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Abstract: In this study, an inverse conjugate heat transfer problem is examined to estimate temporally
and spatially the dependent unknown surface heat flux using thermography techniques with a
thermal camera in a three-dimensional domain. Thermography techniques encompass a broad set
of methods and procedures used for capturing and analyzing thermal data, while thermal cameras
are specific tools used within those techniques to capture thermal images. In the present study,
the interface conditions of the plate and air domains are obtained using perfect thermal contact
conditions, and therefore we define the problem studied as an inverse conjugate heat transfer
problem. Achieving the simultaneous solution of the continuity, Navier–Stokes, and energy equations
within the air domain, alongside the heat conduction equation in the plate domain, presents a more
intricate challenge compared to conventional inverse heat conduction problems. The validity of our
inverse solutions was verified through numerical simulations, considering various inlet air velocities
and plate thicknesses. Notably, it was found that due to the singularity of the gradient of the cost
function at the final time point, the estimated results near the final time must be discarded, and
exact measurements consistently produce accurate boundary heat fluxes under thin-plate conditions,
with air velocity exhibiting no significant impact on the estimates. Additionally, an analysis of
measurement errors and their influence on the inverse solutions was conducted. The numerical
results conclusively demonstrated that the maximum error when estimating heat flux consistently
remained below 3% and higher measurement noise resulted in the accuracy of the heat flux estimation
decreasing. This underscores the inherent challenges associated with inverse problems and highlights
the importance of obtaining accurate measurement data in the problem domain.

Keywords: inverse conjugate heat transfer problem; conjugate gradient method; spatially and
temporally dependent heat flux estimation

MSC: 65K10; 65M30; 65M32; 65Q10; 76B99

1. Introduction

Thermography is a technique used to create images of temperature variations on the
surfaces of objects by detecting the infrared radiation emitted, utilizing infrared cameras or
sensors to measure the radiation. The collected data are then converted into temperature
values and displayed as thermal images.

Thermography has applications across various fields. (a) In the medical field, it is used
for diagnosing health conditions, detecting anomalies in body temperature, and identifying
areas of inflammation or injury; (b) in building inspections, thermography is used to detect
energy inefficiencies, moisture intrusion, insulation defects, and structural anomalies in
buildings; (c) in electrical inspections, it aids in identifying overheating components, loose
connections, and potential faults in electrical systems; (d) in non-destructive testing, it is
employed to identify defects, cracks, and anomalies in materials without causing damage
to them; and (e) in industrial applications, thermography is utilized for the predictive

Mathematics 2024, 12, 1584. https://doi.org/10.3390/math12101584 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12101584
https://doi.org/10.3390/math12101584
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12101584
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12101584?type=check_update&version=2


Mathematics 2024, 12, 1584 2 of 26

maintenance of machinery, monitoring manufacturing processes, and detecting hot spots
or applied heat fluxes in industrial equipment. Overall, thermography provides valuable
insights into temperature distribution and helps diagnose problems or anomalies across
various applications. In this study, thermography technology is used to identify unknown
applied heat fluxes in inverse problems.

To classify inverse problems, we begin with the presumption of a direct problem
rooted in the field of mathematical physics. This implies that when we possess comprehen-
sive knowledge about a physical system, we are equipped with a classical mathematical
portrayal of said system, encompassing aspects such as uniqueness, stability, and the exis-
tence of solutions for the corresponding mathematical problem. However, when tasked
with determining one or more unknown parameters characterizing this system based on
additional experimental data, we are faced with an inverse problem.

Recent advancements in mathematical theory have spurred the evolution of efficient
methodologies and algorithms to tackle a range of inverse heat transfer problems. Currently,
we possess the tools necessary to successfully resolve and practically apply inverse heat
transfer problems across various applied research endeavors, as well as in the experimental
development of thermal engineering applications.

Inverse heat transfer problems encompass a spectrum of classifications, including
inverse heat conduction problems (the most prevalent), inverse heat convection problems,
inverse heat radiation problems, and inverse heat conjugation problems. Researchers
have comprehensively explored inverse problems related to heat conduction [1–9], heat
convection [10–16], and heat radiation [17–19], employing diverse algorithms. However,
investigations into inverse conjugate heat transfer problems [20–22] remain notably scarce
within the available literature.

It is worth noting that practical thermal science and engineering applications fall under
the purview of direct heat conduction–convection coupled problems. In these scenarios,
the velocity, pressure, and temperature distributions within a system can be computed
through the implementation of the known initial and boundary conditions. This entails the
simultaneous resolution of the continuity, momentum, and energy equations within the
fluid domain, along with the energy equation governing the solid domain.

Contrary to direct heat conduction–convection-coupled problems, resolving an inverse
heat conduction–convection-coupled problem involves determining either the system’s
initial condition, its boundary conditions, or any unknown functions based on the tempera-
tures measured within it. In this scenario, the continuity, momentum, and energy equations
must be tackled concurrently. This significantly complicates the computational process,
leading to a scarcity of works in the literature addressing this particular challenge.

Among the array of algorithms available for tackling inverse heat transfer problems,
gradient-based and self-regularized iterative algorithms stand out as potent optimization
tools. This method is particularly renowned for its effectiveness and efficiency when calcu-
lating the gradient of a cost function, making it a primary choice for addressing inverse heat
transfer problems. Both the steepest descent method (SDM) [23] and the conjugate gradient
method (CGM) [23] are gradient-based and self-regularized iterative algorithms. Unlike
methods that demand prior knowledge of the functional forms of unknown quantities,
these algorithms generate dependable estimates without such prerequisites. As a result,
they have emerged as potent tools for function estimation in inverse problems, particularly
for addressing three-dimensional challenges.

