
Citation: Rath, S.; Ramalingam, J.;

Lee, C.-C. On Efficient Parallel Secure

Outsourcing of Modular

Exponentiation to Cloud for IoT

Applications. Mathematics 2024, 12,

713. https://doi.org/10.3390/

math12050713

Academic Editor: Daniel-Ioan

Curiac

Received: 19 January 2024

Revised: 23 February 2024

Accepted: 25 February 2024

Published: 28 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

On Efficient Parallel Secure Outsourcing of Modular
Exponentiation to Cloud for IoT Applications
Satyabrat Rath 1 , Jothi Ramalingam 1 and Cheng-Chi Lee 2,3,*

1 Department of Mathematical and Computational Sciences, NITK Surathkal,
Mangaluru 575025, Karnataka, India; satyarath.207ma006@nitk.edu.in (S.R.); jothiram@nitk.edu.in (J.R.)

2 Department of Library and Information Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
3 Department of Computer Science and Information Engineering, Fintech and Blockchain Research Center,

Asia University, Taichung City 41354, Taiwan
* Correspondence: cclee@blue.lins.fju.edu.tw or cclee@mail.fju.edu.tw

Abstract: Modular exponentiation is crucial for secure data exchange in cryptography, especially
for resource-constrained Internet of Things (IoT) devices. These devices often rely on third-party
servers to handle computationally intensive tasks like modular exponentiation. However, existing
outsourcing solutions for the RSA algorithm may have security vulnerabilities. This work identifies a
critical flaw in a recent outsourcing protocol for RSA proposed by Hu et al. We demonstrate how this
flaw compromises the security of the entire RSA system. Subsequently, we propose a robust solution
that strengthens the RSA algorithm and mitigates the identified vulnerability. Furthermore, our
solution remains resilient against existing lattice-based attacks. The proposed fix offers a more secure
and efficient way for IoT devices to leverage the power of third-party servers while maintaining data
integrity and confidentiality. An extensive performance evaluation confirms that our solution offers
comparable efficiency while significantly enhancing security compared to existing approaches.

Keywords: modular exponentiation; outsourcing; RSA algorithm; secure message communication;
cloud computing

MSC: 11T71; 11T06

1. Introduction

Within the rapidly evolving Internet of Things (IoT) ecosystem, where interconnected
devices generate and exchange sensitive data, ensuring robust security and privacy is
paramount. Modular exponentiation, a fundamental operation underpinning public-key
cryptosystems like RSA, plays a pivotal role in safeguarding data during transmission
and storage.

The Rivest–Shamir–Adleman (RSA) algorithm, a cornerstone of public-key cryptog-
raphy, leverages the computational difficulty of factoring large prime numbers. This
intrinsic complexity forms the basis for its robust security, enabling secure key exchange
and encrypted communication across diverse applications.

However, within the realm of IoT devices, limited processing power and resource
constraints pose a significant challenge. Efficiently executing computationally intensive
operations like modular exponentiation, crucial for utilizing RSA’s full potential, often
proves difficult for these resource-constrained devices.

Cloud computing emerges as a viable solution, offering on-demand access to vast
computational resources through a pay-per-use model. By outsourcing computationally
demanding tasks like modular exponentiation to a third-party cloud server, even resource-
scarce IoT devices can leverage the power of RSA for robust data security. This cost-effective
approach ensures their uninterrupted participation in secure communication protocols
without compromising performance or energy efficiency.

Mathematics 2024, 12, 713. https://doi.org/10.3390/math12050713 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12050713
https://doi.org/10.3390/math12050713
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0009-5104-8200
https://orcid.org/0000-0001-9830-021X
https://orcid.org/0000-0002-8918-1703
https://doi.org/10.3390/math12050713
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12050713?type=check_update&version=3


Mathematics 2024, 12, 713 2 of 14

However, outsourcing sensitive data to a cloud service introduces a new layer of
security considerations. Maintaining data integrity and confidentiality while utilizing
cloud resources necessitates the implementation of robust security measures, such as a
“secure outsourcing” of computation.

By effectively navigating the interactions between IoT devices and the cloud, we can
leverage the combined strengths of both to achieve a future where secure and efficient
communication becomes the cornerstone of a truly connected world.

1.1. Related Works

The exploration of outsourcing computationally expensive tasks has been a primary fo-
cus for researchers over an extended period. Broadly, research on outsourcing computation
is progressing along two distinct trajectories.

One outsourcing model, proposed by [1,2], aims to evaluate any computational func-
tion and resolve all outsourcing computations concurrently. However, this model relies on
complex cryptographic tools, rendering it time-consuming and costly.

In contrast, another model targets specific outsourcing tasks. For instance, refs. [3,4]
proposed task-specific outsourcing for polynomial evaluation, while refs. [5–7] focused on
modular exponentiation. This model concentrates on particular computational tasks.

