7] X-ray - EfficientNetB4 4-class (COVID-19, normal, LO, VP)
Test set

ACC (0.9917); F1 (0.9914)
2-class (COVID-19, normal) ACC (1.00)

2024 Abdullah et al. [8] X-ray - Hybrid DL-NN 2-class (COVID-19, normal) Test set ACC (0.920; MCC (0.814)

2024 Proposed TEM AT2 TFeDenseNet201 2-class (infected, control) Five-fold CV ACC (0.993); F1 (0.992); MCC
(0.986)

Mathematics 2024, 12, 1573 5 of 16

2. Materials and Methods
2.1. Data Preprocessing

Youk et al. [35] performed transmission electron microscopy (TEM) imaging to obtain
high-resolution images pertaining to healthy and infected human lung alveolar type 2
(hAT2) cells with SARS-CoV-2. The generated images unveiled a detailed structure in the
cell and other characteristics of SARS-CoV-2, including viral particles dispersed inside
the cell cytoplasm. In Figure 1, we present an illustration for hAT2 images employed in
this study obtained from the electron microscopy public image archive (EMPIAR) at https:
//www.ebi.ac.uk/empiar/EMPIAR-10533/ (accessed on 13 March 2023) and composed
of 577 hAT2 images related to uninfected (control) and infected hAT2 cells [35]. The class
label distribution consisted of 326 images belonging to control hAT2 cells, while the other
251 images belonged to infected hAT2 cells. As TEM imaging was employed to generate
images, the 577 images had a 4096 × 4224 pixel resolution (i.e., 17.3015Mpx) and were
stored as TIFF image files. In our study, we randomly selected and processed 286 TIFF
images out of 577 with the use of the Image module in Python [36], obtaining 286 JPG
images with a 256 × 256 pixel resolution for addressing the classification task at hand. It is
worth noting that the class distribution was balanced, in which 143 images belonged to
control hAT2 images while the remaining 143 images belonged to infected hAT2 images.
We provide 286 preprocessed JPG images in the Supplementary Dataset.

Mathematics 2024, 12, 1573 5 of 16

class label distribution consisted of 326 images belonging to control hAT2 cells, while the
other 251 images belonged to infected hAT2 cells. As TEM imaging was employed to gen-
erate images, the 577 images had a 4096 × 4224 pixel resolution (i.e., 17.3015Mpx) and were
stored as TIFF image files. In our study, we randomly selected and processed 286 TIFF
images out of 577 with the use of the Image module in Python [36], obtaining 286 JPG
images with a 256 × 256 pixel resolution for addressing the classification task at hand. It is
worth noting that the class distribution was balanced, in which 143 images belonged to
control hAT2 images while the remaining 143 images belonged to infected hAT2 images.
We provide 286 preprocessed JPG images in the Supplementary Dataset.

Figure 1. Flowchart showing our deep transfer learning approach for predicting hAT2 cells infected
with SARS-CoV-2. Data preprocessing: to obtain hAT2 images, healthy and infected hAT2 images
using transmission electron microscopy (TEM) imaging were downloaded and processed from
https://www.ebi.ac.uk/empiar/EMPIAR-10533/ (accessed on 13 March 2023). Deep transfer learning:
hAT2 images were provided to a pre-trained CNN of frozen layers for feature extraction, followed
by a trained new classifier to discriminate between healthy and infected hAT2 cells. Figure created
with BioRender.com.

2.2. Deep Transfer Learning
In Figure 1, we demonstrate how our deep transfer learning (DTL) approach was car-

ried out. Initially, we employed five pre-trained models: DenseNet201, NasNetMobile, Res-
Net152V2, VGG19, and Xception. As each pre-trained model consists of a feature extraction
part (i.e., interleaved convolutional and pooling layers) and a densely connected classifier
for feature extraction and classification, respectively, we froze the weights (i.e., to keep the
weights unaltered) of the feature extraction part while modifying the densely connected
classifier, dealing with the binary class problem at hand rather than the multiclass classifi-
cation of 1000 classes. Then, we extracted features from the hAT2 images by applying the
feature extraction part (using the unadjusted weights of a pre-trained model), followed by
training the densely connected classifiers and performing a prediction on the unseen hAT2
images. We refer to such DTL models as TFeDenseNet201, TFeNasNetMobile,
TFeResNet152V2, TFeVGG19, and TFeXception (see Figure 1). In Table 2, we include infor-
mation regarding the development of TFe-based models. All models have the same number

Figure 1. Flowchart showing our deep transfer learning approach for predicting hAT2 cells infected
with SARS-CoV-2. Data preprocessing: to obtain hAT2 images, healthy and infected hAT2 images
using transmission electron microscopy (TEM) imaging were downloaded and processed from https:
//www.ebi.ac.uk/empiar/EMPIAR-10533/ (accessed on 13 March 2023). Deep transfer learning:
hAT2 images were provided to a pre-trained CNN of frozen layers for feature extraction, followed by
a trained new classifier to discriminate between healthy and infected hAT2 cells. Figure created with
BioRender.com.

https://www.ebi.ac.uk/empiar/EMPIAR-10533/
https://www.ebi.ac.uk/empiar/EMPIAR-10533/
https://www.ebi.ac.uk/empiar/EMPIAR-10533/
https://www.ebi.ac.uk/empiar/EMPIAR-10533/
BioRender.com

Mathematics 2024, 12, 1573 6 of 16

2.2. Deep Transfer Learning

In Figure 1, we demonstrate how our deep transfer learning (DTL) approach was
carried out. Initially, we employed five pre-trained models: DenseNet201, NasNetMobile,
ResNet152V2, VGG19, and Xception. As each pre-trained model consists of a feature
extraction part (i.e., interleaved convolutional and pooling layers) and a densely connected
classifier for feature extraction and classification, respectively, we froze the weights (i.e., to
keep the weights unaltered) of the feature extraction part while modifying the densely
connected classifier, dealing with the binary class problem at hand rather than the multi-
class classification of 1000 classes. Then, we extracted features from the hAT2 images by
applying the feature extraction part (using the unadjusted weights of a pre-trained model),
followed by training the densely connected classifiers and performing a prediction on the
unseen hAT2 images. We refer to such DTL models as TFeDenseNet201, TFeNasNetMobile,
TFeResNet152V2, TFeVGG19, and TFeXception (see Figure 1). In Table 2, we include infor-
mation regarding the development of TFe-based models. All models have the same number
of unfrozen layers because we only trained the densely connected classifier (composed of
three layers) on extracted features from hAT2 images using pre-trained models. Therefore,
the number of non-trainable parameters is 0. The last 3D tensor output (of shape (8, 8, 2048))
for feature extraction was the same for TFeResNet152V2 and TFeXception. Hence, both had
the same number of parameters as they were flattened into a vector of 131,072 elements
before feeding into the same densely connected classifier of three layers. We provide details
about each TFe-based model in the Supplementary TFeModels.