For example, Zhou et al. [24] utilized the conjugate gradient method (CGM) in an
inverse heat conduction problem to estimate the heat flux and temperature distribution on
the front surface of a three-dimensional object based on measurements taken on the back
surface. Their numerical findings revealed that the CGM was highly effective, accurately
estimating the two-dimensional heat flux and temperature distribution on the front surface
through inverse estimations. Huang and Wang [25] employed the CGM to tackle a transient
three-dimensional heat conduction inverse problem, aiming to estimate the unknown
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time-dependent boundary heat flux. Their study revealed averaged relative errors of 8.3%
and 3.7% for Cases 1 and 2, respectively, with a 2% measurement error.

Huang and Chen [26] utilized the CGM to address a three-dimensional irregular-duct
flow problem within the inverse heat convection domain, aiming to estimate the unknown
boundary heat flux. Their investigation revealed that the error in the estimated heat flux
increased proportionally with the duct thickness. Zhang et al. [27] conducted a study
on an inverse heat radiation problem, aiming to simultaneously estimate the radiative
properties (namely, the extinction coefficient, scattering albedo, and wall emissivity) of
a cylindrical system. They based their analysis on the radiative heat flux measurements
obtained from various boundaries and employed the CGM. Their findings demonstrated
that the proposed inverse analysis method effectively retrieved the previously unknown
radiative physical properties of the cylindrical system.

It should be noted that the above problems are related to inverse heat conduction,
convection, or radiation; no inverse heat conjugated problems were investigated. Recently,
Huang and He [21] employed the CGM for the first time to determine the unknown space-
dependent heat flux in a steady-state 3-D inverse conjugate heat transfer problem, and
subsequently [22] conducted experiments to verify the validity of the CGM when estimating
the heat flux of a steady-state inverse heat conduction–convection conjugated problem. To
our knowledge, the CGM has not been previously applied to address a three-dimensional
time-dependent inverse heat conduction–convection conjugated problem.

An advantage of the CGM lies in its ability to handle problems without prior knowl-
edge of the functional form of the unknown functions. This allows for the correction and
estimation of a large number of unknowns in each iteration, consistently yielding accurate
estimates. In addition, CFD-ACE+ [28] is a commercial computational fluid dynamics
solver that solves the conservation equations of mass, momentum, energy, chemical species,
and other scalar transport equations using the finite volume method. These equations en-
able coupled simulations of fluid, thermal, chemical, biological, electrical, and mechanical
phenomena. It has been widely employed in numerous studies on inverse problems [21,22]
for direct problem computations.

Therefore, the present study demonstrates the first use of the CGM for optimization,
utilizing CFD-ACE+ as a computational tool, to address a 3-D transient inverse conju-
gate heat transfer problem that predicts boundary heat flux, which varies both spatially
and temporally.

2. The Direct Problem

The CGM was employed in conjunction with thermography technology to predict
the bottom surface heat flux, which is a function of space and time in a three-dimensional
inverse conjugate heat transfer problem, of a rectangular plate. The computational domain,
denoted as Ω, consists of two sub-domains: a plate sub-domain, Ωp, and an air sub-domain,
Ωa. The flat plate is positioned within a rectangular duct, where its lower surface Sbottom
experiences an unknown heat flux, q(Sbottom,t), while incompressible ambient air with the
inlet velocity and ambient temperature Uin and T∞, respectively, flows into Ω, contributing
to the cooling of the rectangular plate. The initial temperature conditions for both Ωp and
Ωa are set as equal to the ambient temperature T∞.

The boundary interface surfaces between Ωp and Ωa adhere to the perfect thermal
contact condition, ensuring that the temperature and heat flux of the plate match those
of the air on the interface surfaces. Figure 1 illustrates the geometry and computational
domain considered in the present work.
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Figure 1. (a) The computational domain and model geometry used in this study and (b) the plots of 
the grid independence test. 
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Figure 1. (a) The computational domain and model geometry used in this study and (b) the plots of
the grid independence test.

The mathematical models for the present direct problem are illustrated below.

(I) Plate domain (Ωp)

ρpcpp
∂Tp

∂t
= kp∇2Tp, t > 0 (1)
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where kp, ρp, cpp, and Tp indicate the thermal conductivity, density, heat capacity, and
temperature of the plate, respectively.