Modular exponentiation has consistently been at the forefront of cryptographic tools,
primarily utilized for ensuring secure communication, key exchange protocols, message
authentication, and more. Within cryptographic algorithms based on the discrete logarithm,
modular exponentiation emerges as a complex and widely employed operation. Numerous
studies have focused on securely outsourcing modular exponentiation. Hohenberger and
Lysyanskaya [5] introduced the pioneering solution under the assumption of one mali-
cious entity in a two-server model. Chen et al. [6] proposed a more efficient algorithm
under the same assumption, including an initial algorithm targeting the outsourcing of
simultaneous modular exponentiations. Ding et al. [8] proposed an outsourcing algo-
rithm aiming to achieve a high level of checkability of the cloud’s output. Zhou et al. [9]
presented a secure outsourcing algorithm for exponentiation under a single untrusted
program model, incorporating a secure verification scheme with elevated checkability.
However, Rangasamy and Kuppusamy [10] identified a vulnerability in the ExpSOS algo-
rithm, where its security could be compromised if two modular exponentiations with the
same exponent were delegated to the server. Ren et al. [11] proposed two algorithms for
outsourcing modular exponentiation capable of detecting malicious behaviors of servers.
Subsequently, Su et al. [12] introduced two new algorithms for outsourcing single as
well as composite modular exponentiation using a single untrusted cloud. Nevertheless,
Bouillaguet et al. [13] conducted a cryptanalysis on all existing outsourcing schemes (in-
cluding Su et al. [12]) and proposed lattice-based attacks to breach security in all the
existing schemes of outsourcing modular exponentiation.

Additionally, research has explored outsourcing applications of modular exponen-
tiation. For instance, Zhang et al. [14] devised a secure outsourcing algorithm for RSA
decryption, involving modular exponentiation. Furthermore, Hu et al. [15] proposed a
modification to the cloud computing phase of the ExpSOS algorithm [9], employing Parallel
Binary Modular Exponentiation (PBME) for cloud-side computation. Hu et al. [15] also ap-
plied their algorithm to outsource the computation of modular exponentiation necessary for
secure message communication between two users, U1 and U2, using the RSA algorithm.

1.2. Our Contributions

In this work, we first take a critical view of the most well-known outsourcing protocol,
Hu et al. [15] outsourcing protocol for the RSA algorithm, and then address the security
issues related to their outsourcing modular exponentiation algorithm. The work can be
summarized as follows:

• Overview: Provides a comprehensive overview of Hu et al.’s outsourcing protocol
for the RSA algorithm [15].



Mathematics 2024, 12, 713 3 of 14

• Flaws and Deficiencies: Identify the flaws and security deficiencies in Hu et al.’s protocol.
• Proposed Solution: Introduces a novel solution to rectify these deficiencies, supported

by an in-depth security and performance analysis.
• Verification in Malicious Cloud: Incorporates the omitted verification steps in Hu

et al’s protocol, considering a fully malicious cloud environment [16].

We have assumed a security and system model similar to Hu et al. ([15], Section II).
These definitions are widely used and were proposed by Hohenberger and Lysyanskaya [5].

2. Description of Hu et al. [15] Protocol

To start with, we investigate Hu et al. ’s outsourcing algorithm, which involves a
resource-limited user U delegating the task of computing modular exponentiation

be mod N

to a trustworthy yet curious cloud C, where b is the base and the exponent e and the
modulus N = pq with p and q being two distinct large primes.

The cloud computing approach suggested by Hu et al. [15] relies on the Binary
Modular Exponentiation (BME) algorithm, which represents the exponent e in binary form.
Algorithm 1 contains the pseudocode for the BME algorithm. In Algorithm 1, the base is
taken as Bbase, the exponent Eexp = (en−1en−2 · · · e1e0)2 is considered in binary form (i.e.,
ei = 0 or 1), and the modulus is chosen as N. Algorithm 1, proposed by Hu et al., provides
the result Rresult = B

Eexp
base mod N for the inputs Bbase, Eexp and modulus N.

Algorithm 1 The algorithm BME [15]
Input: A base Bbase, the exponent Eexp = (en−1en−2 · · · e1e0)2 in binary representation, the
modulus N
Output: Rresult = B

Eexp
base mod N

1. Rresult ← 1 // Initialize result to 1
2. for i = n− 1 to 0 do // Loop through each bit of the exponent (reverse order)

Rresult ← R2
result mod N // Square the result and take modulo N

if ei = 1 then
Rresult ← Rresult · Bbase mod N //Multiply by base Bbase if ei is 1, and take modulo N
end

3. return Rresult // Return the final result

Subsequently, Hu et al. [15] provided a parallel computing algorithm for cloud-side
computation. This algorithm, Parallel Binary Modular Exponentiation (PBME), described
in Algorithm 2, is a parallel computing algorithm extension of Algorithm 1 with each
component of the output Xresult = (x0, x1, · · · , xn−1) computed parallelly.

As follows from Algorithm 2, for the exponent Eexp = (en−1en−2 · · · e1e0)2, if ei = 1,
then xi takes the value Bbase and squares it i times, or else if ei = 0, then xi takes the value 1.
Here, xi’s are the results of each parallel computation and collectively

n−1

∏
i=0

xi = ∏
i s.t. ei=1

B2i
base = B

Eexp
base mod N.

Hu et al. introduced Algorithm 2 for achieving secure parallel outsourcing of modular
exponentiation. This algorithm allows a user U to delegate the task of computing modular
exponentiation of the base b, exponent e, and modulus N to an honest-but-curious cloud C
to compute the result R = be mod N. The secure outsourcing of modular exponentiation
is illustrated in Algorithm 3.



Mathematics 2024, 12, 713 4 of 14

Algorithm 2 The algorithm PBME [15]
Input: A base Bbase, the binary representation of the exponent Eexp = (en−1en−2 · · · e1e0)2,
the modulus N
Output: Xresult = (x0, x1, · · · , xn−1)

1. for i = 0 to n− 1 do // Loop through each bit of the exponent
2. if ei ̸= 0 then // Check if the current bit is non-zero
3. xi ← Bbase; // Initialize xi with base Bbase
4. for j = 1 to i do // Square xi, i times
5. xi ← x2

i mod N; // Square xi and take modulo N
6. end for // End of inner loop
7. else // If the current bit is zero
8. xi ← 1; // Set xi to 1
9. end if // End of if statement
10. end for // End of outer loop
11. return Xresult // Return the resulting array Xresult

To provide an overview, Algorithm 3 entails the following steps:

• User U generates a secret key to conceal the modulus N.
• Encrypting the base b and exponent e as B and E, respectively.
• Outsourcing the computation of modular exponentiation to the cloud C for the en-

crypted system.
• Eventually, retrieving the original problem’s result from the encrypted result.