Table 2. Details about layers and parameters for TFe-based models.

Model No. Layers Frozen Unfrozen No. Params Trainable Non-Trainable

TFeDenseNet201 710 707 3 31,457,793 31,457,793 0
TFeNasNetMobile 772 769 3 13,246,977 13,246,977 0
TFeResNet152V2 567 564 3 33,554,945 33,554,945 0

TFeVGG19 25 22 3 8,389,121 8,389,121 0
TFeXception 135 132 3 33,554,945 33,554,945 0

For the other DTL models, we froze the weights of the bottom layers in the feature
extraction part while we trained the top layers of the feature extraction layers as well as the
densely connected classifier. In other words, we unaltered the weights of the first layers in
the feature extraction part while adjusting the weights of subsequent layers. Moreover, we
modified the densely connected classifier to tackle the binary class classification problem
rather than the multiclass classification pertaining to 1000 categories. We refer to models
employing such computations as TFtNasNetMobile, TFtResNet152V2, TFtVGG19, and
TFtXception (see Figure 2). Table 3 demonstrates the layers and parameters used for the
TFt-based models and the number of layers, including those from pre-trained models in
terms of feature extraction, plus the densely connected classifier of two layers. We report
the details of each model architecture in the Supplementary TFtModels.

In the training phase, we employed the Adam optimizer with binary cross-entropy
loss when updating the model parameters. It can be seen that transfer learning is ascribed
to the unadjusted weights from pre-trained models that were previously trained on more
than one million images from the ImageNet dataset. In terms of testing the performance to
unseen hAT2 images, predictions are mapped to the infected if their values are greater than
0.5. Otherwise, predictions are mapped to the control.

Mathematics 2024, 12, 1573 7 of 16

Mathematics 2024, 12, 1573 6 of 16

of unfrozen layers because we only trained the densely connected classifier (composed of
three layers) on extracted features from hAT2 images using pre-trained models. Therefore,
the number of non-trainable parameters is 0. The last 3D tensor output (of shape (8, 8, 2048))
for feature extraction was the same for TFeResNet152V2 and TFeXception. Hence, both had
the same number of parameters as they were flattened into a vector of 131,072 elements
before feeding into the same densely connected classifier of three layers. We provide details
about each TFe-based model in the Supplementary TFeModels.

Table 2. Details about layers and parameters for TFe-based models.

Model No. Layers Frozen Unfrozen No. Params Trainable Non-Trainable
TFeDenseNet201 710 707 3 31,457,793 31,457,793 0

TFeNasNetMobile 772 769 3 13,246,977 13,246,977 0
TFeResNet152V2 567 564 3 33,554,945 33,554,945 0

TFeVGG19 25 22 3 8,389,121 8,389,121 0
TFeXception 135 132 3 33,554,945 33,554,945 0

For the other DTL models, we froze the weights of the bottom layers in the feature
extraction part while we trained the top layers of the feature extraction layers as well as
the densely connected classifier. In other words, we unaltered the weights of the first lay-
ers in the feature extraction part while adjusting the weights of subsequent layers. More-
over, we modified the densely connected classifier to tackle the binary class classification
problem rather than the multiclass classification pertaining to 1000 categories. We refer to
models employing such computations as TFtNasNetMobile, TFtResNet152V2, TFtVGG19,
and TFtXception (see Figure 2). Table 3 demonstrates the layers and parameters used for
the TFt-based models and the number of layers, including those from pre-trained models
in terms of feature extraction, plus the densely connected classifier of two layers. We re-
port the details of each model architecture in the Supplementary TFtModels.

Table 3. Details about the layers and parameters for TFt-based models.

Model No. Layers Frozen Unfrozen No. Params Trainable Non-Trainable
TFtDenseNet201 709 649 60 49,779,777 33,605,633 16,174,144

TFtNasNetMobile 771 734 37 17,516,693 13,587,361 3,929,332
TFtResNet152V2 566 528 38 91,886,593 48,525,825 43,360,768

TFtVGG19 24 17 7 28,413,505 17,828,353 10,585,152
TFtXception 134 129 5 54,416,425 36,718,593 17,697,832

Figure 2. Deep transfer learning composed of a pre-trained CNN with frozen and unfrozen layers
for feature extraction, followed by a trained new classifier to discriminate between healthy and in-
fected hAT2 cells.

Figure 2. Deep transfer learning composed of a pre-trained CNN with frozen and unfrozen layers for
feature extraction, followed by a trained new classifier to discriminate between healthy and infected
hAT2 cells.

Table 3. Details about the layers and parameters for TFt-based models.

Model No. Layers Frozen Unfrozen No. Params Trainable Non-Trainable

TFtDenseNet201 709 649 60 49,779,777 33,605,633 16,174,144
TFtNasNetMobile 771 734 37 17,516,693 13,587,361 3,929,332
TFtResNet152V2 566 528 38 91,886,593 48,525,825 43,360,768

TFtVGG19 24 17 7 28,413,505 17,828,353 10,585,152
TFtXception 134 129 5 54,416,425 36,718,593 17,697,832

3. Results
3.1. Classification Methodology

In this study, we adapted five pre-trained models: DenseNet201, NasNetMobile,
ResNet152V2, VGG19, and Xception. Each pre-trained model was trained on over a million
images from the ImageNet dataset for the multiclass image classification task of 1000 class
labels. Then, we developed TFe-based models as follows: We utilized the feature extraction
part of pre-trained models by freezing all of the layers to extract features from hAT2 images,
which we then flattened and provided to a densely connected classifier (of three layers),
trained from scratch for the task of classifying hAT2 cells into control (i.e., uninfected) or
infected with SARS-CoV-2. For the TFt-based models, we froze the first layers in the feature
extraction part of pre-trained models while we unfroze consecutive layers, in which the
last output was flattened and then we provided it to a densely connected classifier of two
layers, trained from scratch to address the binary classification task. For all models, we
employed the Adam optimizer with the binary cross-entropy loss function. We assigned
the following optimization parameters during the training phase: 0.00001 for the learning
rate, 20 for the batch size, and 10 for the number of epochs. We did not use a learning rate
scheduler. We evaluated the performance of each model using accuracy (ACC), F1, and
Matthews correlation coefficient (MCC), calculated as follows [37,38]:

ACC =
TP + TN

TP + TN + FP + FN
(1)

F1 =
2 × TP

2 × TP + FP + FN
(2)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(3)

Mathematics 2024, 12, 1573 8 of 16

where TP is a true positive, referring to the number of infected hAT2 images that were
correctly predicted as infected. FN is a false negative, referring to the number of infected
hAT2 images that were incorrectly predicted as uninfected (control). TN is a true negative,
referring to the number of control hAT2 images that were correctly predicted as controls.
FP is a false positive, referring to the number of control hAT2 images that were incorrectly
predicted as infected.