The initial condition of the plate is equal to T∞, and an unknown heat flux q(Sbottom)
is applied to the bottom surface Sbottom, i.e.,

Tp
(
Ωp, 0

)
= T∞ at t = 0 (2a)

−kp
∂Tp

∂n
= q(Sbottom, t) on Sbottom, t > 0 (2b)

(II) Air domain (Ωa)

The mathematical models for the continuity, Navier–Stokes, and energy equations for
the air domain are as follows:

∇ · U = 0 (3)

ρa
DU
Dt

= ρa

[
∂U
∂t

+ (U · ∇)U
]
= −∇P + µ∇2U +

1
3
µ∇(∇ · U) + ρag, t > 0 (4)

ρacpa
DTa

Dt
= ρacpa

[
∂Ta

∂t
+ (U · ∇)Ta

]
= ka∇2Ta + µΦ, t > 0 (5)

Here, ka, ρa, cpa, Ta, and U symbolize the air thermal conductivity, density, heat
capacity, temperature, and velocity vector, respectively. The inlet and initial conditions of
air are given below:

Uin = uin and Ta,in = T∞, t > 0 (6a)

Ta(Ωa, 0) = T∞ (6b)

The viscous dissipation function, denoted as Φ, is specified as:

Φ = 2[(
∂u
∂x

)
2
+ (

∂v
∂y

)
2
+ (

∂w
∂z

)
2
] + (

∂u
∂y

+
∂v
∂x

)
2
+ (

∂w
∂y

+
∂v
∂z

)
2
+ (

∂w
∂x

+
∂u
∂z

)
2
− 2

3
(∇ · U)2 (7)

(III) Plate–air interface (SΩp∩Ωa )

The interface conditions of Ωp and Ωa are as follows:

−kp
∂Tp

∂n
= −ka

∂Ta

∂n
and Tp = Ta, on SΩp∩Ωa , t > 0 (8)

The software package CFD-ACE+ is utilized to compute the solutions for the above
direct problem in Ω.

3. The Inverse Problem

In the context of the 3-D inverse heat conduction–convection-coupled problem under
consideration, the boundary heat flux q(Sbottom,t) is regarded as unknown, varying in
both space and time. All other terms in Equations (1)–(8) are known. The temperature
measurements captured on Stop using a thermal camera are deemed available.

Consider the temperature reading for Stop, denoted as Yp(Stop,t) ≡ Yk,m, where k
ranges from 1 to K and m ranges from 1 to M. Here, k and m represent the measured
temperatures for different times and positions on Stop. It is important to note that Yp(Stop,t)
should contain errors for measurements. The addressed inverse problem is resolved by
utilizing Yp(Stop,t) to estimate the heat flux q(Sbottom,t).

The objective is to minimize the following cost function in order to estimate q(Sbottom,t):

J[q(Sbottom, t)] =
K
∑

k=1

M
∑

m=1
[Tk,m − Yk,m]

2

=
∫
t

∫
Stop

[
Tp

(
Stop, t

)
− Yp

(
Stop, t

)]2
δ(x − xm)δ(y − ym)δ(t − tk)dStopdt

(9)
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where Tk,m represent the computed values at (xm,ym,tk) and δ(•) indicates the Dirac
delta function.

4. CGM for Minimization

The iterative-based CGM [23] given below is considered to estimate the unknown heat
flux q(Sbottom,t) by minimizing the cost function J[q(Sbottom,t)]:

qn+1(Sbottom, t) = qn(Sbottom, t)− βnPn(Sbottom, t) for n = 0, 1, 2 . . . (10)

Here, βn is the search step size and Pn(Sbottom,t) is the direction of descent, which can
be obtained using the following equation:

Pn(Sbottom, t) = J′n(Sbottom, t) + γnPn−1(Sbottom, t) (11)

where J′n(Sbottom, T) ≡ J′n(qn+1) is the gradient of the cost function and the conjugate
coefficient γn can be computed from

γn =

∫
t

∫
Sbottom

(J ′n
)2

dSbottomdt∫
t

∫
Sbottom

(J ′n−1
)2

dSbottomdt
with γ0 = 0 (12)

The values of βn and J′n(Sbottom, t) must be known prior to computing the iterative
Equation (10). The values of βn and J′n(Sbottom, t) can be obtained by utilizing the solutions
of the following sensitivity and adjoint problems.

4.1. The Sensitivity Functions

The sensitivity functions are formulated by introducing a perturbation to the unknown
heat flux in the original direct problem described by Equations (1)–(8) through the following
steps. In the direct problem, q, Tp, and Ta are replaced by q + ∆q, Tp + ∆Tp, and Ta + ∆Ta,
resulting in the perturbed problem, where ∆ represents the perturbed value. Subsequently,
the direct problem is subtracted from the perturbed problem and the higher-order terms
are neglected; the sensitivity problem can then be derived.

For the linear problem considered here, the perturbation of the heat flux ∆q does
not influence the values of U and P derived from Equations (3) and (4); therefore,
Equations (3) and (4) only need to be solved once for all subsequent iterations.

(I) Plate domain (Ωp)

ρpcpp
∂∆Tp

∂t
= kp∇2∆Tp, t > 0 (13)

Here, the initial and boundary conditions of the sensitivity problem are as follows:

Tp(Ωp,0) = 0 at t = 0 (14a)

−kp
∂∆Tp

∂n
= ∆q(Sbottom, t) on Sbottom, t > 0 (14b)

(II) Air domain (Ωa)

The corresponding energy equation is shown below.