Algorithm 3 Hu et al.’s outsourcing model [15]
Input: The base and exponent b, e ∈ RN , the modulus N
Output: The result R = be mod N
Key Generation: KeyGen(1k, N)→ (p, L)
U selects a large prime p at random and computes L ← pN, then keeps the secret key
SK = {p, N} and public key PK = {L}.
Encryption: Enc(b, e)→ (B, E)
1. U selects random integers r, k ∈ RN .
2. U computes B← (b + rN) mod L, E← e + kϕ(N).
3. U outsources (B, E, PK) to the cloud.
Computing Outsourcing: C(B, E, PK)→ R1

1. C computes R1 ← C(B, E, PK) = BE (mod L)
2. Exponent E is presented in binary form, and each part is computed in parallel using

Algorithm 2.
3. C gets the product of all parts and returns the result R1 to U.
Decryption: Dec(R1, SK)→ R
U computes R← Dec(R1, SK) = R1 mod N

As RSA is an application of modular exponentiation, Hu et al. utilized Algorithm 3 to
delegate the computation of the RSA cryptosystem for transmitting a plaintext T between
two IoT devices, U1 and U2, which have limited resources.

The parallel secure outsourcing protocol for the RSA algorithm developed by Hu
et al. ([15], Protcol 2) involves taking the plaintext message T, which U1 wants to send to
U2, as input. To accomplish this, U1 generates a key-pair (e, d) for a modulus n = pq, where
p and q are two large primes such that ed ≡ 1 mod ϕ(n). Subsequently, U1 delegates
the computation of the RSA encryption to a cloud server, receives the result from the
cloud, and forwards the encrypted message, the decryption key d, and modulus n to U2.
The detailed procedure of the algorithm is outlined in Algorithm 4 (exactly as mentioned
in ([15], Protocol 2)).

In an overview, Algorithm 4 illustrates the following:



Mathematics 2024, 12, 713 5 of 14

• U1 generates keys, i.e., a decryption key KP2 = {d, n}, secret key SK = {p′, T}, and
public key PK = {L}

• U1 encrypts the plaintext message T and exponent e as B and E, respectively.
• U1 outsources the computation of BE (mod L) to cloud C.
• U1 forwards the decryption key KP2 along with encrypted result F1 to U2.
• U2 retrieves the original message F by decrypting the ecnrypted result F1 using

decryption key KP2

Algorithm 4 Hu et al.s outsourcing for RSA algorithm [15]
Input: The plaintext message T
Output: The plaintext message F
Key Generation: KeyGen(1k, T)→ (e, d, p′, L)
1. End-user U1 generates two large primes p and q and calculates n ← pq, ϕ(n) ←

(p− 1)(q− 1).
2. U1 chooses a random integer e as encryption key such that gcd(e, ϕ(n)) = 1 and

2 ≤ e ≤ ϕ(n)− 1.
3. U1 computes d as decryption key such that ed ≡ 1 (mod ϕ(n))
4. U1 generates another large prime p′ and computes L← p′T, then gets the decryption

key KP2 = {d, n}, secret key SK = {p′, T}, and public key PK = {L}
Encryption: Enc(T, e)→ (B, E)
1. U selects two random integers r, k ∈ RN
2. U computes B← (b + rN) and E← e + kϕ(N)
3. U outsource (B, E, PK) to the cloud.
Computing Outsourcing: C(B, E, PK)← F1

1. Cloud C computes F1 ← C(B, E, PK) = BE (mod L).
2. Exponent E is presented in a binary way, each part computed in parallel.
3. C gets the product of all parts and sends the result F1 to U1.
Message Forwarding: F(F1, KP2)

1. U1 forwards key pair KP2 and encrypted message F1 to another user U2.
Decryption: Dec(F1, KP2)→ F
1. U2 calculates F ← Dec(F1, KP2) = Fd

1 (mod N) to get the plaintext.

2.1. Drawbacks

Our analysis of Algorithms 3 and 4 reveals several security and usability drawbacks.

2.1.1. Algorithm 3

This algorithm closely resembles the ExpSOS algorithm by Zhou et al. [9], differing
only in cloud computation methods. However, Rangasamy and Kuppusamy [10] presented
a polynomial-time attack on ExpSOS that recovers the modulus N when two modular
exponentiations with the same exponent are delegated. This attack applies here as well,
allowing any probabilistic polynomial-time (PPT) adversary to retrieve N.

2.1.2. Algorithm 4

Several errors exist in Hu et al.’s RSA implementation:

• Misinterpretation of RSA for message communication:

– The algorithm misinterprets the intended use of RSA for secure message com-
munication.

• Incorrect outsourcing protocol:

– The RSA outsourcing protocol is presented incorrectly. When using RSA for
message transfer from sender U1 to receiver U2, U2 (not U1) generates the key
pair (e, d) and modulus N = pq (p and q are large primes).



Mathematics 2024, 12, 713 6 of 14

• Public key misuse:

– The public key (e, N) allows any user, including U1, to send an encrypted mes-
sage to U2, who then uses the private key d for decryption. However, the
algorithm claims U1 generates (e, d, N), requiring them to create a new key pair
for each message, rendering it impractical and inefficient.

