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Abstract: The classical Lotka–Volterra predator–prey model is globally stable and uniformly persis-
tent. However, in real-life biosystems, the extinction of species due to stochastic effects is possible
and may occur if the magnitudes of the stochastic effects are large enough. In this paper, we consider
the classical Lotka–Volterra predator–prey model under stochastic perturbations. For this model,
using an analytical technique based on the direct Lyapunov method and a development of the ideas
of R.Z. Khasminskii, we find the precise sufficient conditions for the stochastic extinction of one and
both species and, thus, the precise necessary conditions for the stochastic system’s persistence. The
stochastic extinction occurs via a process known as the stabilization by noise of the Khasminskii type.
Therefore, in order to establish the sufficient conditions for extinction, we found the conditions for
this stabilization. The analytical results are illustrated by numerical simulations.

Keywords: stochastic perturbations; white noise; Ito’s stochastic differential equation; the Lyapunov
functions method; stability in probability; stabilization by noise; stochastic extinction; persistence
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1. Introduction

Let us consider the classical predator–prey model: [1–5]

ẋ = a1x(1 − b11x − b12y),

ẏ = −a2y(1 − b21x).
(1)

This model was suggested independently by Volterra and Lotka in order to describe
the dynamics of two interacting species, of which one (the “predator”, of the population
density y(t)) predates (and thus depends) upon another (the “prey”, of the population
density x(t)). The model was suggested by Volterra to explain a surprising decline in
commercially valuable fish populations in the Adriatic sea after the First World War. As
an obvious example, the dynamics of interacting fox (the predator) and rabbit (the prey)
populations, of densities y(t) and x(t), respectively, in a closed habitat can be described by
this model. In this model, x(t) and y(t) are the population densities of the prey (for example,
the number or the biomass of rabbits per square kilometre) and predator (for example, the
number or the biomass of foxes per square kilometre), respectively. a1 describes the growth
rate of the maximum prey per capita; the product a1 · b12 is the per capita predation rate;
1/b11 = K is the carrying capacity of the habitat for the prey (that is, for the rabbit–fox
interaction, the maximal number, or the maximal biomass, of rabbits that the habitat can
sustain). a2 is the predator’s per capita death rate in the absence of prey, whereas the
product a2 · b21 represents the the effect of the presence of prey on the predator’s per capita
growth rate. All model parameters are positive.
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The properties of the model are well studied. Specifically, the model has three equi-
libria, namely (i) the zero equilibrium E∗

0 = (0, 0), (ii) the predator-free equilibrium
E∗

x = (b−1
11 , 0) on the x-axis, and (iii) the positive equilibrium E∗

+ = (x∗, y∗), where both
species coexist. Coordinates x∗ and y∗ are defined by the equalities

b11x∗ + b12y∗ = 1, b21x∗ = 1 (2)

with the solution

x∗ =
1

b21
, y∗ =

b21 − b11

b12b21
=

1 − R−1
0

b12
, R0 =

K
x∗

=
b21

b11
. (3)

Here, the parameter R0 has a transparent biological meaning: it is the predator’s basic
reproduction number, i.e., the number of predator offspring produced per capita that reach
the reproductive age under the most favourable conditions when x = 1/b11 and y → 0. The
concept of the basic reproduction number originated in infectious disease dynamics, where
it is proven to be exceptionally successful. We believe that this concept is very convenient
in modelling population dynamics as well.

The principal global asymptotic properties of model (1) are summarized by the follow-
ing theorem [1,3]:

Theorem 1. For system (1), the following statements are true:

(1) If R0 > 1, then the coexisting equilibrium E∗
+ exists and is globally asymptotically stable,

while the predator-free equilibrium E∗
x is unstable (a saddle point).

(2) If R0 ≤ 1, then system (1) has no coexisting equilibrium state, and the equilibrium E∗
x is

globally asymptotically stable.
(3) The zero equilibrium E∗

0 is always unstable (a saddle point).