For reporting the performance results on the whole dataset of 286 hAT2 images, we
utilized five-fold cross-validation, in which we randomly assigned images into five folds.
Then, in the first run, we assigned images of the first fold for testing while assigning the
remaining examples in the other folds for training, followed by performing a prediction for
the examples in the testing fold and recording the results. Such a process was repeated in
the remaining four runs, in which we recorded the performance on testing folds. Then, we
used the average performance calculated during the five runs as our results on five-fold
cross-validation.

3.2. Implementation Details

To run the experiments, we used the Anaconda distribution, creating an environment
with Python (Version 3.10.14) [15], followed by installing the following libraries: cudatoolkit
(Version 11.2) [39], cudnn (Version 8.1.0) [40], and tensorflow (Version 2.8) [41]. Then, we
installed Jupiter notebook [42,43] to write and execute Python code for deep learning
models with Keras on our local NVIDIA GeForce RTX 2080Ti GPU with 4352 CUD cores,
11 GB of GDDR6 memory, 1545 MHz of boost clock speed, and 14 Gbps of memory clock
speed. Other libraries were used to run the experiments, including pandas and NumPy
for data processing, while matplotlib and Sklearn were utilized for confusion matrix
visualization and performance evaluation, respectively [44,45]. Also, we utilized ggplot2 in
R to visualize the results (e.g., Figures 3–5 and 7) [46].

Mathematics 2024, 12, 1573 8 of 16

3.2. Implementation Details
To run the experiments, we used the Anaconda distribution, creating an environment

with Python (Version 3.10.14) [15], followed by installing the following libraries: cuda-
toolkit (Version 11.2) [39], cudnn (Version 8.1.0) [40], and tensorflow (Version 2.8) [41].
Then, we installed Jupiter notebook [42,43] to write and execute Python code for deep
learning models with Keras on our local NVIDIA GeForce RTX 2080Ti GPU with 4352
CUD cores, 11 GB of GDDR6 memory, 1545 MHz of boost clock speed, and 14 Gbps of
memory clock speed. Other libraries were used to run the experiments, including pandas
and NumPy for data processing, while matplotlib and Sklearn were utilized for confusion
matrix visualization and performance evaluation, respectively [44,45]. Also, we utilized
ggplot2 in R to visualize the results (e.g., Figures 3–5 and 7) [46].

Figure 3. Average ACC and loss of five training folds for each epoch. ACC is accuracy.

Figure 4. Running time for each method during the training phase in the five-fold cross-validation.

Figure 3. Average ACC and loss of five training folds for each epoch. ACC is accuracy.

Mathematics 2024, 12, 1573 9 of 16

Mathematics 2024, 12, 1573 8 of 16

3.2. Implementation Details
To run the experiments, we used the Anaconda distribution, creating an environment

with Python (Version 3.10.14) [15], followed by installing the following libraries: cuda-
toolkit (Version 11.2) [39], cudnn (Version 8.1.0) [40], and tensorflow (Version 2.8) [41].
Then, we installed Jupiter notebook [42,43] to write and execute Python code for deep
learning models with Keras on our local NVIDIA GeForce RTX 2080Ti GPU with 4352
CUD cores, 11 GB of GDDR6 memory, 1545 MHz of boost clock speed, and 14 Gbps of
memory clock speed. Other libraries were used to run the experiments, including pandas
and NumPy for data processing, while matplotlib and Sklearn were utilized for confusion
matrix visualization and performance evaluation, respectively [44,45]. Also, we utilized
ggplot2 in R to visualize the results (e.g., Figures 3–5 and 7) [46].

Figure 3. Average ACC and loss of five training folds for each epoch. ACC is accuracy.

Figure 4. Running time for each method during the training phase in the five-fold cross-validation. Figure 4. Running time for each method during the training phase in the five-fold cross-validation.

Mathematics 2024, 12, 1573 9 of 16

Figure 5. Boxplots show testing (generalization) performance results of ten models during five-fold
cross-validation. ACC is accuracy. MCC is the Matthews correlation coefficient.

3.3. Classification Results
3.3.1. Training Results

In Figure 3, we report the average training accuracy and loss during the five-fold
cross-validation of ten models trained for 10 epochs. Accuracy is calculated in terms of
correctly classified training examples, while loss is calculated in terms of binary cross-
entropy. These two measures, accuracy and loss, demonstrate the ability of models to
learn from data and be capable of classifying hAT2 images during testing. At the first
epoch, it can be seen that TFeXception generated the highest average accuracy of 0.78 (and
the lowest average loss of 0.46), followed by TFeDenseNet201, generating an average ac-
curacy (and loss) of 0.68 (and 0.60). TFtDenseNet201 generated the lowest average accu-
racy (and loss) of 0.42 (and 1.67). At the second epoch, TFeXception adapted more to the
training data by generating the highest average accuracy of 0.96 (and the lowest average
loss of 0.13), followed by TFeDenseNet201, which achieved the second highest average
accuracy of 0.95 (with an average loss of 0.17). As the number of epochs increases, the
accuracy and loss increase and decrease, respectively, in which all models, except
TFeVGG19, achieved an average accuracy of above 0.998 and an average loss close to 0.
For each epoch, we included average accuracy and loss in the Supplementary Epoch.

Figure 4 illustrates the total running time for each model induction process during
the five-fold cross-validation. TFeXception is the fastest. Particularly, TFeXception is
89.03× faster than its counterpart, TFtXception. The second fastest method is TFeDense-
Net201, which is 12.37× faster than TFtDenseNet201. The third fastest method is
TFeResNet152V2, which is 9.26× faster than TFtResNet152V2. The slowest mode among
the TFe-based methods is TFeVGG19, which is 11.42× faster than TFtVGG19. The running time
difference between the fastest two methods, TFeXception and TFeDenseNet201, is marginal.
Particularly, they differ by less than 1 s. These results demonstrate the computational effi-
ciency of TFe-based models, attributed to fewer layers during the training phase.

3.3.2. Testing Results
In Figure 5, boxplots demonstrate the generalization (testing) results of ten models

when employing five-fold cross-validation. The median results are displayed by the hori-
zontal bold lines crossing each box. It can be noticed that TFeDenseNet201 is the best per-
forming model, achieving the highest median of 1.00 according to the three performance
measures (i.e., ACC, F1, and MCC), where the standard deviation σ is 0.009 (0.009, and
0.017) for ACC (F1 and MCC). The second-best-performing model is TFeXception, achiev-
ing a median ACC of 0.982 (σ = 0.009), a median F1 of 0.982 (σ = 0.009), and a median MCC
of 0.966 (σ = 0.017). The third-best-performing model is TFtVGG19, achieving a median
ACC of 0.982 (σ = 0.017), a median F1 of 0.982 (σ = 0.018), and a median MCC of 0.966 (σ
= 0.030). The worst-performing model is TFtResNet152V2, yielding a median ACC of 0.785

Figure 5. Boxplots show testing (generalization) performance results of ten models during five-fold
cross-validation. ACC is accuracy. MCC is the Matthews correlation coefficient.