ρacpa
D∆Ta

Dt
= ρacpa

[
∂∆Ta

∂t
+ (U · ∇)∆Ta

]
= ka∇2∆Ta, t > 0 (15)

The inlet and initial conditions for the sensitivity function in Ωa can be obtained
as follows:
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Uin = uin and ∆Ta,in = 0, t > 0 (16a)

∆Ta(Ωa,0) = 0 (16b)

(III) Plate–air interface (SΩp∩Ωa )

The interface conditions are defined as follows:

−kp
∂∆Tp

∂n
= −ka

∂∆Ta

∂n
and ∆Tp = ∆Ta, on SΩp∩Ωa , t > 0 (17)

The sensitivity problem outlined above is tackled using CFD-ACE+.
To ascertain the value of βn, a modified cost function J(qn+1) is given below. In

Equation (9), Tk,m
(
qn+1) is initially replaced by Tk,m(qn − βnPn) and subsequently lin-

earized using a Taylor expansion, resulting in the expression given below:

J
[
qn+1(Sbottom, t)

]
=

K
∑

k=1

M
∑

m=1
[Tk,m(qn − βnPn)− Yk,m]

2

=
K
∑

k=1

M
∑

m=1
[Tk,m(qn)− βn∆Tk,m(Pn)− Yk,m]

2

=
∫
t

∫
Stop

[T(qn)− βn∆T(Pn)− Y]2δ(x − xm)δ(y − ym)δ(t − tk)dStopdt

(18)

The solution of Equations (13)–(17) can be solved by using ∆q = −Pn [23]. Minimizing
Equation (18) with respect to βn yields the following expression for the determination of βn:

βn =

∫
t

∫
Stop

(
Tp − Yp

)
∆Tpδ(x − xm)δ(y − ym)δ(t − tk)dStopdt∫

t

∫
Stop

∆T2
pδ(x − xm)δ(y − ym)δ(t − tk)dStopdt

(19)

4.2. The Adjoint Functions

The adjoint functions are acquired through the following process. Equations (1) and (5)
are multiplied by λp and λa, respectively, and the resultant expressions are integrated over
the corresponding time domain t and spatial domains Ωp and Ωa. Subsequently, the
outcomes are added to the right-hand side of Equation (9) to formulate the following
functional J[q(Sbottom,t)]:

J
[
qn+1(Sbottom, t)

]
=

∫
t

∫
Stop

[
Tp(qn)− βn∆Tp(Pn)− Yp

]2
δ(x − xm)δ(y − ym)δ(t − tk)dStopdt

+
∫
t

∫
Ωp

λp

[
ρpcpp

∂Tp
∂t − kp∇2Tp

]
dΩpdt

+
∫
t

∫
Ωa

λa

[
ρacpa

[
∂Ta
∂t + (U · ∇)Ta

]
− ka∇2Ta

]
dΩadt

(20)

The variation ∆J can be determined by introducing the perturbations ∆q to q, ∆Tp
to Tp, and ∆Ta to Ta in Equation (20). By subtracting the original Equation (20) from the
perturbed expression and neglecting second and higher order terms, the following equation
is obtained:

∆J
[
qn+1(Sbottom, t)

]
=

∫
t

∫
Stop

2
[
Tp(qn)− Yp

]2
δ(x − xm)δ(y − ym)δ(t − tk)dStopdt

+
∫
t

∫
Ωp

λp

[
ρpcpp

∂∆Tp
∂t − kp∇2∆Tp

]
dΩpdt

+
∫
t

∫
Ωa

λa

[
ρacpa

[
∂∆Ta

∂t + (U · ∇)∆Ta

]
− ka∇2∆Ta

]
dΩadt

(21)
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Green’s second identity is applied to simplify the last two integration terms in Equa-
tion (21); Equations (14b) and (17) are utilized; and as ∆J approaches zero, the integrands
involving ∆Tp and ∆Ta vanish. This process results in the following adjoint problem for
solving the adjoint functions λp and λa.

(I) Plate domain (Ωp)

ρpcpp
∂λp

∂t
+ kp∇2λp = 0, t > 0 (22)

where the final time and boundary conditions are given below.

λp(Ωp,tf) = 0 (23a)

−kp
∂λp

∂n
= 0 on Sbottom, t > 0 (23b)

(II) Air domain (Ωa)

ρacpa

[
∂λa

∂t
− (U · ∇)λa

]
+ ka∇2λa = 0, t > 0 (24)

The inlet and final conditions in Ωa are as follows:

Uin = uin and λa,in = 0, t > 0 (25a)

λa(Ωa,tf)= 0 (25b)

(III) Plate–air interface (SΩp∩Ωa )

The interface conditions for the surface SΩp∩Ωa are as follows:

−kp
∂λp

∂n
= −ka

∂λa

∂n
and λp = λa, on SΩp∩Ωa , t > 0; except for Stop (26)

The interface condition for Stop is as follows:

−kp
∂λp

∂n
= −ka

∂λa

∂n
− 2(Tp − Yp)δ(x − xm)δ(y − ym)δ(t − tk) and λp = λa, on Stop (27)

Equation (27) suggests that there are additional applied heat sources on the interface
surface Stop for the adjoint problem.

In addition, it is noted that the form of energy equations for the adjoint problems in Ωp
and Ωa, i.e., Equations (22) and (24), are different from the direct and sensitivity problems;
instead of the traditional initial value problem, they become the final time value problem,
and the final condition at time t = tf is specified, i.e., as in Equations (23a) and (25b). How-
ever, these problems can be transformed into an initial value problem by the transformation
of the time variables to τ = tf − t. Thereafter, the form of the energy equations becomes
identical to those of the direct and sensitivity problems, and then the solutions to the adjoint
functions outlined above can be obtained using CFD-ACE+.

Eventually, the following expression for the perturbation of cost function remains.

