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Abstract: The present study provides the heat transfer analysis of a viscous fluid in the presence of
bioconvection with a Caputo fractional derivative. The unsteady governing equations are solved by
Laplace after using a dimensional analysis approach subject to the given constraints on the boundary.
The impact of physical parameters can be seen through a graphical illustration. It is observed that the
maximum decline in bioconvection and velocity can be attained for smaller values of the fractional
parameter. The fractional approach can be very helpful in controlling the boundary layers of the
fluid properties for different values of time. Additionally, it is observed that the model obtained
with generalized constitutive laws predicts better memory than the model obtained with artificial
replacement. Further, these results are compared with the existing literature to verify the validity of
the present results.

Keywords: bioconvection; Caputo fractional; heat transfer; vertical surface

1. Introduction

The term bioconvection is characterized by hydrodynamic instability and patterns
in suspensions of biased swimming microorganisms. The velocity and spatial range of
fluid motions are typically considerably higher than those associated with the velocity and
size of individual cells, resulting in rapid cell transfer and the formation of specialized
cell concentration visualization patterns. Biotechnology has evolved to integrate new and
diverse sciences in the early 21st century, as introduced by Platt [1]. A variety of researchers
dedicate their resources to revealing bioconvection characteristics, like Khan et al. [2], who
conducted their research on the dynamics of the Cattaneo–Christov theory of heat and mass
flow with bioconvection Oldroyd-B nanofluid. Assessment of bioconvection in Maxwell
nanofluid equipped with nonlinear radiation using a Riga surface was carried out by
Ramesh et al. [3]. Tlili et al. [4] previewed the analysis of micropolar nanofluid flow with
partial slip and double stratification in MHD gyrotactic microorganisms. Heat production
due to gyrotactic microorganisms with the bioconvection of a magnetohydrodynamic
flow of nanofluid was examined by Khotha et al. [5]. Khan et al. [6] studied the entropy
generation of bioconvection nanofluid streamlines between two spinning extendable discs.
Shah et al. [7] investigated the microstructure and inertial properties of Maxwell base
fluid stream-dependent magnetohydrodynamic suspended SWCNTs and MWCNTs with
bioconvection and a vertical permeable cone. Research was conducted on the implications
of activation energy, MHD, and bioconvection in the flow to the extended surface of third
grade (non-Newtonian) fluid by Chu et al. [8]. Bhatti et al. [9] investigated the swimming
of motile gyrotactic microorganisms and nanoparticles in blood flow with anisotropically
tapered arteries. In that work, they discussed a theoretical study on the swimming of
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migratory gyrotactic microorganisms in a non-Newtonian blood-based nanofluid through
an anisotropically narrowed artery.

Abbasi et al. [10] investigated the convective stream across a convective spinning
stretching disc of viscoelastic nanofluid. With Maxwell, MHD, activation power, heat
transfer, and Oldroyd-B on an extendable sheet, and also with a vertical rotating cylinder,
the significance of bioconvection was studied by Waqas et al. [11,12]. The significance
of various slips with gyrotactic motile microorganisms in the bioconvection stream of
cross nanofluid over a wedge was studied. The value of viscoelastic nanofluid through
a magnetic dipole and several slips on a cross nanofluid bioconvection stream past a
wedge through gyrotactic motile microorganisms has been numerically examined by
Alshomrani et al. [13,14]. A bioconvection study of third-grade nanofluid in von-Kármán
flow with motile microorganisms was conducted by Ullah et al. [15]. The effectiveness
of magnetohydrodynamic span and Carreau nanofluid has been established in entropy
production details and gyrotactic motile microorganisms with transformations of von Neu-
mann similarity by Naz et al. [16,17]. Alqarni et al. [18] investigated the transferred heat
of micropolar nanofluid bioconvection flow through motile microorganisms and velocity
slip conditions. Bioconvection with activation energy and Wu’s slip of magnetized couple
stress nanofluid was studied by Khan et al. [19]. Sajid et al. [20] considered the effects of
double-diffusive convection and motile microorganisms on tangent hyperbolic base fluid
bioconvection MHD. A simulation of finite elements of bioconvection and superior-Fick
diffusion effects over a vertically extending layer on micropolar-based nanofluid flow was
discussed by Ali et al. [21]. The Newtonian heating effect on a time mixed convection
nanofluid microorganism stream through the stagnation realm of an impulsively spinning
sphere was examined by Mahdy et al. [22]. The effects of energy on Eyring’s motile
microorganism-containing nanofluid on MHD flow were studied by Sharif et al. [23]. A
computational simulation by coupled quasiliberalization magnetohydrodynamic biocon-
vective Casson nanofluid flow was carried out by Ansari et al. [24].