3.3. Classification Results
3.3.1. Training Results

In Figure 3, we report the average training accuracy and loss during the five-fold cross-
validation of ten models trained for 10 epochs. Accuracy is calculated in terms of correctly
classified training examples, while loss is calculated in terms of binary cross-entropy. These
two measures, accuracy and loss, demonstrate the ability of models to learn from data and
be capable of classifying hAT2 images during testing. At the first epoch, it can be seen that
TFeXception generated the highest average accuracy of 0.78 (and the lowest average loss
of 0.46), followed by TFeDenseNet201, generating an average accuracy (and loss) of 0.68
(and 0.60). TFtDenseNet201 generated the lowest average accuracy (and loss) of 0.42 (and
1.67). At the second epoch, TFeXception adapted more to the training data by generating
the highest average accuracy of 0.96 (and the lowest average loss of 0.13), followed by
TFeDenseNet201, which achieved the second highest average accuracy of 0.95 (with an
average loss of 0.17). As the number of epochs increases, the accuracy and loss increase
and decrease, respectively, in which all models, except TFeVGG19, achieved an average
accuracy of above 0.998 and an average loss close to 0. For each epoch, we included average
accuracy and loss in the Supplementary Epoch.

Mathematics 2024, 12, 1573 10 of 16

Figure 4 illustrates the total running time for each model induction process during the
five-fold cross-validation. TFeXception is the fastest. Particularly, TFeXception is 89.03× faster
than its counterpart, TFtXception. The second fastest method is TFeDenseNet201, which is
12.37× faster than TFtDenseNet201. The third fastest method is TFeResNet152V2, which
is 9.26× faster than TFtResNet152V2. The slowest mode among the TFe-based methods is
TFeVGG19, which is 11.42× faster than TFtVGG19. The running time difference between the
fastest two methods, TFeXception and TFeDenseNet201, is marginal. Particularly, they differ
by less than 1 s. These results demonstrate the computational efficiency of TFe-based models,
attributed to fewer layers during the training phase.

3.3.2. Testing Results

In Figure 5, boxplots demonstrate the generalization (testing) results of ten models
when employing five-fold cross-validation. The median results are displayed by the hor-
izontal bold lines crossing each box. It can be noticed that TFeDenseNet201 is the best
performing model, achieving the highest median of 1.00 according to the three performance
measures (i.e., ACC, F1, and MCC), where the standard deviation σ is 0.009 (0.009, and
0.017) for ACC (F1 and MCC). The second-best-performing model is TFeXception, achiev-
ing a median ACC of 0.982 (σ = 0.009), a median F1 of 0.982 (σ = 0.009), and a median
MCC of 0.966 (σ = 0.017). The third-best-performing model is TFtVGG19, achieving a
median ACC of 0.982 (σ = 0.017), a median F1 of 0.982 (σ = 0.018), and a median MCC
of 0.966 (σ = 0.030). The worst-performing model is TFtResNet152V2, yielding a median
ACC of 0.785 (σ = 0.064), a median F1 of 0.782 (σ = 0.071), and a median MCC of 0.590
(σ = 0.119). Although TFtVGG19 and TFeXception achieved the same results, the standard
deviation for TFtVGG19 demonstrates greater variability in performance results, attributed
to degradation in performance in two testing folds when compared to TFeXception. We
report the median results in the Supplementary BoxplotMed.

Table 4 records the five-fold cross-validation results, which are calculated on the basis
of averaging the performance results on five testing folds. Also, we recorded the standard
deviation. It can be noticed that TFeDenseNet201 is the best-performing model, achieving
the highest average ACC of 0.993 (σ = 0.008), the highest average F1 of 0.992 (σ = 0.009), and
the highest average MCC of 0.986 (σ = 0.018). TFeXception is the second-best-performing
model, yielding an average ACC of 0.989 (σ = 0.008), an average F1 of 0.989 (σ = 0.009),
and an average MCC of 0.979 (σ = 0.018). TFtVGG19 is the third-best-performing model,
achieving an average ACC of 0.982 (σ = 0.015), an average F1 of 0.981 (σ = 0.018), and
an average MCC of 0.966 (σ = 0.033). The worst-performing model is TFtResNet152V2,
generating an average ACC of 0.790 (σ = 0.058), an average F1 of 0.787 (σ = 0.071), and an
average MCC of 0.608 (σ = 0.133). These results demonstrate the superiority of TFe-based
models over TFt-based models.

Table 4. Average performance results during the five-fold cross-validation on test folds for ten models.
ACC is accuracy. MCC is the Matthews correlation coefficient. Bold refers to a model achieving the
highest performance results.

Model ACC F1 MCC

TFeDenseNet201 0.993 (0.008) 0.992 (0.009) 0.986 (0.018)
TFeNasNetMobile 0.975 (0.020) 0.975 (0.023) 0.951 (0.046)
TFeResNet152V2 0.958 (0.023) 0.958 (0.025) 0.917 (0.052)

TFeVGG19 0.947 (0.018) 0.944 (0.023) 0.899 (0.038)
TFeXception 0.989(0.008) 0.989 (0.009) 0.979 (0.018)

TFtDenseNet201 0.937 (0.044) 0.938 (0.049) 0.877 (0.099)
TFtNasNetMobile 0.937 (0.016) 0.938 (0.018) 0.875 (0.037)
TFtResNet152V2 0.790 (0.058) 0.787 (0.071) 0.608 (0.133)

TFtVGG19 0.982 (0.015) 0.981 (0.018) 0.966 (0.033)
TFtXception 0.934 (0.065) 0.938 (0.066) 0.872 (0.140)

Mathematics 2024, 12, 1573 11 of 16

Figure 6 illustrates the combined confusion matrices of test predictions when run-
ning five-fold cross-validation. The best-performing model, TFeDeNseNet201, accurately
predicted a total of 284 out of 286 hAT2 images while incorrectly predicting 2 images in
which the ground truth was infected (positive) and predicted as control (negative), which
counted as 2 FN. The second-best-performing model, TFeXception, accurately predicted
283 hAT2 images, while 3 images were incorrectly predicted as negative when their actual
label was positive, which counted as 3 FN. TFtVGG19, the third-best-performing model,
accurately predicted 281 hAT2 images and incorrectly predicted 5 as negative hAT2 images
when their actual label was positive, which counted as 5 FN. The worst-performing model,
TFtResNet152V2, accurately predicted 226 hAT2 images. A total of 31 hAT2 images were
predicted to be positive when their label was negative, which counted as 31 FP. Moreover,
29 hAT2 images were predicted to be negative when their actual label was positive, which
counted as 29 FN.