A principal property of the deterministic Lotka–Volterra model is its persistence. At
the same time, it was observed that in real-life biosystems species can go extinct due to
stochastic fluctuations (e.g., [6]). The objectives of this paper are to analytically study
how stochastic effects affect the model’s persistence and species extinction. We consider,
therefore, the Lotka–Volterra model under stochastic perturbations of the white noise type
that are postulated proportional to the system’s current state. This type of perturbation
appears to be the most natural for models motivated by biological applications (cf. [6–10]).

Stochastically perturbed Lotka–Volterra models attracted significant attention, and a
number of important insights into their long-term dynamics were obtained (see, e.g., [6,9–11]
and the references therein). In particular, F. Vadillo [6] numerically studied the mean-
extinction time for three different Lotka–Volterra stochastic models. In order to do this,
the author formulated the backward Kolmogorov equation for these three models, and
then solved the equation numerically, employing sophisticated computational techniques.
R. Rudnicki [9] considered the long-term dynamics of a stochastically perturbed Lotka–
Volterra model, where the random noise for both populations was postulated as correlated.
While such an assumption may to some extent model the situation when the same factor
(such as, for example, an epidemic disease) equally affects both the prey and predator
populations, the authors of this paper still believe that a model with this assumption
represents a rather limiting case and the assumption seriously downgrades the value of the
results. Nevertheless, the technique employed in the paper, as well as the results obtained,
is still of interest. To study the long-term properties of the model, in [9] the stochastic
system was reformulated as the Fokker–Planck equation, and then properties of the latter
were studied. In particular, it was established that the equation has an asymptotically
stable stationary continuous density distribution. M. Liu and M. Fan [11] suggested a new
definition of permanence for stochastic population models that implies their persistence,
and then explored the permanence of two-dimensional stochastic Lotka–Volterra systems
including the systems with cooperation, competition and predation. Some sufficient criteria
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of the permanence (and, hence, of the persistence) were established. R. Khasminskii and
F.C. Klebaner [10] considered properties of the so-called “first” Lotka–Volterra model that
postulate the unlimited growth of the prey. We have to remark that this deterministic model
is structurally unstable; this fact makes its application to real-life biosystems, as well as
the application of stochastically perturbed models based on this model, rather dubious.
Nevertheless, the analytical technique applied in [10], as well as the results obtained, can
still be of certain interest. In particular, the authors show that, for this model, for small
initial population sizes and for comparatively small perturbations, for a vast majority of
time one of the populations remains very small, but, at the same time, never comes closer
than exponentially close to zero. (That is, the system is weakly persistent.) At the same
time, due to its structural instability, for large initial population sizes, the model is hardly
suitable, because it leads to ever-increasing fluctuations in population sizes.

In this paper, to explore the persistence or stochastic extinction in the stochastic model,
we apply a method that was recently developed by the authors [7,8]. This approach is based
on the direct Lyapunov method [12] and, in particular, on the development of the ideas
of R.Z. Khasminskii [13]. Specifically, in line with Khasminskii’s idea, we suggest that the
sufficient conditions for the stochastic extinction are the conditions for the reversion of the
stability of the trivial equilibrium state (so called “stabilization by noise”). The application of
this idea to the model enables us to establish the precise sufficient conditions for species
extinction (and, hence, the precise necessary conditions for persistence).

To apply the Khasminskii idea to the models originated in mathematical biology, we
extended this idea to multi-dimensional nonlinear systems and exploited the concept of
the stability of invariant sets. That is, instead of the stability of the trivial equilibrium state
of a linear 1-dim stochastic equation, as in [13], we explore the stability of the coordinate
axes of a nonlinear stochastic system.

2. Predator–Prey Model under Stochastic Perturbations

Let {Ω,F, P} be a complete probability space; {Ft, t ≥ 0} be a nondecreasing family of
sub-σ-algebras of F, i.e., Ft1 ⊂ Ft2 ⊂ F for t1 < t2; and E be the mathematical expectation
with respect to the measure P.