∆J =
∫
t

∫
Sbottom

λp∆qdSbottomdt (28)

In addition, the perturbation of the cost function can be obtained as follows [23]:

∆J =
∫
t

∫
Sbottom

J′(q)∆qtSbottomdt (29)
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A comparison of Equations (28) and (29) results in the expression of the gradient of
the cost function J′n(qn+1):

J′n(qn+1) = λp(Sbottom, t) (30)

From Equations (23a) and (25b), it is evident that the final time conditions for the
adjoint functions λp(Ωp,tf) and λa(Ωa,tf) are both equal to zero. This indicates that the
gradient of the cost function is consistently zero at t = tf. Consequently, no corrections
can be made at t = tf, and the estimated heat flux will perpetually equate to the initial
guess value.

In addition, estimations in the proximity of t = tf will suffer distortion due to singularity
at this point. To mitigate the influence of this final time effect on estimation accuracy,
extending the computational time domain is recommended. For instance, when estimating
heat flux between 1 and 95 s, extending the time domain to tf = 100 s is recommended.

4.3. Discrepancy Principle

The accuracy of any inverse problem relies entirely on the quality of the measure-
ment data. Utilizing precise measuring instruments is imperative, and fine-tuning these
instruments is also essential for acquiring the best possible measurement data.

For errorless measured data, the stopping criterion can be defined as

J
[
qn+1(Sbottom, t)

]
< ε (31)

Here, ε is a small, specified number. However, in practical scenarios where measure-
ment temperatures include errors, the cost function is not anticipated to converge to ε due
to the ill-posed nature of the inverse problem.

The discrepancy principle [21,22] is then employed to determine the value of ε. The
difference between the estimated and measured temperatures is assumed to be σ:

Tk,m − Yk,m ≈ σ (32)

Here, σ is the standard deviation of the measurements. Equation (32) is substituted
into Equation (9) to obtain the stopping criterion ε:

ε = KMσ2 (33)

5. Results and Discussion

The objective of this work is to employ the CGM for estimating the temporally and
spatially varying boundary heat flux q(Sbottom,t) in a 3-D inverse conjugate heat transfer
problem. This investigation operates under the assumption of lacking any prior knowledge
regarding the functional form of the unknown parameters. Thus, the task at hand is a
function estimation within the realm of inverse problems.

In this study, we examined a rectangular plate with the dimensions of Lx = 50 mm,
Ly = 30 mm, and Lz = 1 mm. Additionally, a duct with the dimensions of
170 mm × 70 mm × 6 mm was considered. The heating duration was fixed at 100 s for
this investigation.

To discretize the problem, the plate was divided into a grid with 80, 60, and 4 elements
along the x, y, and z directions, respectively, and 100 divisions along the time axis. The
Sbottom of the plate experienced the heat flux q(Sbottom,t), while the remaining surfaces were
subject to a conjugate heat transfer boundary condition. Moreover, an ideal thermal contact
condition was enforced across all interface surfaces between the plate and air.

The CFD-ACE+ software was employed to compute the center-point temperature at
t = 100 s, T(Stop,center,100), for Q = 10 W, uin = 5 m/s, and T∞ = 300 K. Five different grid
sizes, 68,640, 108,000, 270,000, 388,800, and 403,200, were tested, yielding temperatures of
420.701 K, 414.165 K, 416.597 K, 416.169 K, and 416.351 K, respectively. When comparing the
results between the grid sizes of 270,000 and 388,800, the relative error in T(Stop,center,100)
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was merely 0.103%. Consequently, 270,000 grid numbers were chosen for the subsequent
computations. The plots of the grid independence test are illustrated in Figure 1b.

Two examples with different forms of heat fluxes were examined to validate the
efficacy of the CGM when forecasting the unknown q(Sbottom,t) on the bottom surface. This
prediction was based on the simulated temperatures obtained on Stop.

Measurement data with random errors were simulated in this work. These errors were
generated using normally distributed, uncorrelated errors with a zero mean and a constant
standard deviation. This process resulted in the creation of the following set of simulated
measurement data, denoted as Y:

Y = Yexact + ω σ (34)

In the context of this representation, Yexact signifies the temperatures for Stop, corre-
sponding to the exact heat flux q(Sbottom,t). The symbol σ denotes the standard deviation
in the measured temperatures, while ω is a random number generated within the range
of −2.576 to 2.576 by the IMSL subroutine DRNNOR [29], intended to establish a 99%
confidence bound.

An advantageous aspect of employing the CGM for computing the inverse problem lies
in the flexibility it offers in selecting initial guesses for the unknown quantities. Thus, for all
investigated cases in this study, the initial guess q(Sbottom,t)0 = 0.1 was considered arbitrary.

(A) Example 1
The unknown q(x,y,t) on Stobottom is assumed to be a step function, as outlined below:

q(Sbottom, t) =


8000 W

m2 , 0 < t ≤ 30s

13000 W
m2 , 30 < t ≤ 60s

6000 W
m2 , 60 < t ≤ 100s

; 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, z = 0 m (35)

The step function is independent of positions x and y on the surface Sbottom, with its
values varying solely with time.

The plate is discretized into a grid with 80, 60, and 100 divisions along the x, y, and t
directions. Consequently, a total of 480,000 unknown discretized values of q(Sbottom,t) need
to be estimated over (Sbottom,t), while 480,000 extractions of the measured temperatures
obtained by an infrared camera are assumed to be available for the Stop surface. Below, the
numerical experiments conducted to estimate the unknown q(Sbottom,t) using the CGM
are outlined.