• Insecure key transmission:

– U1 transmits the key pair (secret key) KP2 = {d, N} along with the encrypted
message F1 through an insecure channel. This exposes the original message T to
potential adversaries on the channel.

• Computationally infeasible encryption:

– In the Encryption phase, U1 computes E ← e + kϕ(N). However, if the RSA
algorithm is to be correctly followed, U1 lacks access to ϕ(N), and computing it
for any given N is infeasible for a resource-constrained user.

Note 1. Deviations from Secure RSA Communication:
We highlight two key issues with Algorithm 4 alongside the drawbacks mentioned above

regarding its adherence to the secure RSA message communication scheme:
1. Incorrect Key Distribution: Algorithm 4 assumes user U1 has access to both the public

key (e, N) and the private key d. In RSA, only the receiver (U2 in this case) holds the private key,
while the public key is widely distributed. Allowing U1 access to d contradicts this fundamental
principle and compromises message security.

2. Inconsistent Plaintext Usage: The algorithm exhibits inconsistencies in its usage of the
plaintext message T. Initially, T is correctly identified as the user’s plaintext. However, two errors
emerge in subsequent stages:

• Stage 4 of Key Generation utilizes the secret modulus L as p′T, a meaningless expression as
T is considered as plaintext, which further deviates from expected operations.

• The Encryption phase employs b instead of T as the plaintext, further adding to the confusion
and potentially leading to incorrect operations.

These inconsistencies, combined with the incorrect key distribution, render Algorithm 4
unsuitable for secure message communication and highlight the need for careful adherence to
standard cryptographic protocols.

3. Reproducing Hu et al.’s Protocol for RSA

Considering the misinterpretation and typing mistakes in ([15], Section VI, Protocol 2),
we reproduce the protocol for secure message communication using the RSA algorithm
while considering the following points:

• In the scenario of secret message communication between two end-users U1 and U2,
if U1 wants to send a plaintext T securely to U2, U1 should use the public key (e, N)
generated by U2.

• U2 generates the key pair (e, d) for a given modulus only once for the entire session of
message transfer as e and N are made public for any user to send a message. Thus,
the values of e, d, and N are fixed.

• In practice, during message transfer, the value e is chosen to be a very small integer
compared to the security parameter, whereas the size of d is almost as large as the
modulus N. Thus, RSA encryption is computationally less challenging for a user than
RSA decryption. As Vergnaud [17] mentioned, the encryption key is often a small key
of a 16-bit integer, and e can take values up to 216 + 1 = 65,537.

• First, we reproduce Hu et al.’s protocol for secure message communication using the
RSA algorithm, where outsourcing the RSA decryption computation is performed
with the help of an honest-but-curious cloud server C.



Mathematics 2024, 12, 713 7 of 14

Note 2. We noticed that the outsourcing algorithm proposed by Hu et al. [15] assumes the cloud to
be an honest-but-curious model. Therefore, the Verification step is missing in both the algorithms
(Algorithms 3 and 4).

Algorithm 5 sketches the Hu et al. algorithm properly in terms of how it is supposed to
be with proper interpretation of RSA communication and without any typographical errors.

Algorithm 5 Reproduced Hu et al. [15] outsourcing for RSA decryption
Input: The plaintext T to be sent by U1
Output: The plaintext T to be received by U2
Key Generation: KeyGen(1k, N)→ (e, d)
1. U2 generates two large primes p and q (p ̸= q) and computes N = pq and ϕ(N) =

(p− 1)(q− 1). U2 keeps p and q as secret.
2. U2 chooses a random integer e as public encryption key such that gcd(e, ϕ(N)) = 1

and 2 ≤ e ≤ ϕ(N)− 1.
3. U2 computes d as private decryption key such that ed ≡ 1 (mod ϕ(N))
4. U2 makes the pair (e, N) public, and keep d as secret.
Encryption: Enc(T, e)→ Te mod L
1. U1 generates a large prime p′ and computes L = p′N where secret key SK = {p′, N},

and public key PK = {L}.
2. U1 encrypt the plaintext T to F = Te mod L.
Message Forwarding: U1 → (F, L)→ U2

1. U1 forwards the encrypted message F along with the modulus L to another user U2.
Secure Outsourcing:
1. U2 selects two random integers r, k ∈ RN
2. U2 computes B← (F + rN) and D ← d + kϕ(N)
3. U2 outsource (B, D, L) to the cloud.
Computing Outsourcing: C(B, D, L)← F1

1. Cloud C computes F1 ← C(B, D, L) = BD (mod L).
2. C sends the result F1 to U2.
Decryption: Dec(F1)→ T
1. U2 calculates T = F1 (mod N) to get the plaintext T.

Now, we present an attack on this reproduced Algorithm 5 of Hu et al. and claim that
an adversarial cloud can learn the value ϕ(N) (and hence the prime factors of N) while
remaining an honest party.

3.1. Attack against Algorithm 5

In this section, we present an attack on the reproduced Hu et al. outsourcing protocol
for secure message communication using the RSA algorithm. Our attack is based on
multiple delegations and is similar to the attack by Rangasamy and Kuppusamy [10] on
the Zhou et al. [9] protocol. We take into consideration the fact that both end-users, U1 and
U2, have limited resources. For U2, the values ofe, d, and N are fixed because (e, N) is the
public key that can be used by anyone to send a secret message to U2, which also means
that the value of d remains the same throughout the communication. (d is the modular
inverse of e modulo ϕ(N), which is unique. Since (e, N) is fixed, so is d).

