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Abstract: We are interested in the determination of the local nonlinear magnetic material behaviour
in electrical steel sheets due to cutting and punching effects. For this purpose, the inverse problem
has to be solved, where the objective function, which penalises the difference between the measured
and the simulated magnetic flux density, has to be minimised under a constraint defined according to
the corresponding partial differential equation model. We use the adjoint method to efficiently obtain
the gradients of the objective function with respect to the material parameters. The optimisation
algorithm is low-memory Broyden–Fletcher–Goldfarb–Shanno (BFGS), the forward and adjoint
formulations are solved using the finite element (FE) method and the ill-posedness is handled via
Tikhonov regularisation, in combination with the discrepancy principle. Realistic numerical case
studies show promising results.

Keywords: inverse problems; adjoint method; determination of locally nonlinear magnetic material
behaviour

MSC: 49M41

1. Introduction

For manufacturers of magnetic materials, measurement techniques are used to deter-
mine macroscopic properties in terms of characteristics (losses, magnetisation, coercive
and remanent fields, etc.) and curves (virgin curve, hysteresis loop, commutation curve,
etc.). In addition, these measurement techniques are used for the systematic study and
development of materials. Many of the common test methods are specified in IEC 60404 ff.
Standard techniques include the hysteresis graph, the coercive meter, the Epstein frame,
the single sheet tester and the double-C yoke (see, for example, [1]).

In order to better understand and model the various loss mechanisms that occur in
electrical machines during operation, the actual degradation of electrical steel sheets due to
cutting, punching, welding etc. is of paramount importance. A finite-element (FE) model
has been presented in [2] in order to consider the local degradation effect. The approach
introduces a certain number of boundary layers along the punched edges, where the relative
permeability decreases according to a certain degradation profile. Thereby, the degradation
profile has been assumed to be

γ(x) = 1 −
(
1 − γ̂

)
e−x/δ (1)
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with an initial value γ̂ at the cut edge and the degradation skin depth δ. Figure 1 displays
such a degradation profile for γ̂ = 0.6 and δ = 1.5 mm evaluated in [2].
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Figure 1. Degradation of magnetic property (in this case, magnetic permeability) towards the
cutting edges.

In [3], the effects of three different cutting techniques, namely punching, waterjet and
laser cutting, on the magnetic properties of grain-oriented electrical steel sheets have been
investigated, and a loss model based on measurements (using an Epstein frame) has been
developed. The result showed that the relative increase in core losses was in the range
of 180–120%, 50–40% and 6% for laser, punching and waterjet cutting, respectively. In
addition to such approaches, measurements based on sensors that evaluate the magnetic
field locally, e.g., in [4,5], have been developed. In [4], the needle probe method was used in
combination with a scalar Preisach hysteresis operator in 2D FE simulations (based on the
diffusion equation for the magnetic field intensity), and the Preisach distribution function
was identified via least squares minimisation using the sequential programming method.
In [5], the hysteresis properties of electrical steel sheets in the centre of the test material
could be determined based on a single U-shaped yoke electromagnet, two Hall sensors
(measuring the tangential surface fields) and a sensing coil around the yoke. Impressive
research has recently been presented in [6], where pressure needle probes and micrometric
giant magneto-resistance (GMR) sensors were mounted on each of the steel sheets in a
laminated core. This allowed measurements to be made of the magnetic hysteresis curves
for all the individual steel sheets (the averaged magnetic property for each individual
steel sheet; no consideration of the cutting-edge effect). In conclusion, there is currently
no method available to locally determine the degradation of electric steel sheets due to
punching and/or cutting processes so that material models can be fitted and numerical
simulations can be performed with sufficient accuracy. It should be noted that the problem
at hand is quite complex, as one can only measure the magnetic field quantities outside the
steel sheets, i.e., the stray field. Therefore, the local determination of the magnetic material
behaviour requires the solution of an inverse problem.