Initially, the inverse problem is conducted assuming that σ = 0.0, uin = 5 m/s, Tp(Ωp,0)
= Ta(Ωa,0) = T∞ = 300 K, and Lz = 1 mm, corresponding to a thin-plate condition. The
cost function decreases to 13 after 100 iterations. Contour plots depicting the estimated
heat fluxes at t = 15, 45, and 80 s are presented in Figure 2a–c, respectively. These figures
reveal that with exact measurements, the estimated values closely match the exact heat flux
described by Equation (35).

To provide a clearer presentation of the inverse solutions, the exact and estimated
q(Sbottom,t) values when σ = 0 at (0.025 m, 0.015 m, 0.0 m) for (a) 0 < t < 100, (b) 0 < t < 30,
(c) 30 < t < 60, and (d) 60 < t < 100 s are depicted in Figure 3a–d, respectively. It is notable that
the estimated heat flux near the discontinuity (at t = 30, 60, and 100 s) displays oscillatory
behavior, although the amplitude is generally small.
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Figure 2. Two-dimensional plots of the estimated heat fluxes over Sbottom at t = (a) 15, (b) 45, and (c) 
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Figure 2. Two-dimensional plots of the estimated heat fluxes over Sbottom at t = (a) 15, (b) 45, and
(c) 80 s when σ = 0, Lz = 1 mm, and uin = 5 m/s in Example 1.
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95 4800 k,m k,m

k 1 m 1 k,m

T Y
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−
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95 4800 estimated exact
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The corresponding measured Y(Stop,t) and estimated T(Stop,t) temperatures are pre-
sented in Figure 4a–c at t = 15, 45, and 80 s, respectively. From Figure 4, it is evident that 
the measured and estimated temperatures are nearly identical, suggesting the validity of 

Figure 3. The variations in exact and estimated heat flux with time at (0.025 m, 0.015 m, 0.0 m) for
(a) 0 < t < 100, (b) 0 < t < 30, (c) 30 < t < 60, and (d) 60 < t < 100 s using Lz = 1 mm and uin = 5 m/s in
Example 1.

Figure 3a demonstrates that the estimation of the heat flux showed excellent accuracy
over time, except for the values near the final time t = 100 s, as previously mentioned. How-
ever, if the estimations are limited to t = 95 s, the accuracy of the estimations remains high.
Consequently, for all subsequent cases considered, errors in the estimated temperatures
and heat fluxes are calculated up to t = 95 s.

The equations defining the computed average errors of the estimated temperature,
denoted as ERR1%, and heat flux, denoted as ERR2%, are presented below.

ERR1 % =
95

∑
k=1

4800

∑
m=1

∣∣∣∣Tk,m − Yk,m

Yk,m

∣∣∣∣÷ (456000)× 100% (36a)

ERR2 % =
95

∑
k=1

4800

∑
m=1

∣∣∣∣∣qestimatedk,m
− qexactk,m

qexactk,m

∣∣∣∣∣÷ (456000)× 100% (36b)
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The corresponding measured Y(Stop,t) and estimated T(Stop,t) temperatures are pre-
sented in Figure 4a–c at t = 15, 45, and 80 s, respectively. From Figure 4, it is evident that the
measured and estimated temperatures are nearly identical, suggesting the validity of the
inverse algorithm for the present inverse conjugate heat transfer problem. The computed
errors were ERR1 = 0.001% and ERR2 = 0.17% when σ = 0.0.
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Figure 4. The 2-D plots of measured and estimated temperatures over Stop at t = (a) 15, (b) 45, and
(c) 80 s when σ = 0, Lz = 1 mm, and uin = 5 m/s in Example 1.
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Figure 5a illustrates the cost function versus the iteration numbers, demonstrating a
decrease from 6,734,652,281 to 13 after 100 iterations. This trend suggests that the estimated
q(Sbottom,t) rapidly converges towards the exact q(Sbottom,t) globally using the CGM, as
the convergent speed is very rapid over the initial iterations. Subsequently, the remaining
iterations are utilized to fine-tune the estimated q(Sbottom,t) locally.
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Figure 5. The rate of convergence in (a) Example 1 and (b) Example 2 when uin = 5 m/s, Lz = 1 mm,
and σ = 0.

Here, the investigation focuses on the primary concern of how inexact temperature
measurements impact the estimation of heat flux in inverse problems. Initially, the mea-
surement error is set to σ = 0.05, and then it is increased to σ = 0.1. The convergent criterion
ε is obtained with Equation (33), and the estimated q(Sbottom,t) is obtained after 60 and
44 iterations. The average errors ERR1 and ERR2 are 0.009% and 0.5% for σ = 0.05, re-
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spectively, and 0.019% and 0.92% for σ = 0.1, respectively. The 2-D plots of the estimated
q(Sbottom,15), q(Sbottom,45) and q(Sbottom,80) are shown in Figure 6a–c for σ = 0.1. These
findings suggest that the reliability of heat flux estimation persists even when utilizing
inexact measurements.
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Figure 6. The 2-D plots of the estimated heat fluxes over Sbottom at t = (a) 15, (b) 45, and (c) 80 s when
σ = 0.1, Lz = 1 mm, and uin = 5 m/s in Example 1.
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Once again, the estimated q(Sbottom,t) values when σ = 0.05 and 0.1 at (0.025 m, 0.015 m,
0.0 m) for (a) 0 < t < 100, (b) 0 < t < 30, (c) 30 < t < 60, and (d) 60 < t < 100 s are plotted
in Figure 3a,d, respectively. It is noticeable that the oscillation behaviors of the estimated
heat flux become more pronounced near the discontinuity region as the measurement error
is increased.