Now, we consider the user U1 communicating two encrypted texts (T1 encrypted to F1

and T2 encrypted to F2 using the public exponent e and the modulus L1 = p
′
1N and L2 = p

′
2N)

to U2. Upon Decryption, U2 selects random integers r1, k1, r2, k2 ∈ RN and computes

B1 ← (F1 + r1N)

D1 ← d + k1ϕ(N)



Mathematics 2024, 12, 713 8 of 14

B2 ← (F2 + r2N)

D2 ← d + k2ϕ(N)

and outsources (B1, D1, L1) and (B2, D2, L2) to the cloud.
An adversarial cloud C′ performs the operation

D1 − D2 = (k1 − k2)ϕ(N)

to obtain a multiple of ϕ(N). Given an RSA modulus N = pq and a multiple of its Euler’s
totient function ϕ(N), Rabin’s PPT algorithm (Rabin et al. [18]) produces the factorization
(p, q) in anticipated polynomial time O(log (N)3).

3.2. The Fix for Algorithm 5 against Our Attack

Here, we propose a modification to the outsourcing model proposed by Hu et al. [15]
for secure message communication using the RSA algorithm. To address the security issues
in Algorithm 5, we introduce our fix to Algorithm 5 with proper interpretation of RSA
communication.

Additionally, we consider a scenario where an end-user U1 needs to send a secure
message to another user U2 with the help of an untrustworthy fully malicious cloud/server.
Thus, we introduce the verification step that has been missing in Algorithms 4 and 5.
We begin by considering the scenario where the end users U1 and U2 are resource-constrained.
User U1 wants to send the message T to U2.

3.2.1. Correctness of Algorithm 6

We demonstrate the validity of our solution for Hu et al.’s outsourcing model concern-
ing the RSA algorithm. This clarification confirms that our algorithm adheres to the RSA
communication assumptions and indeed provides accurate results when outsourced.

1. U2 computes L = p′N for some random large prime p′ and makes (e, L) public and
keeps d, p′ and N as secret, where ed ≡ 1 mod ϕ(N).

2. U1 computes F = Te mod L and sends it to U2.
3. U2 computes B = F + rN mod L and R = 2t and D ≡ d − R mod ϕ(N) (i.e.,

D = d− R + kϕ(N) for some integer k).
4. U2 sends (B, D, L) and (B, t, L) to the cloud C.
5. C computes F1 = BD mod L and R1 = BR mod L
6. U2 computes

F1.R1 mod N

=⇒ (BD mod L).(BR mod L) mod N

=⇒ ((F + rN)(d−R)+kϕ(N) mod L).

((F + rN)R mod L) mod N

=⇒ (Fd−R+kϕ(N)).(FR) mod N

=⇒ Fd mod N = Ted mod N = T mod N

This shows the correctness of our algorithm.



Mathematics 2024, 12, 713 9 of 14

Algorithm 6 Our fix for Hu et al.’s Outsourcing Model for RSA algorithm
Input: The plaintext T to be sent by U1
Output: The plaintext T to be received by U2
Key Generation: KeyGen(1k, N)→ (e, d)

1. U2 generates two large primes p and q (p ̸= q) and computes N = pq and ϕ(N) =
(p− 1)(q− 1). U2 keeps p and q as secret.

2. U2 chooses a random integer e as public encryption key such that gcd(e, ϕ(N)) = 1
and 2 ≤ e ≤ ϕ(N)− 1.

3. U2 computes d as private decryption key such that ed ≡ 1 (mod ϕ(N))
4. U2 computes L = p′N where p′ ∈ N is a large prime.
5. U2 makes the pair (e, L) public, and keep d as secret.

Encryption: Enc(T, e)→ Te mod L
1. U1 encrypt the plaintext T to F = Te mod L.
Message Forwarding: U1 → F → U2

1. U1 forwards the encrypted message F to intended recipient U2.
Secure Outsourcing:
1. U2 selects a random integer r ∈ Z.
2. U2 computes B← (F + rN) mod L
3. U2 generates R← 2t for some fixed integer t and D ← d− R mod ϕ(N).
4. U2 outsource the tuples (B, D, L) and (B, R, L) to the cloud.
Computing Outsourcing: C(B, D, L)← F1, C(B, R, L)← R1

1. Cloud C computes F1 ← C(B, D, L) = BD (mod L) and R1 ← C(B, R, L) = BR

(mod L).
2. C sends the result F1 and R1 to U2.
Verification: U2(F1, R1, F)→ 0∪ 1
Upon receiving F1 and R1 from cloud C, U2 checks whether the results satisfy

(F1.R1)
e ≡ F mod N.

Decryption: Dec(F1, R1, N)→ T
1. If the results F1 and R1 passes the verification step, U2 proceeds for the decryption.
2. U2 calculates T = F1.R1 (mod N) to get the plaintext T.

3.2.2. Security Analysis of Algorithm 6

We discuss the security of our proposed fix as outlined in Algorithm 6. We begin
by listing the entities that are made public and can be accessed either by other users or
the cloud.

• The public exponent e and public modulus L are shared by U2 publicly, where L = p′N.
• It is assumed that the cloud knows all the abovementioned entities.

Privacy of ϕ(N)

As evident from Algorithm 6, the equation representing the decryption process is
given by:

d ≡ D + R (mod ϕ(N))

D ≡ d− R (mod ϕ(N))

where D and R have specific relations with ϕ(N) and t, respectively.

• The equation D + R ≡ d + k1ϕ(N) (mod ϕ(N)) implies the existence of an integer k1
such that the sum of D and R equals the sum of d and k1 multiplied by Euler’s totient
function of N (ϕ(N)).