Let us assume that model (1) is influenced by stochastic perturbations that are of the
white noise type and are of magnitudes proportional to the current population size. Then,
the system of ordinary differential Equation (1) transforms to the following system of Ito’s
stochastic differential equations (SDEs) [14]:

dx = a1x(1 − b11x − b12y) dt + σ1x dw1,

dy = −a2y(1 − b21x) dt + σ2y dw2.
(4)

Here, σ1 and σ2 are constants, and w1(t) and w2(t) are the mutually independent
Ft-adapted standard Wiener processes.

Before we proceed to the model analysis, let us recall the basic definition of persistence
and extinction that is equally applicable to systems (1) and (4) (cf. [15–17]):

Definition 1. Species x is weakly persistent if, for all x(0), y(0) > 0, limt→+∞ sup x(t) > 0.
Species x is persistent if, for all x(0), y(0) > 0, limt→+∞ inf x(t) > 0.
Species x is uniformly persistent if, for all x(0), y(0) > 0, limt→+∞ inf x(t) > ε > 0.
Species x is extinct if, for all x(0), y(0) > 0, limt→+∞ sup x(t) = 0.

The same definitions are applicable for species y.
By the term “stochastic extinction”, we imply extinction due to stochastic processes

only. That is, stochastic extinction occurs under the conditions when the corresponding
deterministic system is persistent.

Lemma 1. The positive quadrant R2
≥0 = {(x, y)|x, y ≥ 0} is an invariant set of stochastic

system (4).
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For proof, it is enough to note that the solution (x(t), y(t)) of system (4) is presented
in the following form [14]:

x(t) = x(0) exp
{∫ t

0

(
a1(1 − b11x(s)− b12y(s))− 1

2
σ2

1

)
ds + σ1w1(t)

}
,

y(t) = y(0) exp
{∫ t

0

(
−a2(1 − b21x(s))− 1

2
σ2

2

)
ds + σ2w2(t)

}
.

Lemma 2. If σ2
1 ≤ 2a1, then set

M =

{
(x, y)

∣∣∣∣∣x ∈
[

0,
1

b11

(
1 +

σ2
1

2a1

)]
, y ≥ 0

}
⊂ R2

≥0

is a mean positive invariant and an attractive set of system (4).

Proof. Let L be the generator [14] of system (4). The Lyapunov function u(x, y) = x2

satisfies

Lu = 2a1x2

(
1 +

σ2
1

2a1
− b11x − b12y

)
.

That is, σ2
1 ≤ 2a1 ensures that Lu < 0 for all y ≥ 0, x >

1
b11

(
1 +

σ2
1

2a1

)
. By Dynkin’s

formula [14],

Eu(x(t), y(t))− Eu(x(0), y(0)) =
∫ t

0
ELu(x(s), y(s))ds, (5)

inequality ELu(x(s), y(s)) < 0 for s ∈ (0, t) implies that Eu(x(t), y(t)) < Eu(x(0), y(0)).

That is, for all y ≥ 0 and x >
1

b11

(
1 +

σ2
1

2a1

)
, Lyapunov function u(x) decreases as t grows.

Therefore, the mathematical expectation of the solutions with positive initial conditions
converge to region M and remain there.

We would like to remind the reader that K = 1/b11 is the environment’s carrying
capacity for the prey. Lemma 2 implies that, due to stochastic fluctuations, in system (4)
the mathematical expectation for the prey population exceeds the deterministic carrying

capacity K and varies within the range

[
0,

1
b11

(
1 +

σ2
1

2a1

)]
. This fact indicates a necessity to

introduce, alongside the deterministic carrying capacity K, the stochastic carrying capacity

K̃ = K

(
1 +

σ2
1

2a1

)
≥ K.

Using this notation, set M = {(x, y)|x ∈ [0, K̃], y ≥ 0}. Furthermore, the concept of
the stochastic carrying capacity naturally leads to the concept of the stochastic predator’s
basic reproduction number:

R̃0 = b21K̃ =

(
1 +

σ2
1

2a1

)
R0 = b21

(
1 +

σ2
1

2a1

)
K.