Fractional calculus is a field of mathematics used for the integration and differentiation
of real or complex numbers. Even although calculus is historic, it has still gained attention
in recent decades. Recently, mathematical simulations of heat transfer fluids, which play
an important role in manufacturing, have also been studied by researchers, with significant
applications. Usually, these simulations are expressed in standard integer-order partial
differential equations. Note that the conventional PDEs cannot decipher the dynamical
behavior of physical flow parameters and retention effects. To remove these defects, re-
searchers focused on the fractional dynamic systems of heat transfer in simple and complex
fluid models. Recently, many researchers have worked on the application of fractional
calculus but they have not considered the unsteady effect of bioconvection in those heat
transfer models. The wide range of fractional models, and their applications in applied
sciences, can be seen in the following references [25–44].

The most interesting feature of the fractional operators is that there are several such
operators. This helps researchers to select the most appropriate operator to characterize
the implications of real global crises. Jarad et al. [45] modified fractional derivatives and
Laplace transformed them. Vieru et al. [46] applied a Caputo fractional derivative to heat
and mass transfer flow over a flat plate. They used the Laplace transform method to find ex-
act solutions. They did not consider the bioconvection effect in their model. Abro et al. [47]
investigated the thermal stability of Maxwell nanofluids by fractional derivatives with a sin-
gular kernel. Zhang et al. [48] analyzed a new mathematical model of COVID-19 through
fractional derivatives of discrete and non-singular kernels. Rayal et al. [49] proposed a
numerical analysis of a damped differential equation of an extended form associated with
fractal–fractional derivatives through the use of the Lagrange wavelet fractional order.
Singh et al. [50] presented a review of the chemical kinetics method of a fractional deriva-
tive of the Mittag-Leffler kernel form. Ghanbari et al. [51] studied new edge detection
strategies focused on fractional derivatives of non-local and semi kernels. Son et al. [52]
researched the liberalization regulatory problem with a granular neutrosophic fractional
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differential equation. Gambo et al. [53] discussed the unique nature of fractional differ-
ential equation solutions within the context of simplified Caputo fractional derivatives.
Akgul et al. [54] analyzed the formulation of linear and nonlinear differential equations
through simplified fractional derivatives. El-Nabulsi et al. [55] investigated results that
were used to explore some novel aspects of fractional quantum field theory and many
interesting consequences were revealed, in particular the complex quantum field theory,
Dirac operators and the novel notion of mass without mass. El-Nabulsi et al. [56] studied
the fractional field theory with Saxena–Kumbhat fractional integrals, fractional derivatives
of order α, β and dynamical fractional integral exponents. Moshrefi et al. [57] analyzed
the physical and geometrical interpretation of fractional operators. Cloot et al. [58] in-
vestigated the generalized groundwater flow equation using the concept of non-integer
order derivatives. Lima et al. [59] studied the experimental signal analysis of robot impacts
from a fractional calculus perspective. Bhalekar et al. [60] investigated the fractional Bloch
equation with delay. In that work, they described the fractional Bloch equation with both
fading memory and delay included. Odzijewicz et al. [61] invented variations of fractional
calculus in the expression of a generalized fractional integral with physics applications. In
that work, they investigated speculated fractional integrals with Lagrangian depending
on classical derivatives, generalized fractional derivatives and integrals. Malinowska [62]
studied the fractional variational calculus for non differentiable functions. Kulish et al. [63]
investigated the application of fractional calculus to fluid mechanics. In that work, they ex-
amined the application of fractional calculus and of arbitrary differentiation to the solution
of time-dependent, viscous diffusion fluid mechanics problems. Together with the Laplace
transform method, the application of fractional calculus to the classical transient viscous
diffusion equation in a semi-infinite space was shown to yield explicit analytical fractional
solutions for the shear stress and fluid speed anywhere in the domain. El-Nabulsi et al. [64]
investigated the path integral formulation of fractionally perturbed Lagrangian oscillators
on a fractal. Meerschaert et al. [65] studied multidimensional advection and fractional
dispersion. In that work, they found that the extension of the fractional diffusion equation
to two or three dimensions is not as simple as an extension of the second order equation.