Mathematics 2024, 12, 1573 11 of 16

Figure 6. The combined confusion matrices of five testing folds during the running of five-fold cross-
validation for ten models.

Figure 7 depicts computational insights for the generalization ability of ten studied
models, applied to testing. It can be seen from the boxplots and strip charts that the pre-
diction differences for TFeDenseNet201 between the control hAT2 against infected hAT2
were statistically significant (P < 2.2 × 10 , obtained from a t-test), suggesting that the
TFeDenseNet201 model is a general predictor for control or infected hAT2 prediction. The
prediction differences for the second- and third-best-performing models (i.e., TFeXception
and TFtVGG19) were not significant (P = 0.4838 and P = 0.1442, respectively, obtained from
a t-test). These results suggest that these two models are specific rather than general pre-
dictors for hAT2. The other two models, TFeVGG19 and TFtNasNetMobile, exhibited sig-
nificant prediction differences between control and infected hAT2 (P = 3.84 × 10 and P
= 4.0 × 10 , respectively, obtained from a t-test), although their prediction performance
does not outperform TFeDenseNet201. The prediction differences for all other models be-
tween control and infected hAT2 were not significant, suggesting that these models are
specific predictors, and we included their P-values in the Supplementary BoxStripPval.

Figure 7. Boxplots and strip charts of predicted hAT2 for control and infected cells on the whole
testing folds related to ten models.

Figure 6. The combined confusion matrices of five testing folds during the running of five-fold
cross-validation for ten models.

Figure 7 depicts computational insights for the generalization ability of ten studied
models, applied to testing. It can be seen from the boxplots and strip charts that the
prediction differences for TFeDenseNet201 between the control hAT2 against infected hAT2
were statistically significant (P < 2.2 × 10−16, obtained from a t-test), suggesting that the
TFeDenseNet201 model is a general predictor for control or infected hAT2 prediction. The
prediction differences for the second- and third-best-performing models (i.e., TFeXception
and TFtVGG19) were not significant (P = 0.4838 and P = 0.1442, respectively, obtained
from a t-test). These results suggest that these two models are specific rather than general
predictors for hAT2. The other two models, TFeVGG19 and TFtNasNetMobile, exhibited
significant prediction differences between control and infected hAT2 (P = 3.84 × 10−3 and
P = 4.0 × 10−2, respectively, obtained from a t-test), although their prediction performance
does not outperform TFeDenseNet201. The prediction differences for all other models
between control and infected hAT2 were not significant, suggesting that these models are
specific predictors, and we included their p-values in the Supplementary BoxStripPval.

Mathematics 2024, 12, 1573 12 of 16

Mathematics 2024, 12, 1573 11 of 16

Figure 6. The combined confusion matrices of five testing folds during the running of five-fold cross-
validation for ten models.

Figure 7 depicts computational insights for the generalization ability of ten studied
models, applied to testing. It can be seen from the boxplots and strip charts that the pre-
diction differences for TFeDenseNet201 between the control hAT2 against infected hAT2
were statistically significant (P < 2.2 × 10 , obtained from a t-test), suggesting that the
TFeDenseNet201 model is a general predictor for control or infected hAT2 prediction. The
prediction differences for the second- and third-best-performing models (i.e., TFeXception
and TFtVGG19) were not significant (P = 0.4838 and P = 0.1442, respectively, obtained from
a t-test). These results suggest that these two models are specific rather than general pre-
dictors for hAT2. The other two models, TFeVGG19 and TFtNasNetMobile, exhibited sig-
nificant prediction differences between control and infected hAT2 (P = 3.84 × 10 and P
= 4.0 × 10 , respectively, obtained from a t-test), although their prediction performance
does not outperform TFeDenseNet201. The prediction differences for all other models be-
tween control and infected hAT2 were not significant, suggesting that these models are
specific predictors, and we included their P-values in the Supplementary BoxStripPval.

Figure 7. Boxplots and strip charts of predicted hAT2 for control and infected cells on the whole
testing folds related to ten models.

Figure 7. Boxplots and strip charts of predicted hAT2 for control and infected cells on the whole
testing folds related to ten models.

4. Discussion

To discriminate between control and infected hAT2 cells, our approach consisted of
two parts: data preprocessing followed by DTL. In the data preprocessing, we randomly
pulled a sample of 286 images pertaining to infected and control hAT2 cells, followed by us-
ing the Image library in Python to convert 286 TIFF images of a 4096 × 4224 pixel resolution
to 286 jpg images of a 256 × 256 pixel resolution, which are included in the Supplemen-
tary Dataset. Then, we conducted two DTL computations using five pre-trained models,
namely DenseNet201, NasNetMobile, ResNet152V2, VGG19, and Xception. The first DTL
transferred the knowledge by applying the feature extraction part of pre-trained models
to hAT2 images in the training set, extracting features that are flattened and providing
them as inputs to a densely connected classifier of three layers, trained from scratch to
deal with two class labels (i.e., control and infected). We refer to models using this type of
transfer learning computation as TFeDenseNet201, TFeNasNetMobile, TFeResNet152V2,
TFeVGG19, and TFeXception. The second DTL computation involves the use of the first
layers in pre-trained models for feature extraction while training from scratch the next lay-
ers, including the densely connected classifier, dealing with discriminating between control
and infected hAT2 images. Such computation leads to another five DTL models, including
TFtDenseNet201, TFtNasNetMobile, TFtResNet152V2, TFtVGG19, and TFtXception.

When we employed five-fold cross-validation, we divided the dataset into training
and testing, in which the former had examples from four folds while the latter had examples
from the remaining one fold. Then, we performed training, monitoring the accuracy and
loss on the training fold. After finishing ten epochs, we recorded the loss and accuracy
results, and we induced a total of ten DTL models. Then, we applied each DTL to examples
in the testing fold and recorded the performance results. We repeated such a process for
four more runs, recording the results, followed by taking the average loss and accuracy
(see Figure 3) and reporting the average testing results and standard deviation (see Table 4).
The experimental results demonstrate the feasibility of DTL in tackling the studied classi-
fication task, in which TFeDenseNet201 generated the highest average ACC of 0.993, the
highest average F1 of 0.992, and the highest average MCC of 0.986.

It is worth noting that the frozen layers in DTL contributed to reducing the number of
trainable layers and, thereby, the mitigation of overfitting. We introduced the dropout layer
in the densely connected classifier of TFe-based models to reduce overfitting. In TFe-based

Mathematics 2024, 12, 1573 13 of 16

models, we just trained the densely connected classifier composed of three layers, while
we trained the top layers in the feature extraction part in addition to the densely connected
classifier for TFt-based models. Therefore, we had three unfrozen layers in TFe-based
models (see Table 2) while having a different number of unfrozen layers for TFt-based
models (see Table 3).