In a previous publication [7], we demonstrated the successful identification of the
nonlinear BH-curve (relation between magnetic induction, B, and magnetic field strength,
H) based on Epstein frame measurements using (1) a combined Newton-type method
with a full multigrid method as a linear solver (i.e., iterative regularisation via coarse
discretisation) and (2) a nonlinear full multigrid method. The aim of our current research
is to develop a combined method based on measurements, numerical simulations and
inverse schemes to determine a sequence of nonlinear BH-curves to locally characterise the
magnetic properties of electrical steel sheets and, thus, be able to quantify the cutting-edge
effects. Recently, we have proposed an inverse scheme capable of locally determining
the change in the linear magnetic property (the linear relationship between B and H via
magnetic reluctance) due to the cutting-edge effects. The approach is based on a quasi-
Newton method using Broyden’s update formula to compute the gradients of the objective
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function with respect to the local linear magnetic reluctivity [8]. In order to advance the
practical relevance, this research paper extends the linear magnetic material model to a
nonlinear one and uses the adjoint method (see, e.g., [9]) to compute the gradients of the
searched-for parameters, which are the coefficients in all BH-curves. We would like to
emphasise that the developed inverse scheme is capable of determining local material
parameters in general as soon as the measurement setup can be accurately simulated using
a physical model based on partial differential equations.

The remainder of the article is structured as follows. In Section 2, we define the
problem and discuss the physical model of a sensor–actuator system with which the
measurements will be made (in our tests, these measurements will be provided through
numerical simulations). Next, Section 3 describes in detail the inverse scheme, including
the formulation of the forward, as well as adjoint, problems, the computation of the
gradient and the regularization. Section 4 presents the numerical results, and their detailed
discussion is summarised in Section 5. Finally, we conclude and provide an outlook for the
next research steps.

2. Problem Definition

We assumed an experimental setup displayed in Figures 2 and 3.

Figure 2. Sensor–actuator system with two electrical steel sheets, denoted as sample 1 and sample 2.

Figure 3. Electrical steel sheet discretisation into Nsd subdomains Ωl with l = 1, 2, ..., Nsd (colour-
coded); each subdomain assigned with reluctivity νl , being a nonlinear function of the magnetic flux
density |B|. xCE, is the affected area due to cutting, and ∆xl is the length of the subdomains.

The goal is to identify the nonlinear BH-curve in each subdomain Ωl , especially to
find out how the magnetic properties change in the direction of the cutting edges. In doing
so, we assumed Ns sensors and Np positions of the sensor–actuator system, and for each
position, we excited the magnetic field from a minimum to a maximum over Ne excitation
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levels (the amplitude of the current density g). Therefore, the abstract problem may be
defined as follows

min
u∈V, θ∈Rnθ

J
(
u, θ

)
s.t. A(u, θ) = 0 . (2)

In (2), the model operator A is defined according to the partial differential equation
(PDE) of magnetostatics, which has to be solved in order to get the magnetic vector po-
tentials, u, and in a postprocessing step, the magnetic flux densities, B (for details, see
Section 3.1). In doing so, the objective functional is defined according to

J
(
u, θ

)
=

1
2

Np

∑
p=1

Ne

∑
e=1

Ns

∑
s=1

1
|Ωsens

s |
∫

Ωsens
s

∣∣ Bp,e,s − Bmeas
p,e,s

∣∣2 dΩ + α(θ− θref)T D(θ− θref)︸ ︷︷ ︸
regularization term

, (3)

where Ωsens
s is the domain of sensor s, Bp,e,s = ∇× up,e,s is the computed magnetic

flux density and Bmeas
p,e,s the measured one, up,e,s the computed magnetic vector potential,

θ = (θ1, . . . , θNsd) the vector of parameters of the BH-curves, θref the vector of reference
parameters of the BH-curves and D a diagonal weighting matrix. Since the entries in the
parameter vector θ are of different sizes, the diagonal matrix D scales them to a value of
about 1.0. Furthermore, A : V ×Rnθ → W is the model operator (defined according to the
weak form of the PDE, including boundary conditions) with appropriate function spaces,
V and W.