Vieru el al.’s [46] heat and mass transfer model is used in the absence of the biocon-
vection effect. After that, Shah et al. [25] studied analytical solutions for time-fractional
boundary layer flow of viscous fluid over a vertical heat transfer surface including Caputo
and Caputo–Fabrizio derivatives. Exact solutions were obtained through the Laplace
transform method without the bioconvection effect.

The studies above were carried out with or without fractional derivatives in the ab-
sence of fractional bioconvection. On the other hand, the main task is to combine these
two attractive topics, bioconvection and fractional derivatives. In the abovementioned
literature, there is no single study of bioconvection with a Caputo fractional derivative.
The theoretical model of heat transfer of fluid flow in the presence of bioconvection is
solved with the Laplace transform method. A graphical discussion of flow parameters is
presented through graphics.

2. Mathematical Formulation

Let us consider an unsteady heat transfer flow of a viscous fluid over a flat surface
in an xy-coordinate system situated at y = 0. In the beginning, at t = 0, the plate and
the fluid are at rest with reference surface temperature T∞ and reference concentration
of microorganisms N∞. After some time, the plate begins to move at a constant velocity
and the surface temperature Tw and the concentration of microorganisms of the plate Nw
increase. Since the plate has infinite length, every physical quantity is the function of y and
t only and shown in Figure 1.
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Figure 1. Geometry of the problem.

The momentum and bioconvection equations can be seen in limiting form in [66–69]

ρut(y, t) = µuyy(y, t) + g[ρβT(T − T∞)− γ(ρm − ρ)(N − N∞)], (1)

while the heat equation is
ρCpTt(y, t) = kTyy(y, t), (2)

and the unsteady bioconvection equation can be found in [66–69],

Nt(y, t) = DnNyy(y, t), (3)

subject to initial and boundary conditions

u(y, 0) = 0, T(y, 0) = T∞, N(y, 0) = N∞, for all y ≥ 0, (4)

u(0, t) = u0H(t), T(0, t) = Tw, N(0, t) = Nw, t > 0, (5)

u(y, t) −→ 0, T(y, t) −→ T∞, N(y, t) −→ N∞, y −→ ∞, t > 0. (6)

We introduce the non-dimensional variables

y∗ =
u0y

ν
, u∗ =

u
u0

, t∗ =
tu2

0
ν

, θ =
T − T∞

TW − T∞
, N∗ =

N − N∞

NW − N∞
, q∗ =

q
qo

, J∗ =
J
Jo

, (7)

into Equations (1)–(6) and ignore the (∗) notation

ut(y, t) = uyy(y, t) + Gr[θ(y, t)− RaN(y, t)], (8)

θt(y, t) =
1
Pr

θyy(y, t), (9)

Nt(y, t) =
1

Lb
Nyy(y, t), (10)

with dimensionless conditions

u(y, 0) = 0, θ(y, 0) = 0, N(y, 0) = 0, (11)

u(0, t) = H(t), θ(0, t) = 1, N(0, t) = 1, (12)

u(y, t) −→ 0, θ(y, t) −→ 0, N(y, t) −→ 0, as y −→ ∞, (13)
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where H(t) is the unit step function, Gr is the Grashof number, Gr = gνβT(Tw−T∞)

u3
0

, Pr

is the Prandtl number, Pr =
ρCp

k , Lb = ν
DN

is the bioconvection Lewis number and

Ra = γ(ρm−ρ)(Nw−N∞)
βT(Tw−T∞)ρ

is the bioconvection Rayleigh number.