Mathematics 2024, 12, 713 10 of 14

• If the cloud C has access to the value of ϕ(N), it can compute the secret key of U2 and
breach its security.

• However, our previously described attack in Section 3.1 will not work since D remains
unchanged for multiple delegations (ref. Note 1).

• Instead, we now discuss a potential passive attack that can be used to compute the
value of ϕ(N).

We follow the attack for exponent splitting as proposed by Mefenza and Vergnaud ([19],
Section 3). Using the values e, D, and R, we obtain:

e(D + R) = e(d− R + k1ϕ(N) + R)

= ed + k1ϕ(N)

= 1 + (k1 + k2)ϕ(N)

= 1 + k∗ϕ(N)

Thus, the polynomial f (x, y) = 1 + x(N + y) has a root (k∗, 1− p − q) modulo e′

where e′ = e(D + R). However, the value N = pq is not made public by U2 and guessing
the value N has probability 1

ϕ(N)
.

Another possible way to approach the attack is to take the polynomial f (x, y) = 1+ xy
that has a root (k∗, ϕ(N)) modulo e′ (ref. Mefenza and Vergnaud [19]). Here, y = ϕ(N)
has the size y ≃ N. Considering the sizes of e ≃ Nα, d ≃ Nβ, D ≃ Nδ, k∗ ≃ Nα+β1+δ,
and e′ ≃ N1+α+β1 (β = 1 + β1) and following the lattice-based attack of Mefenza and
Vergnaud [19], we evaluate the condition for the existence of a solution to the equation
f (x, y) = 1 + xy = 0 mod e′ as:

det(L) < ((e′)m)w

where L is the lattice of dimension w that is generated using the polynomial f (x, y).
However, since now y ≃ N, we obtain the condition for having a solution to f (x, y) = 0
mod e′ as:

(
1
3
+

τ

3
)(α + β1 + δ) + 1(

1
6
+

τ

3
+

τ2

6
) < (

1
6
+

τ

3
)(1 + α + β1)

which simplifies to:

(
1
3
+

τ

3
)(α + β1 + δ) +

τ2

6
< (

1
6
+

τ

3
)(α + β1)

Maximizing the value of δ by taking τmax = 1− 2δ, the inequality transforms to:

(1 + α + β1) < 0

This indicates that this attack is only possible when α + β1 < −1. Since α, β1 are
chosen to be positive numbers in our scheme, this attack will fail. This demonstrates that
our scheme defeats the attack proposed by Mefenza and Vergnaud [19], and the value ϕ(N)
cannot be computed by any curious cloud.

Privacy of N and p′

The public modulus is given as L = p′N, where both p′ and N are kept secret by
the user U2. Thus, for two consecutive instances, the adversary will have L1 = p

′
1N and

L2 = p
′
2N, and with high probability gcd(L1, L2) = N. Thus, to avoid such a scenario, U2

can fix the public modulus as L = p′N for some fixed large prime p′.



Mathematics 2024, 12, 713 11 of 14

Note 3. The computation of R = 2t must be performed by the user U2 [20]. There exist various
methods to efficiently compute R. For example, the binary representation of 2t is (100 · · · 000)2 of bit-
length t + 1. Therefore, the value R (and subsequently D) can be readily delegated to the cloud C in
its binary form. Cloud C can execute the delegated task in a parallel environment using Algorithm 2.
However, the computation of D might raise concerns for a resource-constrained device like U2, as
D = d− R mod ϕ(N) necessitates modular operations. To alleviate the computation burden on
U2, t can be chosen as an integer with a smaller bit-size (e.g., a 20-bit integer). Furthermore, the
value R is computed only once for multiple delegations. It is permissible to select t as a random
20-bit integer for each delegation, although this may impact the algorithm’s efficiency.

3.3. Verification Analysis of Algorithm 6

In our scheme, user U2 receives F1 and R1 from the cloud and verifies their correctness
using the equation:

(F1 · R1)
e ≡ F (mod N),

since U2 already received F from U1. While Section 3.2.1 ensures this equation validates
accurate results, we now explore its robustness against a malicious cloud attempting to
bypass verification.

We consider a scenario where the cloud sends forged results F1 and R1, which still
satisfy the verification equation:

(F1 · R1)
e ≡ F (mod N).

This implies

(F1 · R1)
e = F + mN.

for some integer m. However, due to the modular operation with modulus N, the verifica-
tion still yields the correct result F (mod N):

(F + mN) (mod N) = F (mod N).

This demonstrates the inherent robustness of our verification scheme, even against
manipulation attempts. The resemblance of our verification scheme to RSA signature
authentication further strengthens its security foundation.

4. Performance Analysis

In this section, we detail the experimental application of our proposed algorithm. Our
algorithm is coded in Python (version 3.9.12) within the Jupyter Notebook environment,
utilizing the NumPy package for computational tasks. The computational operations on
the users’ side U1 and U2 are executed on a system equipped with an Intel(R) Core(TM)
i7-3770 processor running at 3.40 GHz with 8 GB RAM. On the cloud side, we leverage
a GPU server labeled Tesla V100-PCIE, equipped with NVIDIA-SMI and CUDA version
11.5, 32 GB RAM.

For clarity and research focus, communication time between the cloud server and the
local device is excluded from the results. Two reasons justify this:

1. Computational Dominance: Computational tasks significantly outweigh communi-
cation in terms of time expenditure.

2. Prediction Challenges: Accurately predicting communication time is difficult due to
experimental setup limitations and research objectives.