To explore the impact of the inlet air velocity on the estimated results and confirm
the effectiveness of the proposed algorithm, we elevated the air velocity to uin = 8 m/s
for Lz = 1 mm when σ = 0, 0.05, and 0.1. The corresponding iteration numbers, cost
function J, and ERR1 and ERR2 values are presented in Table 1. The values of ERR1 and
ERR2 are 0.0007% and 0.16% for σ = 0.0, 0.009% and 0.53% for σ = 0.05, and 0.02% and
0.93% for σ = 0.1, respectively. The 2-D plots of the q(Sbottom,15), q(Sbottom,45), when
q(Sbottom,80) are illustrated in Figure 7a–c, respectively, and the measured temperatures
Y(Stop,15), Y(Stop,45), and Y(Stop,80) and estimated the temperatures T(Stop,15), T(Stop,45),
and T(Stop,80) are given in Figure 8a–c, respectively, when σ = 0.1.

Table 1. The estimated results with different operational conditions for Examples 1 and 2.

Example 1 Example 2

Lz = 1 mm uin = 5 m/s

uin = 5 m/s uin = 8 m/s Lz = 1 mm Lz = 2 mm

σ = 0 σ = 0.05 σ = 0.1 σ = 0 σ = 0.05 σ = 0.1 σ = 0 σ = 0.05 σ = 0 σ = 0.05

Iteration
numbers 100 60 44 100 59 42 250 182 250 143

J 13 1187 4756 6 1197 4724 42 1192 65 1193

ERR1, % 0.001 0.009 0.019 0.0007 0.009 0.02 0.001 0.01 0.002 0.01

ERR2, % 0.17 0.50 0.92 0.16 0.53 0.93 1.29 2.45 2.99 5.19

A comparison of these figures demonstrates a remarkable similarity between the
estimated values of q(Sbottom, t) over Sbottom for uin = 5 and 8 m/s. These findings imply
that for laminar flow, the air velocity exerts a negligible influence on the inverse solutions.

(B) Example 2
The assumed functional form of the q(Sbottom,t) now takes the following expression:

q(Sbottom, t) = 10000(1 − x
4Lx

+ t
5tf
)

+6000(sin 2πx
Lx

× cos 2πy
Ly

× cos πt
tf
) W

m2 , 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, z = 0 m, t > 0
(37)

This representation corresponds to a combination of sine and cosine functions, provid-
ing a thorough examination of the inverse algorithm due to the complexity of the spatially
and temporally varying heat flux functions. Example 2 was used to verify the CGM’s
capability of accurately estimating the defined heat fluxes.

The 3-D and 2-D plots for the exact q(Sbottom,30), q(Sbottom,50), and q(Sbottom,70) are
illustrated in Figures 9 and 10, respectively, while the 2-D plots of the exact measured
temperatures Y(Stop,30), Y(Stop,50), and Y(Stop,70) based on the exact q(Sbottom,t) value are
given in Figure 11.
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Figure 7. The 2-D plots of the estimated heat fluxes over Sbottom at t = (a) 15, (b) 45, and (c) 80 s when
σ = 0.1, Lz = 1 mm, and uin = 8 m/s in Example 1.
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Figure 8. The 2-D plots of measured and estimated temperatures over Stop at t = (a) 15, (b) 45, and (c) 
80 s when σ = 0.1, Lz = 1 mm, and uin = 8 m/s for Example 1. 
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Figure 8. The 2-D plots of measured and estimated temperatures over Stop at t = (a) 15, (b) 45, and
(c) 80 s when σ = 0.1, Lz = 1 mm, and uin = 8 m/s for Example 1.
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Figure 9. The 3-D plots of the exact and estimated heat fluxes over Sbottom at t = (a) 30, (b) 50, and (c) 
70 s when σ = 0, Lz = 1 mm, and uin = 5 m/s in Example 2. 
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Figure 9. The 3-D plots of the exact and estimated heat fluxes over Sbottom at t = (a) 30, (b) 50, and
(c) 70 s when σ = 0, Lz = 1 mm, and uin = 5 m/s in Example 2.
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Figure 10. The 2-D plots of the exact and estimated heat fluxes over Sbottom at t = (a) 30, (b) 50, and (c) 
70 s when σ = 0, Lz = 1 mm, and uin = 5 m/s in Example 2. 

Figure 10. The 2-D plots of the exact and estimated heat fluxes over Sbottom at t = (a) 30, (b) 50, and
(c) 70 s when σ = 0, Lz = 1 mm, and uin = 5 m/s in Example 2.
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Figure 11. The 2-D plots of measured and estimated temperatures over Stop at t = (a) 30, (b) 50, and 
(c) 70 s when σ = 0, Lz = 1 mm, and uin = 5 m/s in Example 2. 
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Figure 11. The 2-D plots of measured and estimated temperatures over Stop at t = (a) 30, (b) 50, and
(c) 70 s when σ = 0, Lz = 1 mm, and uin = 5 m/s in Example 2.
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The inverse algorithm is then executed when σ = 0, Lz = 1 mm, and uin = 5 m/s.
The functional J exhibits a rapid convergence rate within the initial iterations, diminish-
ing to 42 after 250 iterations. The predicted 3-D and 2-D contour plots of q(Sbottom,30),
q(Sbottom,50), and q(Sbottom,70) are presented in Figures 9 and 10, respectively, and the
estimated T(Stop,30), T(Stop,50), and T(Stop,70) values are presented in Figure 11. The values
of ERR1 and ERR2 were computed to be 0.001% and 1.29%, respectively.