Lemma 3. If σ2
1 > 2a1, then the zero equilibrium E∗

0 is stable in probability.
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Proof. Using the Lyapunov function w(x) = |x|
1−

2a1

σ2
1 , for all x, y ≥ 0 we have

Lw =

(
1 − 2a1

σ2
1

)
|x|

−
2a1

σ2
1 a1x(1 − b11x − b12y)− 1

2

(
1 − 2a1

σ2
1

)
2a1

σ2
1
|x|

−
2a1

σ2
1

−1

σ2
1 x2

=− a1

(
1 − 2a1

σ2
1

)
|x|

1−
2a1

σ2
1 (b11x + b12y) ≤ 0.

Therefore, semi-axis x = 0, y ≥ 0 (as a solution of the first equation of system (4)) is
stable in probability [13].

Next, consider Lyapunov function v(y) = y2, if σ2
2 < 2a2, and v(y) = |y|

1−
2a2

σ2
2 , if

σ2
2 ≥ 2a2. If σ2

2 < 2a2, then

Lv = −2a2y2(1 − b21x) + σ2
2 y2 = −y2[2a2(1 − b21x)− σ2

2 ].

From the arguments above, it follows that x → 0 and, hence, the condition σ2
2 < 2a2

ensures that inequality Lv ≤ 0 holds for all y ≥ 0.

If σ2
2 ≥ 2a2, then Lyapunov function v(y) = |y|

1−
2a2

σ2
2 satisfies

Lv = −
(

1 − 2a2

σ2
2

)
|y|

−
2a2

σ2
2 a2y(1 − b21x)− 1

2

(
1 − 2a2

σ2
2

)
2a2

σ2
2
|y|

−
2a2

σ2
2

−1

σ2
2 y2

= −a2

(
1 − 2a2

σ2
2

)
|y|

1−
2a2

σ2
2 (2 − b21x).

(6)

As x → 0 by the arguments above, we obtain that Lv ≤ 0 for all x ≤ 2
b21

, y ≥ 0.

Therefore, in the both cases, namely for σ2
2 < 2a2 and σ2

2 ≥ 2a2, solution y = 0 of the second
equation of system (4) is stable in probability. That is, the zero equilibrium E∗

0 of system (4)
is stable in probability [13]. This completes the proof.

It was shown in [7] that the condition σ2
1 ≤ 2a1 is the necessary condition for the prey’s

persistence. It is hardly surprising that the extinction of prey immediately leads to the
extinction of predators.

The authors would also like to mention that Lyapunov functions of the type that was
used in the proof were invented by R.Z. Khasminskii [13]. The inversion of the stability for
larger perturbations, such as those Lemma 3 describes, is usually referred to as stabilization
by noise.

Lemma 4. If σ2
2 ≥ 2a2 and R̃0 = R0

(
1 +

σ2
1

2a1

)
≤ 2, then for the system of stochastic differential

Equation (4) the set S = {(x, 0)|x ∈ [0, K̃]} (an interval on the positive semi-axis {x ≥ 0}) is
stable in probability.

Proof. From (6), for Lyapunov function v(y) = |y|
1−

2a2

σ2
2 , we have that Lv ≤ 0 holds for all

x ≤ 2b−1
21 , y ≥ 0. Therefore, the solution y = 0 of the second equation of system (4) is stable
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in probability. Additionally, R̃0 = b21K̃ = R0

(
1 +

σ2
1

2a1

)
≤ 2 ensures that x ≤ K̃ ≤ 2b−1

21 .

Additionally, by Lemma 2, for all positive initial conditions, there is a finite t1 > 0 such that
Ex(t) ≤ K̃ holds for all t > t1.

That is, the lemma hypotheses ensure that L(v(t)) ≤ 0 holds for all positive initial
conditions and for t > t1. This completes the proof.

Summarizing the statements in Lemmas 3 and 4, we come to the following theorem.

Theorem 2.