3. Inverse Scheme

Let us introduce the parameter-to-state map,

S : Rnθ → V θ → u s.t. A(u, θ) = 0 , (4)

which is implicitly defined via the model equation

A(S(θ), θ) = 0 for all θ ∈ Rnθ . (5)

The Lagrange function is introduced as

L(u, θ, w) = J(u, θ) + ⟨A(u, θ), w⟩W , (6)

where < ·, · >W denotes the dual pairing between some function space, W, and its dual
W∗. In the next step, the reduced objective function can be defined as follows

j(θ) = J(u(θ), θ) = L(S(θ), θ, w) . (7)

Assuming that the parameter to state map S is well defined, and A, J, S are differen-
tiable, we can express the partial derivatives of the reduced functional with reference to
each parameter θi as

∂j
∂θi

=
∂J
∂θi

+

〈
∂J
∂u

,
∂S
∂θi

〉
V
+

〈
∂A
∂u

∂S
∂θi

, w
〉

W
+

〈
∂A
∂θi

, w
〉

W
(8)

for any w ∈ W. Using the identity〈
∂A
∂u

∂S
∂θi

, w
〉

W
=

〈(
∂A
∂u

)∗
w,

∂S
∂θi

〉
V

,

containing the adjoint operator defined according to

B∗ : W∗ → V∗ is adjoint to B : V → W ⇔ ∀v∈V,w∈W : ⟨Bv, w⟩W = ⟨B∗w, v⟩V ,
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we obtain

∂j
∂θi

=
∂J
∂θi

+

〈
∂J
∂u

+

(
∂A
∂u

)∗
w,

∂S
∂θi

〉
V
+

〈
∂A
∂θi

, w
〉

W
. (9)

Choosing w such that it solves the adjoint equation(
∂A
∂u

)∗
w = − ∂J

∂u
(10)

allows us to rewrite (8) as
∂j
∂θi

=
∂J
∂θi

+

〈
∂A
∂θi

, w
〉

W
. (11)

For the nonlinear BH-curve, we make the following nonlinear function ansatz:

H(B) = ν(B)B =
(

c0 + c1Bc2
)

B (12)

with constants c0, c1 and c2 yet to be determined. The reluctivity is computed via

ν(B) = c0 + c1Bc2 , (13)

and its derivative via
∂ν

∂B
= ν′(B) = c1c2Bc2−1 . (14)

Since we assume a possibly different ν(B) curve in each of the Nsd subdomains (see
Figure 3), we have nθ = 3 Nsd parameters to identify. In addition, the model operator
describes the magnetostatic field

A(up,e, θ) =
(
∇×

(
ν(Bp,e)∇× up,e

)
− gp,e

)
p = 1, . . . , N p
e = 1, . . . , N e

(15)

with
νl(B) = c0,l + c1,l Bc2,l on Ωl ; l = 1, . . . , Nsd .

The weak form reads as

0 =
∫
Ω

(
ν(Bp,e)∇× up,e ·∇× v − gp,e · v

)
dΩ′ for all v ∈ W ,

p = 1, . . . Np e = 1, . . . Ne

(16)

with the function spaces W = V ⊆ H0(curl) [10]. The boundary condition included in
the definition of the function spaces W, V is u × n = 0, resulting in closed field lines
corresponding to a solenoidal vector field.

3.1. Formulation of the Forward Problem

The sensors in the experimental setup shown in Figure 2 are Hall sensors capable of
measuring static magnetic fields being generated via DC currents in the coils at different
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excitation levels. To solve the magnetic field problem according to (16), Newton’s scheme
in the weak form for each sensor actuator position, p, and excitation level, e, reads as [10]∫

Ω

ν(Bk
p,e) ∇× s ·∇× v′ dΩ +

∫
Ω

ν′(Bk
p,e) ∇× s · eBk

p,e
Bk

p,e eBk
p,e
·∇× v′ dΩ

=
∫
Ω

gp,e · v′ dΩ −
∫
Ω

ν(Bk
p,e)∇× uk

p,e ·∇× v′ dΩ (17)

uk+1
p,e = uk

p,e + ηs ,

where k is the iteration counter, and η is some line search parameter determined using
Armijo’s rule [11]. Edge finite elements are applied using Nédélec basis functions and
hierarchical polynomials from [12] to discretise the continuous H0(curl) function space.
To ensure coercivity, a small regularisation parameter is used to scale the artificial mass
matrix, whose entries are six orders of magnitude smaller than those of the stiffness matrix
(for details, see [10]).