3. The Solution of the Problem with Classical Time Derivative

This section deals with the solution of the temperature and velocity field with and
without a fractional derivative and the Laplace transform method.

3.1. The Solution of Bioconvection

In this section, the solution of bioconvection given in Equation (10) and subject to
boundary conditions (11)–(13) by the assistance of the Laplace transform strategy can be
obtained in the following way:

sN̄(y, s) =
1

Lb
N̄yy(y, s), (14)

while associated conditions in the transformed domain are:

N̄(0, s) =
1
s

, N̄(y, s)→ 0, as y→ ∞. (15)

The general solution of Equation (14) under condition (15):

N̄(y, s) =
1
s

e−y
√

Lbs, (16)

is found by applying the inverse Laplace to Equation (16)

N(y, t) = erfc

(
−y
√

Lb
2
√

t

)
, (17)

where erfc(.) is Gauss’s complementary error function.

3.2. The Solution of Temperature Field

In this section, the solution of energy in Equation (9) is subject to the boundary
conditions (11)–(13) with the assistance of the Laplace transform method and is given as

sθ̄(y, s) =
1
Pr

θ̄yy(y, s), (18)

with associated conditions:

θ̄(0, s) =
1
s

, θ̄(y, s), → 0, as y→ ∞. (19)

The solution of Equation (18) is subject to the conditions given in (19), so we have

θ̄(y, s) =
1
s

e−y
√

Prs, (20)

with its inverse Laplace transform form

θ(y, t) = erfc

(
−y
√

Pr
2
√

t

)
, (21)

where erfc(.) is Gauss’s complementary error function.
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3.3. The Solution of the Velocity Field

This section deals with the solution of momentum in Equation (8) subject to the
boundary conditions (11)–(13) through the assistance of the Laplace transform technique
and the procedure is given below:

sū(y, s) = ūyy(y, s) + Gr[θ̄(y, s)− RaN̄(y, s)], (22)

and relevant boundary conditions in transform domain are:

ū(y, s) =
1
s

, ū(y, s)→ 0, as y→ ∞. (23)

A general solution of Equation (22) subject to the constraints given in (23):

ū(y, s) =
e−y
√

s

s
+

Gr
Pr− 1

(
e−y
√

s

s2 − e−y
√

Prs

s2

)
− RaGr

Lb− 1

(
e−y
√

s

s2 − e−y
√

Lbs

s2

)
. (24)

Taking the inverse Laplace of Equation (24) with the help of the following formula given
in [25,46] gives:

L−1
{

1
s2 e−y

√
as
}

=

(
t +

ay2

2

)
er f c

(
y
√

a
2
√

t

)
− y
√

at
π

e−
−ay2

4t

u(y, t) = er f c
(

y
2
√

t

)
+ Gr

Pr−1

[(
t + y2

2

)
er f c

(
y

2
√

t

)
− y
√

t
π e−

−y2
4t

]
−

Gr
Pr−1

[(
t + Pry2

2

)
er f c

(
y
√

Pr
2
√

t

)
− y
√

Prt
π e−

−Pry2
4t

]
− RaGr

Lb−1

[(
t + y2

2

)
er f c

(
y

2
√

t

)
− y
√

t
π e−

−y2
4t

]
+ RaGr

Lb−1

[(
t + Lby2

2

)
er f c

(
y
√

Lb
2
√

t

)
− y
√

Lbt
π e−

−Lby2
4t

]
.

(25)

Equation (25) is valid only for Pr 6= 1 and Lb 6= 1.