For the extracted features via studied models when considering TFeVGG19, the output
shape of the feature extraction part is (none, 8, 8, 512), which is flattened to an output shape
of (none, 32768) and provided to a trained densely connected classifier from scratch in
which the first dense layer has an output shape of (none, 256) and the number of parameters
is 8388864. The second dense layer produces an output shape of (none, 1), and the number
of parameters is 257. In TFtVGG19, we froze the first layers while unfreezing the top layers
that were jointly trained with the densely connected classifier. It is evident that TFe-based
models are faster because the extracted features are provided to train a densely connected
classifier, although both TFeVGG19 and TFtVGG19 have the same output shape fed as an
input to the densely connected classifier. Moreover, the number of parameters in densely
connected classifiers for TFe-based models is equal to the number of parameters in densely
connected classifiers for counterpart models in TFt-based models. We provide details about
all of the models in the Supplementary TFeModels and TFeModels.

In Table 1, we present twenty existing studies to show that our study is unique in
terms of the scanning method (see the scanning column) to obtain images as well as the
studied cell type (see the cell type column). It is evident that no DL study, to the best
of our knowledge, coincides with our work, although all of these studies share the same
classification task of discriminating between healthy and infected patients with SARS-
CoV-2. Therefore, we are the first, to the best of our knowledge, to investigate COVID-19
classification using DL at the lung cellular level concerning AT2 cells in response to SARS-
CoV-2 infection.

In terms of the computational training running time, the two DTL computations were
efficient. The DTL computation inducing TFe-based models was more efficient, attributed
to the training of just the densely connected classifier. Therefore, it is no surprise that the
training time to induce DTL models was longer for computations involving the induc-
tion of TFt-based models than for computations involved in inducing TFe-based models
(see Figure 4). The slowest TFe-based model was TFeVGG19, which was 11.42× faster
than TFtVGG19, the TFt-based model. These results demonstrate that DTL computation-
inducing TFe-based models can efficiently address the task of discriminating between
infected and control hAT2 cells.

In the pre-trained models, the final layer in the densely connected classifier had a
softmax activation for the last layer pertaining to 1000 classes. In our study, we replaced
the densely connected classifier in which the final layer had a sigmoid activation producing
probabilities. When a probability was greater than 0.5, we classified an image as an infected
hAT2 cell. Otherwise, we classified the image as a control (healthy) hAT2 cell. Obtaining
DTL models in terms of the second computation is time-consuming, and utilizing ten-fold
cross-validation requires a training process to be performed ten times, attributed to the ten
runs in ten-fold cross-validation. Therefore, we utilized five-fold cross-validation as a less
time-consuming option in which we have five runs, where in each run, we performed one
training process to achieve a model and perform predictions for the testing set.

5. Conclusions and Future Work

To address the novel target task of classifying control and infected human alveolar
type II (hAT2) cells with SARS-CoV-2, we assessed and presented ten deep transfer learning
(DTL) models, derived as follows: First, we downloaded and processed a total of 286 images
from the electron microscopy public image archive, pertaining to control and infected
hAT2 cells with SARS-CoV-2. Second, we utilized five pre-trained models (DenseNet201,
NasNetMobile, ResNet152V2, VGG19, and Xception), previously trained on more than a
million images from the ImageNet database. Then, we applied the feature extraction part

Mathematics 2024, 12, 1573 14 of 16

in pre-trained models to extract features from hAT2 images in the training set, followed
by performing a flattening step before providing the feature vectors to a modified densely
connected classifier with the Adam optimizer, trained from scratch to discriminate between
control and infected samples. Another DTL computation involved freezing the first layers
in the feature extraction part of pre-trained models while unfreezing and training the next
layers, including a modified densely connected classifier coupled with the Adam optimizer.
The experimental results on the entire dataset of 286 hAT2 images employing five-fold
cross-validation demonstrate (1) the efficiency of the TFeDenseNet201 model, which was
12.37× faster than its counterpart, TFtDenseNet201, during the training time; (2) the
superiority of TFeDenseNet201, achieving the highest average ACC of 0.993 (σ = 0.008), the
highest average F1 of 0.992 (σ = 0.009), and the highest average MCC of 0.986 (σ = 0.018),
outperforming its counterpart,TFtDenseNet201, which achieved an average ACC of 0.937
(σ = 0.044), an average F1 of 0.938 (σ = 0.049), and an average MCC of 0.877(σ = 0.099);
(3) the significant results achieved via TFeDenseNet201 (P < 2.2 × 10−16, obtained from
a t-test), while TFtDenseNet201 did not establish significance (P = 0.093, obtained from a
t-test); and (4) the feasibility and reliability of the presented TFeDenseNet201 (among other
DTL models) as an assisting AI tool for classifying hAT2 cells based on TEM images.

Future work can include the following: (1) inducing medical-based imaging models
derived from DTL and thereby efficiently addressing different target tasks pertaining to
neurological disorders [47]; (2) developing ensemble models using DTL methods and eval-
uating their generalization performance; and (3) integrating genomic, clinical information,
and features using DTL models to improve the prediction performance in problems from
biology and medicine.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/math12101573/s1. The README file provides a quick guide
about each file included in this study.

Author Contributions: T.T. conceived and designed the study. T.T. performed the analysis. T.T.
and Y.-h.T. evaluated the results and discussions. T.T., S.A.H. and Y.-h.T. wrote the manuscript. T.T.
supervised the study. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The hAT2 dataset in this study is available at https://www.ebi.ac.uk/
empiar/EMPIAR-10533/; accessed on 13 March 2023.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DL Deep Learning
DTL Deep Transfer Learning
DenseNet Dense Convolutional Network
NasNet Neural Architecture Search Network
ResNet Residual Neural Network
VGG Visual Geometry Group
Xception Extreme Inception
CNN Convolutional Neural Network
hAT2 Human Alveolar Type II
SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2
COVID-19 Coronavirus Disease 19
Adam Adaptive Moment Estimation
EMPIAR Electron Microscopy Public Image Archive

https://www.mdpi.com/article/10.3390/math12101573/s1
https://www.mdpi.com/article/10.3390/math12101573/s1
https://www.ebi.ac.uk/empiar/EMPIAR-10533/
https://www.ebi.ac.uk/empiar/EMPIAR-10533/

Mathematics 2024, 12, 1573 15 of 16

CT Computerized Tomography
TEM Transmission Electron Microscopy
ACC Accuracy
MCC Matthews Correlation Coefficient

References
1. Van Slambrouck, J.; Khan, M.; Verbeken, E.; Choi, S.; Geudens, V.; Vanluyten, C.; Feys, S.; Vanhulle, E.; Wollants, E.; Vermeire, K.