3.2. Formulation of the Adjoint Problem

Since A is self-adjoint, the left-hand side of (10) for each position, p, of the sensor–
actuator system and excitation level, e, of the current density, g, in the coils is (see (18))

〈(
∂A
∂u

)∗(
S(θ), θ

)
w, v′

〉
=

∫
Ω

ν(Bp,e) ∇×wp,e ·∇× v′ dΩ

+
∫
Ω

ν′(Bp,e) ∇×wp,e · eBp,e Bp,e eBp,e ·∇× v′ dΩ . (18)

For the right-hand side, we explore the Gâteaux derivative and obtain for each position,
p, and excitation level, e,

lim
ε→0

1
ε

(
J(u + εv, θ)− J(u, θ)

)
= lim

ε→0

1
2ε

Ns

∑
s=1

1
|Ωsens

s |
∫

Ωsens
s

(∣∣∣(Bp,e,s + ε∇× v
)
− Bmeas

p,e,s

∣∣∣2
−
∣∣∣(Bp,e,s − Bmeas

p,e,s

∣∣∣2)dΩ (19)

= lim
ε→0

1
2ε

Ns

∑
s=1

1
|Ωsens

s |
∫

Ωsens
s

(
2ε
(

Bp,e,s − Bmeas
p,e,s

)
·∇× v

+ ε2 ∇× v ·∇× v
)

dΩ

=
Ns

∑
s=1

1
|Ωsens

s |
∫

Ωsens
s

(
Bp,e,s − Bmeas

p,e,s

)
·∇× v dΩ .

and arrive at

−
〈

∂J
∂u

, v
〉

p,e
=

Ns

∑
s=1

1
|Ωsens

s |
∫

Ωsens
s

(
Bmeas

p,e,s − Bp,e,s

)
·∇× v dΩ . (20)
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Finally, the weak formulation for the adjoint equation reads as follows∫
Ω

ν(Bp,e) ∇×wp,e ·∇× v′ dΩ +
∫
Ω

ν′(Bp,e) ∇×wp,e · eBp,e Bp,e eBp,e ·∇× v′ dΩ

=
Ns

∑
s=1

1
|Ωs|

∫
Ωs

((
Bmeas

p,e,s − Bp,e,s
)
· ∇ × v

)
dΩ . (21)

Note that the adjoint equation is linear and, therefore, extremely fast to solve compared
to the forward simulation, which has to solve a nonlinear system of equations for all
unknown vector potentials in the computational mesh (see (18)).

3.3. Computation of the Gradient

For the evaluation of the gradients, the first term in (11), according to (3), computes as

∂J
∂θ

= αD
(

θ− θref
)

. (22)

The second term in (11) with the solution u of the forward Problem (18) (note that
B = ∇× u) and the solution w of the adjoint Equation (21) is calculated according to

〈
∂A
∂θl

(u, θ), w
〉

=
Np

∑
p=1

Ne

∑
e=1

∫
Ω

∂ν(Bp,e)

∂θl
Bp,e ·∇×wp,e dΩ′ (23)

l = 1, . . . 3Nsd

The derivative of the magnetic reluctivity ν with reference to the coefficients in (23) is
computed for each subdomain Ωl according to the chosen ansatz (13) via

∂ν

∂c0l
= 1 ;

∂ν

∂c1l
= Bc2l ;

∂ν

∂c2l
= c1l

(
ln B

)
Bc2l . (24)

3.4. Overall Inverse Scheme

According to the derivations in Sections 3.1–3.3, all components are available for the
inverse scheme. Since the parameter vector θ is improved iteratively, a stopping criterion
and a strategy for the regularisation parameter α in the objective function (3) are needed.
To this end, the following relative L2 error norm is defined:

ε =

√√√√√√√√√
Np

∑
p=1

Ne
∑

e=1

Ns
∑

s=1

∣∣ Bp,e,s − Bmeas
p,e,s

∣∣2
Np

∑
p=1

Ne
∑

e=1

Ns
∑

s=1

∣∣ Bmeas
p,e,s

∣∣2 . (25)

In addition, the choice of the regularisation parameter is crucial in obtaining an
optimal solution during the iterative process. If the regularisation parameter is set too
high, the minimisation will prioritise the regularisation term, resulting in a strong bias,
while setting it too low can lead to instability and the divergence of the iterative process.
Depending on the accuracy and resolution of the sensors, there is an a priori upper bound β
for the error norm defined in (25) with Bp,e,s = Bexact

p,e,s . Using the discrepancy principle [13],
an initial regularisation parameter αinit is chosen, and it is reduced at each iteration step via

αk = akαinit (26)

until (25) with Bp,e,s = Bcomp
p,e,s is smaller than β = εstop. In all of the following calculations,

the values a = 0.9 and αinit = 10 were chosen.
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4. Numerical Results

Cutting electric steel sheets causes a severe degradation of the magnetic properties in
the immediate vicinity of the cut edges. For this reason, the 0.5 mm-thick electrical steel
sheets are divided into five subregions (see Figure 3), and the density of the regions is
significantly higher due to the strong material gradient in the immediate vicinity of the
cut edges. The affected region is assumed to have a total length, xCE, of 3 mm, and the
lengths, ∆xl , of the respective subregions, Ωl , are summarised in Table 1. This distribution
of subdomains means that Ω5 represents the bulk material (unaffected by cutting-edge
effects), and it is assumed that the material data for this subdomain are already known
from corresponding measurements with an Epstein frame or a single-sheet tester (SST).

Table 1. Length ∆xl for each subdomain Ωl .

Ω1 Ω2 Ω3 Ω4 Ω5

∆x in mm 0.25 0.5 0.75 1.5 13

The sensor–actuator system is equipped with Ns = 7 Hall sensors evenly distributed
along the straight line [(−1.5, 0.4, 0), (1.5, 0.4, 0)] in mm. The Hall sensors are capable of
directly measuring all three spatial components of the stray field (Bx, By, Bz). The electrical
steel sheet is measured at Np = 5 different positions so that the Hall sensor s4 (see Figure 2)
is once directly over the cutting edge and once over the centre of each of the subdomains.
Since the material behaviour of the two sheets is symmetrical, only the subdomains in the
positive x-domain are measured. The resulting positions are xp = [0, 0.125, 0.5, 1.125, 2.25]
in mm, where xp is the x-position of sensor s4. At each position Np, the sheets are magne-
tised at Ne = 15 excitation levels by varying the current density, g, of the excitation coils.
The different current density levels, g(e), are defined according to the following relations

g(e) = ginit10e , (27)

where |ginit| = 10, 000A/m2 is the initial current density and e = 0.1, 0.2, ..., 1.5 the excita-
tion levels.

Each subdomain is associated with a nonlinear magnetic material behaviour according
to (12), where the parameters c0, c1 and c2 are the unknowns to be determined in the inverse
scheme. Since Ω5 is the already-known bulk material, 12 unknown parameters must be
determined θ = [θl,i], where l = 1, 2, 3, 4 is the corresponding subdomain, and i = 0, 1, 2 is
the parameter index. For example, θ1,0 is the material parameter, c0, of the subdomain Ω1.
For the numerical study, the parameters of the nonlinear material function, νl , are classified
into three cases, νexact

l , νinit
l and νref

l . Thereby, νexact
l defines the theoretically real material

behaviour and serves as a reference in the sense of calculating the relative errors between
the optimised ν

opt
l and the exact parameters. Furthermore, νinit

l is the initial configuration
for the iterative inverse scheme, and it has a 50% deviation from the real configuration,
νexact

l . In addition, νref
l is the reference configuration used for the Tikhonov regularisation,

and it is here chosen as the arithmetic mean between νinit
l and νexact

l . The parameters for
the different cases are listed in Table 2. The representative BH-curve for νexact

l and νinit
l is

shown in Figure 4.