We conduct experiments by executing the scheme across various moduli, ranging from
1024 to 4096 bits, with the base as the “plaintext” and exponent (e) set to 65,537 (a commonly
used public key for RSA). To ensure more accurate computational time measurements, we
carried out 20 trials for modulus size with specific bit size and subsequently computed
their average.



Mathematics 2024, 12, 713 12 of 14

Note 4. As the Hu et al. scheme is proven insecure and impossible to follow, we have not shown the
comparison analysis with Hu et al.’s scheme. Additionally, Hu et al.’s protocol assumed the cloud
server to be honest-but-curious and hence avoided the verification step. We have assumed the cloud to
be untrustworthy and proposed a new verification scheme. Therefore, we have skipped the comparison
of performance with Hu et al.s protocol. Instead, we provide evidence that our outsourcing scheme is
more efficient in executing RSA communication in comparison to local execution.

Following Algorithm 6, we begin our experimental setup from the end-user U2. U2
generates the key pairs, i.e., private key (d, N, ϕ(N)) and public key (e, L). The experimental
setup considers four different bit sizes (1024, 2048, 3072, and 4096 b) for the modulus size.
We list out the computation times for the Key Generation (Table 1).

Table 1. Computational time for Key Generation.

Bit Size Computation Time (in s)

1024 0.53481

2048 6.93154

3072 23.44951

4096 93.92856

Using the public key (e, L), user U1 encrypts the plaintext T to F = Te mod L. For
experimental purposes, T is always taken as a 1000-bit number (randomly generated) for
all different modulus sizes. The computation times for user U1 are listed below Table 2.

Table 2. Computational time for Encryption by U1.

Bit Size Computation Time (in s)

1024 0.001822

2048 0.004237

3072 0.006481

4096 0.009796

Upon receipt of the transmitted ciphertext F, user U2 chooses to securely delegate
the decryption of F to an untrustworthy cloud. We document the computational time for
U2 in the phases of Secure Outsourcing, Verification, and Decryption. Additionally, we
record the computation time for U2 for the same input when the decryption of ciphertext F
is conducted locally. Time units are measured in seconds.

As shown in Table 3, our secure outsourcing scheme demonstrates efficient perfor-
mance, accelerating the decryption process as the modulus size increases compared to local
execution. For instance, U2 requires only 0.005318 s to securely outsource the decryption
task for a 3072-bit modulus, whereas executing the decryption task itself takes 0.548388 s.
This observation serves as evidence bolstering the efficiency of our algorithm. The accelera-
tion in processing speed is evident from the “Speed Up” column in Table 3, demonstrating
the performance enhancement achieved through our algorithm.

Table 3. Computational time comparison using outsourcing vs. performing locally by U2.

Bit Size Secure Outsourcing Verification Decryption Total Time Locally Executed Speed up

1024 0.001291 0.000955 0.000269 0.002515 0.054834 21.8×
2048 0.001643 0.001792 0.00042 0.003855 0.256242 66.47×
3072 0.002058 0.002679 0.000581 0.005318 0.548388 103.119×
4096 0.002563 0.003817 0.000873 0.007253 1.24538 171.7055×



Mathematics 2024, 12, 713 13 of 14

In local execution, the decryption process occurs entirely within U2’s system, with-
out relying on the outsourcing services. This eliminates the need for U2 to engage in
cloud-based encryption, verification, and decryption steps. Instead, U2 solely utilizes its
computational resources to retrieve the message originally sent by U1.

Figure 1 illustrates the graphical comparison between the ‘Total Time’ required for
outsourcing and the time needed for decryption when executed ‘locally’. The data utilized
for this comparison are sourced from Table 3 (columns ‘Total Time’ and ‘Locally Executed’)
and visualized in Figure 1.

1024 2048 3072 4096
0

500

1000

1500

Modulus Bit Size

C
os

ti
n

m
se

c

Local Execution

Our Algorithm

Figure 1. Local execution (without outsourcing) vs. using our algorithm (with outsourcing).

5. Conclusions and Future Scope

The RSA cryptosystem is a widely recognized and extensively employed cryptographic
algorithm for secure data transmission. We conducted a comprehensive investigation of
Hu et al.’s outsourcing algorithm for modular exponentiation and its usage in a message
communication application using the RSA algorithm. Our analysis demonstrated the
inadequacy and insecurity of Hu et al.’s algorithm. Moreover, we proposed a new modified
algorithm for outsourcing RSA computations and provided a detailed security analysis of
it. Additionally, we have also included the verification step that was missing in Hu et al.’s
algorithm as we chose an untrustworthy malicious cloud.

While our work focused on secure message transmission through an insecure channel,
future studies could explore real-life scenarios where encrypted messages are transmitted
through noisy channels. Such channels introduce the risk of errors during transmission, neces-
sitating additional measures like bit error correction. This area presents promising avenues
for further research to ensure robust communication even in challenging environments.

Author Contributions: Writing—original draft, S.R.; Writing—review & editing, J.R. and C.-C.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Applebaum, B.; Ishai, Y.; Kushilevitz, E. From secrecy to soundness: Efficient verification via secure computation. In International

Colloquium on Automata, Languages, and Programming; Springer: Berlin/Heidelberg, Germany, 2010; pp. 152–163.
2. Gennaro, R.; Gentry, C.; Parno, B. Non-interactive verifiable computing: Outsourcing computation to untrusted workers. In

Advances in Cryptology—CRYPTO 2010: 30th Annual Cryptology Conference, Santa Barbara, CA, USA, 15–19 August 2010; Proceedings
30; Springer: Berlin/Heidelberg, Germany, 2010; pp. 465–482.