Visualising SARS-CoV-2 infection of the lung in deceased COVID-19 patients. EBioMedicine 2023, 92, 104608. [CrossRef] [PubMed]
2. Gerard, L.; Lecocq, M.; Bouzin, C.; Hoton, D.; Schmit, G.; Pereira, J.P.; Montiel, V.; Plante-Bordeneuve, T.; Laterre, P.-F.; Pilette, C.

Increased angiotensin-converting enzyme 2 and loss of alveolar type II cells in COVID-19–related acute respiratory distress
syndrome. Am. J. Respir. Crit. Care Med. 2021, 204, 1024–1034. [CrossRef] [PubMed]

3. Taguchi, Y.; Turki, T. A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor
decomposition-based unsupervised feature extraction. PLoS ONE 2020, 15, e0238907. [CrossRef] [PubMed]

4. Kathiriya, J.J.; Wang, C.; Zhou, M.; Brumwell, A.; Cassandras, M.; Le Saux, C.J.; Cohen, M.; Alysandratos, K.-D.; Wang, B.;
Wolters, P. Human alveolar type 2 epithelium transdifferentiates into metaplastic KRT5+ basal cells. Nat. Cell Biol. 2022, 24, 10–23.
[CrossRef] [PubMed]

5. Hussein, A.M.; Sharifai, A.G.; Alia, O.M.d.; Abualigah, L.; Almotairi, K.H.; Abujayyab, S.K.; Gandomi, A.H. Auto-detection of
the coronavirus disease by using deep convolutional neural networks and X-ray photographs. Sci. Rep. 2024, 14, 534. [CrossRef]

6. Abdulahi, A.T.; Ogundokun, R.O.; Adenike, A.R.; Shah, M.A.; Ahmed, Y.K. PulmoNet: A novel deep learning based pulmonary
diseases detection model. BMC Med. Imaging 2024, 24, 51. [CrossRef] [PubMed]

7. Talukder, M.A.; Layek, M.A.; Kazi, M.; Uddin, M.A.; Aryal, S. Empowering COVID-19 detection: Optimizing performance
through fine-tuned efficientnet deep learning architecture. Comput. Biol. Med. 2024, 168, 107789. [CrossRef]

8. Abdullah, M.; Kedir, B.; Takore, T.T. A Hybrid Deep Learning CNN model for COVID-19 detection from chest X-rays. Heliyon
2024, 10, e26938. [CrossRef]

9. Haennah, J.J.; Christopher, C.S.; King, G.G. Prediction of the COVID disease using lung CT images by deep learning algorithm:
DETS-optimized Resnet 101 classifier. Front. Med. 2023, 10, 1157000. [CrossRef]

10. Celik, G. Detection of COVID-19 and other pneumonia cases from CT and X-ray chest images using deep learning based on
feature reuse residual block and depthwise dilated convolutions neural network. Appl. Soft Comput. 2023, 133, 109906. [CrossRef]

11. Park, D.; Jang, R.; Chung, M.J.; An, H.J.; Bak, S.; Choi, E.; Hwang, D. Development and validation of a hybrid deep learning–
machine learning approach for severity assessment of COVID-19 and other pneumonias. Sci. Rep. 2023, 13, 13420. [CrossRef]
[PubMed]

12. Okada, N.; Umemura, Y.; Shi, S.; Inoue, S.; Honda, S.; Matsuzawa, Y.; Hirano, Y.; Kikuyama, A.; Yamakawa, M.; Gyobu, T.; et al.
“KAIZEN” method realizing implementation of deep-learning models for COVID-19 CT diagnosis in real world hospitals. Sci.
Rep. 2024, 14, 1672. [CrossRef] [PubMed]

13. Salama, G.M.; Mohamed, A.; Abd-Ellah, M.K. COVID-19 classification based on a deep learning and machine learning fusion
technique using chest CT images. Neural Comput. Appl. 2024, 36, 5347–5365. [CrossRef]

14. Ju, H.; Cui, Y.; Su, Q.; Juan, L.; Manavalan, B. CODE-NET: A deep learning model for COVID-19 detection. Comput. Biol. Med.
2024, 171, 108229. [CrossRef] [PubMed]

15. Chollet, F. Deep Learning with Python; Simon and Schuster: New York, NY, USA, 2021.
16. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017; pp. 4700–4708.
17. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8697–8710.
18. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Proceedings of the Computer Vision–ECCV

2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part IV 14. pp. 630–645.
19. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd

International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.
20. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.
21. Oğuz, Ç.; Yağanoğlu, M. Detection of COVID-19 using deep learning techniques and classification methods. Inf. Process. Manag.

2022, 59, 103025. [CrossRef] [PubMed]
22. Haghanifar, A.; Majdabadi, M.M.; Choi, Y.; Deivalakshmi, S.; Ko, S. Covid-cxnet: Detecting COVID-19 in frontal chest X-ray

images using deep learning. Multimed. Tools Appl. 2022, 81, 30615–30645. [CrossRef] [PubMed]
23. Bhattacharyya, A.; Bhaik, D.; Kumar, S.; Thakur, P.; Sharma, R.; Pachori, R.B. A deep learning based approach for automatic

detection of COVID-19 cases using chest X-ray images. Biomed. Signal Process. Control 2022, 71, 103182. [CrossRef]
24. Chouat, I.; Echtioui, A.; Khemakhem, R.; Zouch, W.; Ghorbel, M.; Hamida, A.B. COVID-19 detection in CT and CXR images

using deep learning models. Biogerontology 2022, 23, 65–84. [CrossRef]
25. Asif, S.; Zhao, M.; Tang, F.; Zhu, Y. A deep learning-based framework for detecting COVID-19 patients using chest X-rays.

Multimed. Syst. 2022, 28, 1495–1513. [CrossRef]

https://doi.org/10.1016/j.ebiom.2023.104608
https://www.ncbi.nlm.nih.gov/pubmed/37224768
https://doi.org/10.1164/rccm.202012-4461OC
https://www.ncbi.nlm.nih.gov/pubmed/34449302
https://doi.org/10.1371/journal.pone.0238907
https://www.ncbi.nlm.nih.gov/pubmed/32915876
https://doi.org/10.1038/s41556-021-00809-4
https://www.ncbi.nlm.nih.gov/pubmed/34969962
https://doi.org/10.1038/s41598-023-47038-3
https://doi.org/10.1186/s12880-024-01227-2
https://www.ncbi.nlm.nih.gov/pubmed/38418987
https://doi.org/10.1016/j.compbiomed.2023.107789
https://doi.org/10.1016/j.heliyon.2024.e26938
https://doi.org/10.3389/fmed.2023.1157000
https://doi.org/10.1016/j.asoc.2022.109906
https://doi.org/10.1038/s41598-023-40506-w
https://www.ncbi.nlm.nih.gov/pubmed/37591967
https://doi.org/10.1038/s41598-024-52135-y
https://www.ncbi.nlm.nih.gov/pubmed/38243054
https://doi.org/10.1007/s00521-023-09346-7
https://doi.org/10.1016/j.compbiomed.2024.108229
https://www.ncbi.nlm.nih.gov/pubmed/38447500
https://doi.org/10.1016/j.ipm.2022.103025
https://www.ncbi.nlm.nih.gov/pubmed/35821878
https://doi.org/10.1007/s11042-022-12156-z
https://www.ncbi.nlm.nih.gov/pubmed/35431611
https://doi.org/10.1016/j.bspc.2021.103182
https://doi.org/10.1007/s10522-021-09946-7
https://doi.org/10.1007/s00530-022-00917-7