Table 2. Parameters c0, c1 and c2 for initial νinit
l , reference νref

l and exact νexact
l nonlinear reluctivity.

θinit θref θexact

Subdomain Colour Code c0 c1 c2 c0 c1 c2 c0 c1 c2

Ω1 2700 1.2 37.5 2250 1.0 31.25 1800 0.8 25
Ω2 2100 0.75 30.0 1750 0.625 25.0 1400 0.5 20
Ω3 1650 0.6 25.5 1375 0.5 21.25 1100 0.4 17
Ω4 1200 0.375 24.0 1000 0.3125 20.0 800 0.25 16
Ω5 - - - - - - 500 0.2 15
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Figure 4. BH-curves for νexact
l (solid line) and νinit

l (dashed line) for the different subdomains, Ωl ,
based on the colour code as defined in Table 2. The excitation levels are marked with black, solid,
vertical lines.

The measured data, Bmeas, are generated by artificially applying the forward simu-
lation with the exact material data, νexact

l , as listed in Table 2, and the defined excitation
levels (see (27)). The measurements are taken at the previously defined positions. Thereby,
measurement noise (Gaussian white noise, N (0, σ2) with σ = 10%) is superimposed on the
resulting data. To avoid an inverse crime, a finer computational grid of the sensor–actuator
system was used to generate the measurement data compared to the model for the inverse
scheme (see Figure 5).

(a) (b)
Figure 5. Zoomed FE model of the sensor–actuator system for (a) computing the measurement data
and (b) used for the inverse scheme.

The stopping criterion, εstop, for the iterative procedure can be determined a priori.
To do this, the FE model for the inverse method (Figure 5b) is used to calculate the magnetic
flux density, B, based on the exact material data, νexact

l . Here, we carried out a mesh
independence study to obtain reliable magnetic flux density data at the sensor position,
resulting in a mesh of approximately 100,000 unknowns (82,000 hexahedral and wedge
elements). Based on these results and the previously simulated measurement data Bmeas on
the fine grid (see Figure 5a) superimposed by Gaussian noise with σ = 10%, the stopping
value according to (25) gives εstop = 0.1023. The optimisation algorithm is a low-storage
BFGS from the NLopt software library [14], to which the computed gradient (11) and the
relative L2 error norm (25) are passed at each iteration step. In addition to the stopping
criterion, a relative error |∆θk|/|θk| < θtol_rel = 0.001 and a relative residual ∆εk/εk <
εtol_rel = 0.001 are specified to allow the early termination of the optimisation if no further
improvements are achieved.

Based on the given data, the sought parameter vector, θ, is calculated using the
proposed method, and the results are presented below. The optimisation was stopped after
48 iterations with a remaining relative error of ε = 0.1048. Since the specified stopping
value, εstop = 0.1023, could not be reached, the additionally defined tolerances, θtol_rel
and εtol_rel, were applied. The relative error of the unknown parameter vector, θ, in each
iteration step is shown in Figure 6 and the general convergence behaviour of the relative L2
error ε in Figure 7.
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Figure 6. Relative error of the searched-for parameters θ.
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Figure 7. Convergence behaviour of the relative L2 error norm (25).

The optimised values, θopt, and the relative errors, θrel
l,i = |θopt

l,i − θexact
l,i |/|θexact

l,i |, are
listed in Table 3. The corresponding BH-curves are compared in Figure 8 to better illustrate
the difference between the optimised parameters, θopt, and the exact parameters, θexact.

Table 3. Optimised parameter, θopt, and relative error, θrel.

θopt θrel in %

Subdomain c0 c1 c2 c0 c1 c2

Ω1 1898.4 0.79 25.75 5.47 0.95 2.99
Ω2 1469.9 0.48 20.44 4.99 4.49 2.17
Ω3 1160.7 0.41 17.82 5.52 1.70 4.81
Ω4 876.9 0.20 16.99 9.62 19.73 6.18



Mathematics 2024, 12, 1586 11 of 13

100 101 102 103 104
0

0.5

1

1.5

2

H in A/m

B
in

T

Figure 8. BH-curves for θexact (solid line) and θopt (dashed line) for the different subdomains Ωl ,
based on the colour code as defined in Table 2.