Based on the plotted figures and calculated errors, it can be concluded that the estima-
tion of heat flux using the CGM is highly accurate, even when the considered function of
the spatially distributed heat flux is very complex.

In Figure 5b, the cost function is plotted against the number of iterations using exact
measurements, showing a decrease from 6,999,812,239 to 42 over 250 iterations. This
outcome underscores the rapid convergence of the estimated q(Sbottom,t) towards the exact
global q(Sbottom,t) during the initial iterations, while the subsequent iterations focus on
refining the estimated q(Sbottom,t) locally.

Next, the noise data are increased to σ = 0.05. The estimated q(Sbottom,t) is obtained
after 182 iterations, and the 3-D and 2-D plots of the estimated q(Sbottom,30), q(Sbottom,50),
and q(Sbottom,70) values are shown in Figure 12. The values of ERR1 and ERR2 were 0.01%
and 2.45%, respectively.
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Figure 12. The 3-D and 2-D plots of the estimated heat fluxes over Sbottom at t = (a) 30, (b) 50 and, (c) 
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(c) 70 s when σ = 0.05, Lz = 1 mm, and uin = 5 m/s in Example 2.

This result underscores the reliability of the estimated heat fluxes even in the presence
of measurement errors. However, when the measurement error is increased to σ = 0.1,
the estimations become less accurate. This suggests that when the shape of the spatially
distributed heat flux becomes more complex, more precise measurement data are necessary
to achieve accurate estimations.

Next, we delve into the examination of how wall thickness affects the estimated heat
flux. The inverse algorithm is used, with σ = 0 and 0.05 for Lz = 2 mm and uin = 5 m/s.
When σ = 0, the cost function decreases to 65 after 250 iterations, and the values of ERR1
and ERR2 are calculated to be 0.002% and 2.99%, respectively. When σ = 0.05, J decreases
to 1193 after 143 iterations, and ERR1 and ERR2 are 0.01% and 5.19%, respectively. They
are reported in Table 1. The estimated 3-D and 2-D plots of the heat fluxes q(Sbottom,30),
q(Sbottom,50), and q(Sbottom,70) are shown in Figure 13. Again, the estimation remains
reliable for Lz = 2 mm but is less accurate compared to the case for Lz = 1 mm.
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Figure 13. The 3-D and 2-D plots of the estimated heat fluxes over Sbottom at t = (a) 30, (b) 50, and
(c) 70 s when σ = 0.05, Lz = 2 mm, and uin = 5 m/s in Example 2.

Drawing from the outcomes of the two test examples outlined previously, it can
be inferred that the spatially and temporally dependent surface heat flux q(Sbottom,t), in
an inverse conjugate heat transfer scenario, has been precisely estimated. The function
estimation retained its reliability whether exact or inexact temperature measurements were
employed, particularly in cases of thin walls.

6. Conclusions

The successful resolution of a three-dimensional inverse conjugate heat transfer prob-
lem was achieved in order to estimate unknown temporally and spatially dependent
boundary heat fluxes, using a thermal camera to perform thermography techniques. The
conjugate gradient method (CGM) was chosen as the optimization algorithm due to its
capability to handle function estimation problems without the need to assume a specific
functional form for the heat flux, and the initial guesses for the inverse solutions were
assumed arbitrarily. While the CGM was previously employed in solving inverse heat
conduction, convection, or radiation problems, its application to inverse conjugate heat
transfer problems has not been explored until now.
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Various test cases were examined, encompassing different functional forms of heat
fluxes, plate thicknesses, inlet velocities, and measurement errors. The simulation outcomes
revealed that the CGM-derived estimates of the heat fluxes remained dependable even
with increasing inlet air velocities and measurement errors under thin-wall conditions (i.e.,
Lz = 1 or 2 mm). Notably, when σ = 0, the maximum errors of ERR1 and ERR2 were found
to be less than 0.001% and 0.17%, respectively, in Example 1, and less than 0.002% and
2.99%, respectively, in Example 2. It was also noted that smaller measurement errors were
necessary when estimating the complex heat flux function in Example 2 to achieve the
same level of accuracy required for both Examples 1 and 2. Additionally, the mitigation
of poor estimations near the final time point caused by the singularity of the cost function
gradient at tf can be achieved by extending the measurement duration.

The numerical experiments conducted led to the conclusion that CFD-ACE+ is a highly
effective computational tool for resolving the addressed three-dimensional inverse con-
jugate heat transfer problem, enabling the determination of unknown surface heat fluxes
through the CGM. When accounting for non-ideal thermal contact conditions, thermal con-
tact conductance arises, resulting in additional heat losses. By detecting and incorporating
these heat losses into thermography techniques, achieving precise estimations of heat flux
becomes feasible.

The proposed algorithm holds promise for applications in numerous practical three-
dimensional inverse engineering problems, thereby offering a versatile and reliable solution.
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