Mathematics 2024, 12, 1573 16 of 16

26. Ullah, N.; Khan, J.A.; Almakdi, S.; Khan, M.S.; Alshehri, M.; Alboaneen, D.; Raza, A. A novel CovidDetNet deep learning model
for effective COVID-19 infection detection using chest radiograph images. Appl. Sci. 2022, 12, 6269. [CrossRef]

27. Zouch, W.; Sagga, D.; Echtioui, A.; Khemakhem, R.; Ghorbel, M.; Mhiri, C.; Hamida, A.B. Detection of COVID-19 from CT and
Chest X-ray Images Using Deep Learning Models. Ann. Biomed. Eng. 2022, 50, 825–835. [CrossRef]

28. Ayalew, A.M.; Salau, A.O.; Tamyalew, Y.; Abeje, B.T.; Woreta, N. X-Ray image-based COVID-19 detection using deep learning.
Multimed. Tools Appl. 2023, 82, 44507–44525. [CrossRef]

29. Constantinou, M.; Exarchos, T.; Vrahatis, A.G.; Vlamos, P. COVID-19 classification on chest X-ray images using deep learning
methods. Int. J. Environ. Res. Public Health 2023, 20, 2035. [CrossRef]

30. Patro, K.K.; Allam, J.P.; Hammad, M.; Tadeusiewicz, R.; Pławiak, P. SCovNet: A skip connection-based feature union deep
learning technique with statistical approach analysis for the detection of COVID-19. Biocybern. Biomed. Eng. 2023, 43, 352–368.
[CrossRef]

31. Zhu, H.; Zhu, Z.; Wang, S.; Zhang, Y. CovC-ReDRNet: A Deep Learning Model for COVID-19 Classification. Mach. Learn. Knowl.
Extr. 2023, 5, 684–712. [CrossRef]

32. Chakraborty, G.S.; Batra, S.; Singh, A.; Muhammad, G.; Torres, V.Y.; Mahajan, M. A Novel Deep Learning-Based Classification
Framework for COVID-19 Assisted with Weighted Average Ensemble Modeling. Diagnostics 2023, 13, 1806. [CrossRef]

33. Gaur, L.; Bhatia, U.; Jhanjhi, N.; Muhammad, G.; Masud, M. Medical image-based detection of COVID-19 using Deep Convolution
Neural Networks. Multimed. Syst. 2023, 29, 1729–1738. [CrossRef]

34. Kathamuthu, N.D.; Subramaniam, S.; Le, Q.H.; Muthusamy, S.; Panchal, H.; Sundararajan, S.C.M.; Alrubaie, A.J.; Zahra, M.M.A.
A deep transfer learning-based convolution neural network model for COVID-19 detection using computed tomography scan
images for medical applications. Adv. Eng. Softw. 2023, 175, 103317. [CrossRef]

35. Youk, J.; Kim, T.; Evans, K.V.; Jeong, Y.-I.; Hur, Y.; Hong, S.P.; Kim, J.H.; Yi, K.; Kim, S.Y.; Na, K.J. Three-dimensional human
alveolar stem cell culture models reveal infection response to SARS-CoV-2. Cell Stem Cell 2020, 27, 905–919.e10. [CrossRef]

36. Clark, A. Pillow (pil fork) documentation, readthedocs. 2015.
37. Alghamdi, S.; Turki, T. A novel interpretable deep transfer learning combining diverse learnable parameters for improved T2D

prediction based on single-cell gene regulatory networks. Sci. Rep. 2024, 14, 4491. [CrossRef]
38. Turki, T.; Wei, Z. Boosting support vector machines for cancer discrimination tasks. Comput. Biol. Med. 2018, 101, 236–249.

[CrossRef] [PubMed]
39. Fatica, M. CUDA toolkit and libraries. In Proceedings of the 2008 IEEE Hot Chips 20 Symposium (HCS), Stanford, CA, USA,

24–26 August 2008; pp. 1–22.
40. Chetlur, S.; Woolley, C.; Vandermersch, P.; Cohen, J.; Tran, J.; Catanzaro, B.; Shelhamer, E. cuDNN: Efficient primitives for deep

learning. arXiv 2014, arXiv:1410.0759.
41. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M. TensorFlow:

A system for Large-Scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

42. Granger, B.E.; Pérez, F. Jupyter: Thinking and storytelling with code and data. Comput. Sci. Eng. 2021, 23, 7–14. [CrossRef]
43. Perez, F.; Granger, B.E. Project Jupyter: Computational narratives as the engine of collaborative data science. Retrieved Sept. 2015,

11, 108.
44. McKinney, W. Python for Data Analysis; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2022.
45. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.

Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
46. Wickham, H.; Chang, W.; Wickham, M.H. Package ‘ggplot2’. Create elegant data visualisations using the grammar of graphics.

Version 2016, 2, 1–189.
47. Suganyadevi, S.; Pershiya, A.S.; Balasamy, K.; Seethalakshmi, V.; Bala, S.; Arora, K. Deep Learning Based Alzheimer Disease

Diagnosis: A Comprehensive Review. SN Comput. Sci. 2024, 5, 391. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app12126269
https://doi.org/10.1007/s10439-022-02958-5
https://doi.org/10.1007/s11042-023-15389-8
https://doi.org/10.3390/ijerph20032035
https://doi.org/10.1016/j.bbe.2023.01.005
https://doi.org/10.3390/make5030037
https://doi.org/10.3390/diagnostics13101806
https://doi.org/10.1007/s00530-021-00794-6
https://doi.org/10.1016/j.advengsoft.2022.103317
https://doi.org/10.1016/j.stem.2020.10.004
https://doi.org/10.1038/s41598-024-54923-y
https://doi.org/10.1016/j.compbiomed.2018.08.006
https://www.ncbi.nlm.nih.gov/pubmed/30216829
https://doi.org/10.1109/MCSE.2021.3059263
https://doi.org/10.1007/s42979-024-02743-2

	Introduction and Related Work
	Materials and Methods
	Data Preprocessing
	Deep Transfer Learning

	Results
	Classification Methodology
	Implementation Details
	Classification Results
	Training Results
	Testing Results

	Discussion
	Conclusions and Future Work
	References