Finally, we would like to emphasise that the computational grid used for the inverse
scheme resulted in about 39,000 unknowns (30,000 hexahedral and wedge elements), and
the total time for obtaining the results (all 48 iterations, see Figure 7) was 2 h on a PC with
64 GB of memory (10 GB were used for the computation) and five cores. The computation
for one FE solution of the nonlinear magnetostatic PDE needed about 1.5 min. This clearly
demonstrates the efficiency of the developed inverse scheme. In addition, the scheme does
not rely on the low-storage BFGS , and other optimisers are being tested. The computation of
the forward and adjoint problem was performed with the open-source FE solver software
openCFS [15].

5. Discussion

The convergence behaviour of ε in Figure 7 shows two characteristic peaks at iteration
steps 20 and 38, preceded by a region of barely noticeable change from the residual.
These anomalies are also reflected in the behaviour of the relative parameter error, θrel

l,i , in
Figure 6. For the iteration range between 12 and 19, there were no more significant changes
in the parameters, although the parameters θ1,1 and θ4,1 still showed pronounced errors.
The same can be observed for the iteration range of 30 to 37, with the exception that only the
parameter θ4,1 shows increased deviations. Due to the underlying nonlinear problem, these
anomalies indicate local minima where the optimisation procedure gets stuck and, therefore,
there is no improvement in the relative L2 error or the relative error of the parameters θrel

l,i .
To overcome these local minima, the optimiser makes a significant change to the parameters,
which is reflected in the subsequent deviation of the parameters. Thus, after iteration
step 20, the relative error of the parameters θ1,1 and θ4,1 can be significantly improved.
After iteration step 38, however, this did not lead to success, so the optimisation was
stopped according to the additionally defined stopping criteria, although the predefined
εstop was not reached.

Comparing the BH-curves of the exact and optimised parameters, as shown in Figure 8,
it can be seen that the curves based on the optimised parameter are lower than those based
on the exact parameter. This behaviour is mainly due to the following points. Firstly,
the measurement data used are superimposed with Gaussian white noise, which allows
a solution to be found only in the vicinity of the exact solution. Secondly, due to the ill-
posedness of the inverse problem and the consequent need to use a regularisation (Tikhonov
regularisation), the regularisation term and, thus, the a priori information are included
in the calculated parameters. This results in the remaining deviations listed in Table 3.
However, the increased relative errors, θrel

l,i , for the subdomain Ω4 are noteworthy. This
could be due to the chosen excitation levels or the positioning of the sensor–actuator system
in the sense that the sensitivity to the parameters in this subdomain is less pronounced
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compared to the others. These parameters were chosen arbitrarily. In order to use the
optimal excitation levels and positioning of the sensor–actuator system with respect to the
determination of the unknown material parameter vector θ, a design of experiment (DOE)
can significantly improve the current convergence behaviour.

6. Conclusions

In this research, we have presented an inverse scheme capable of determining the
nonlinear magnetic material properties locally in the vicinity of the cut edges of electrical
steel sheets. The approach was based on FE simulations of the magnetostatic field using the
magnetic vector potential, u, and it locally identifies the magnetic reluctance as a function of
the magnetic flux density, B. The objective function, which penalises the difference between
the measured and simulated magnetic flux densities, is minimised under a constraint
defined according to the corresponding partial differential equation for the magnetic vector
potential. To efficiently obtain the gradients of the objective function with respect to the
material parameters, the adjoint method is applied. The optimisation algorithm is a low-
memory BFGS from the NLopt software library, the forward and adjoint formulations are
solved using the open source FE solver openCFS [15], and the ill-posedness is handled via
Tikhonov regularisation, in combination with the discrepancy principle. The numerical
tests show promising results, and in future work, we will build the sensor–actuator system
to perform real measurements and apply the developed inverse scheme to these data.
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