Mathematics 2024, 12, 713 14 of 14

3. Benabbas, S.; Gennaro, R.; Vahlis, Y. Verifiable delegation of computation over large datasets. In Annual Cryptology Conference;
Springer: Berlin/Heidelberg, Germany, 2011; pp. 111–131.

4. Papamanthou, C.; Shi, E.; Tamassia, R. Publicly Verifiable Delegation of Computation. IACR Cryptol. ePrint Arch. 2011, 2011, 587.
5. Hohenberger, S.; Lysyanskaya, A. How to securely outsource cryptographic computations. In Theory of Cryptography Conference;

Springer: Berlin/Heidelberg, Germany, 2005; pp. 264–282.
6. Chen, X.; Li, J.; Ma, J.; Tang, Q.; Lou, W. New algorithms for secure outsourcing of modular exponentiations. IEEE Trans. Parallel

Distrib. Syst. 2013, 25, 2386–2396. [CrossRef]
7. Wang, Y.; Wu, Q.; Wong, D.; Qin, B.; Chow, S.; Liu, Z.; Tan, X. Securely outsourcing exponentiations with single untrusted program

for cloud storage. In Computer Security-ESORICS 2014: 19th European Symposium on Research in Computer Security, Wroclaw, Poland,
7–11 September 2014; Proceedings, Part I 19; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 326–343.

8. Ding, Y.; Xu, Z.; Ye, J.; Choo, K. Secure outsourcing of modular exponentiations under single untrusted programme model. J.
Comput. Syst. Sci. 2017, 90, 1–13. [CrossRef]

9. Zhou, K.; Afifi, M.; Ren, J. ExpSOS: Secure and verifiable outsourcing of exponentiation operations for mobile cloud computing.
IEEE Trans. Inf. Forensics Secur. 2017, 12, 2518–2531. [CrossRef]

10. Rangasamy, J.; Kuppusamy, L. Revisiting single-server algorithms for outsourcing modular exponentiation. In International
Conference on Cryptology in India; Springer International Publishing: Cham, Switzerland, 2018; pp. 3–20.

11. Ren, Y.; Dong, M.; Qian, Z.; Zhang, X.; Feng, G. Efficient algorithm for secure outsourcing of modular exponentiation with single
server. IEEE Trans. Cloud Comput. 2018, 9, 145–154. [CrossRef]

12. Su, Q.; Zhang, R.; Xue, R. Secure outsourcing algorithms for composite modular exponentiation based on single untrusted cloud.
Comput. J. 2020, 63, 1271. [CrossRef]

13. Bouillaguet, C.; Martinez, F.; Vergnaud, D. Cryptanalysis of modular exponentiation outsourcing protocols. Comput. J. 2022, 65,
2299–2314. [CrossRef]

14. Zhang, H.; Yu, J.; Tian, C.; Tong, L.; Lin, J.; Ge, L.; Wang, H. Efficient and secure outsourcing scheme for RSA decryption in
Internet of Things. IEEE Internet Things J. 2020, 7, 6868–6881. [CrossRef]

15. Hu, Q.; Duan, M.; Yang, Z.; Yu, S.; Xiao, B. Efficient parallel secure outsourcing of modular exponentiation to cloud for IoT
applications. IEEE Internet Things J. 2020, 8, 12782–12791. [CrossRef]

16. Rath, S.; Rangasamy, J. Privacy-Preserving Outsourcing Algorithm for Solving Large Systems of Linear Equations. SN Comput.
Sci. 2023, 4, 656. [CrossRef]

17. Vergnaud, D. Comment on “Efficient and Secure Outsourcing Scheme for RSA Decryption in Internet of Things”. IEEE Internet
Things J. 2020, 7, 11327–11329. [CrossRef]

18. Rabin, M. Digitalized Signatures and Public-Key Functions as Intractable as Factorization; Massachusetts Inst of Tech Cambridge Lab
for Computer Science: Cambridge, MA, USA, 1979.

19. Mefenza, T.; Vergnaud, D. Cryptanalysis of server-aided RSA protocols with private-key splitting. Comput. J. 2019, 62, 1194–1213.
[CrossRef]

20. Kuppusamy, L.; Rangasamy, J. Improved Cryptographic Puzzle Based on Modular Exponentiation. In Proceedings of the
Mathematics and Computing: ICMC, Haldia, India, 5–10 January 2015; pp. 107–121.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TPDS.2013.180
http://dx.doi.org/10.1016/j.jcss.2016.11.005
http://dx.doi.org/10.1109/TIFS.2017.2710941
http://dx.doi.org/10.1109/TCC.2018.2851245
http://dx.doi.org/10.1093/comjnl/bxz165
http://dx.doi.org/10.1093/comjnl/bxab066
http://dx.doi.org/10.1109/JIOT.2020.2970499
http://dx.doi.org/10.1109/JIOT.2020.3029030
http://dx.doi.org/10.1007/s42979-023-02093-5
http://dx.doi.org/10.1109/JIOT.2020.3004346
http://dx.doi.org/10.1093/comjnl/bxz040

	Introduction
	Related Works
	Our Contributions

	Description of Hu et al. hu2020efficient Protocol
	Drawbacks
	Algorithm 3
	Algorithm 4


	Reproducing Hu et al.'s Protocol for RSA
	Attack against Algorithm 5
	The Fix for Algorithm 5 against Our Attack
	Correctness of Algorithm 6
	Security Analysis of Algorithm 6

	Verification Analysis of Algorithm 6

	Performance Analysis
	Conclusions and Future Scope
	References