(1) Conditions σ2
2 ≥ 2a2 and R̃0 ≤ 2 are sufficient conditions for prey stochastic extinction (the

extinction in probability).
(2) If σ2

1 > 2a1, then both species, namely, the prey and the predator, go extinct (in probability).
(3) σ2

1 ≤ 2a1 is necessary for the stochastic system’s persistence.
(4) σ2

1 ≤ 2a1 and either σ2
2 < 2a2 or R̃0 > 2 are necessary for the predator’s persistence.

Figures 1 and 2 illustrate predator extinction due to stochastic perturbations for the
case σ2

1 < 2a1 and σ2
2 < 2a2, respectively. Figure 3 illustrates the stochastic extinction of

both species for the case of σ2
1 > 2a1 and σ2

2 > 2a2.

Figure 1. Fifteen trajectories of the solution (x(t), y(t)) of system (4) with a1 = 2, a2 = 1, b11 = 2.5,
b12 = 3, b21 = 1, σ1 = 0.25, σ2 = 0.2, and the initial conditions at point A1 = (0.9, 0.4). In this
picture, it is easy to see that the predator species goes extinct, whereas prey persists. Accordingly, all
trajectories converge to interval (x1, x2) = (0.35, 0.45), with the equilibrium E∗

x(0.4, 0) in the centre of
the interval, on the x-axis, oscillating around this interval thereafter.

Figure 2. Fifteen trajectories of the solution (x(t), y(t)) of system (4) for the same values of the
parameters as in Figure 1 and for initial conditions (0.4, 0.9). It is easy to see that all trajectories y(t)
(green lines) converge to y = 0, whereas x(t) (blue lines) oscillate around the interval (x1, x2) =

(0.35, 0.45).
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Figure 3. Fifteen trajectories of the solution (x(t), y(t)) of system (4) for a1 = 2, a2 = 1, b11 = 1,
b12 = 0.2, b21 = 2.5, σ1 = 2.5, σ2 = 2, and for initial conditions (3, 4). All trajectories of x(t) (blue
lines) and y(t) (green lines) converge to zero.

Note that for the numerical simulation of the Wiener process trajectories, a special
algorithm described in detail in [12] was used.

The authors would like to attract readers’ attention to the fact that in Figures 1 and 2,
as y → 0, the prey population x(t) oscillates around a certain interval (x1, x2). (In
Figures 1 and 2, (x1, x2) = (0.35, 0.45).) In fact, in the absence of the predator (that
is, for y = 0), the first equation of the system of stochastic differential Equation (4)
is equivalent to the stochastically perturbed logistic equation of a single population’s
growth that was studied by the authors in [7]. In [7], for this equation the authors
established the existence of a stable mean interval on the x-axis and showed that the
trajectories oscillate around this interval. (In the notation of this paper, the interval is

(x1, x2) =

(
1

b11

(
1 − |σ1|√

2a1

)
,

1
b11

(
1 +

|σ1|√
2a1

))
.) Recalling that the x-axis is an invari-

ant set of system (4) and that solutions are continuous, it is easy to see, that, as y → 0,
the solution of system (4) tends to that on the x-axis, and, hence, the interval (x1, x2) in
Figures 1 and 2 corresponds to the stable interval found in [7].

3. Conclusions

In this paper, employing a technique recently developed by the authors based upon
the ideas of R.Z. Khasminskii, we found precise sufficient conditions for stochastic species
extinction and, thereby, the precise necessary conditions for species persistence for the
classical Lotka–Volterra predator–prey model under stochastic perturbations proportional
to the system’s current state. Please note that the conditions found for the extinction are
sufficient, in probability. For this model, stochastic extinction necessarily occurs as a result
of a phenomenon known as stabilization by noise, and the conditions found in this paper
are, in fact, the conditions for the reversion of the stability of the corresponding coordinate
subspaces. This ensures that the conditions in this paper are the precise sufficient conditions
for extinction, and, hence, the precise necessary conditions for species persistence.

We would like to stress that the technique used in this paper can be applied for more
complicated models (including nonlinear models), as well as for higher-dimension models.
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