3.4. Fractional Modeling

In the literature presented in the Introduction, researchers addressed bioconvection
with classical time derivatives or the steady case, either analytically or numerically, in the
absence of a fractional derivative approach. Usually, these models are represented in terms
of traditional integer-order partial differential equations (PDEs). However, traditional PDEs
cannot decode the complex behavior of physical flow parameters and memory effects. The
classical calculus measures the instant rate of change of the output when the input level
changes. Therefore, it is not able to include the previous state of the system, called the
memory effect. In fractional calculus (FC), the rate of change is affected by all points of the
considered interval, so it is able to incorporate the previous history/memory effects of any
system. The order of the fractional derivative is treated as an index of memory. Therefore,
we considered the present fractional model. Further, in the fractional derivative approach
in convective problems, scientists have ignored the bioconvection effect. Therefore, our
main target was to combine these two branches in order to cover the gap which is still not
reported in the existing literature. For this purpose, we generalized the ordinary model
with fractional derivatives and found analytical solutions of fractional energy equations
and fractional bioconvection. There are two method for fractional modeling in the existing
literature and: (i) we develop the fractional model of governing equations by replacing the
integer order with non-integer order derivative, (ii) we develop the fractional model for
energy balance equations and bioconvection through generalized constitutive relations
and use these solutions in a classical momentum equation to obtain an analytical solution
for the velocity field.
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3.5. Solution of the Fractional Model Using Generalized Constitutive Relations

Firstly, we develop the constitutive fractional model for energy balance equations and
bioconvection equations and solve them with the Laplace transform method, followed by
the velocity field. The momentum equation for viscous fluid containing the bioconvection
term is given by

ρ
∂u(y, t)

∂t
=

∂τ(y, t)
∂y

+ g[ρβT(T − T∞)− γ(ρm − ρ)(N − N∞)]. (26)

The constitutive equation is

τ(y, t) = µ
∂u(y, t)

∂y
. (27)

The equation of thermal balance is

(ρCp)
∂T(y, t)

∂t
= −∂q(y, t)

∂y
. (28)

By Fourier’s law, the thermal flux equation of heat conduction is

q(y, t) = −k
∂T(y, t)

∂t
. (29)

The equation of diffusion balance is

∂N(y, t)
∂t

= −∂J(y, t)
∂y

. (30)

The equation of bioconvection concentration is

J(y, t) = −Dn
∂N(y, t)

∂y
. (31)

By introducing the dimensionless variables from Equation (7) into (26)–(31), we have the
momentum equation containing the bioconvection term, given by

∂u(y, t)
∂t

= co
∂τ(y, t)

∂y
+ Gr[θ(y, t)− RaN(y, t)]. (32)

The constitutive equation is

τ(y, t) = c1
∂u(y, t)

∂y
. (33)

The equation of thermal balance is

∂θ(y, t)
∂t

= −c2
∂q(y, t)

∂y
. (34)

By Fourier’s law, the thermal flux equation of heat conduction is

q(y, t) = −c3
∂θ(y, t)

∂t
. (35)

The equation of diffusion balance is

∂N(y, t)
∂t

= −c4
∂J(y, t)

∂y
. (36)
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The equation of bioconvection concentration is

J(y, t) = −c5
∂N(y, t)

∂y
. (37)

By using Equation (33) in Equation (32), we have the momentum equation in dimensionless
form:

∂u(y, t)
∂t

=
∂u2(y, t)

∂y2 + Gr[θ(y, t)− RaN(y, t)]. (38)

where co = τo
ρu2

o
, c1 = ρu2

o
τo

, c2 = qo
ρCp(Tw−T∞

, c3 = kuo(Tw−T∞)
qoν , c4 = Jo

uo(Nw−N∞)
, c5 =

Dnuo(Nw−N∞)
Joν .
Hristov [70] and Povstenko [71] found the constitutive thermal flux equation with the

generalized Fourier’s law:

Q(y, t) = −b1−β
CD1−β

t

[
∂θ(y, t)

∂y

]
, 0 < β ≤ 1, (39)

and the constitutive equation for bioconvection balance equation:

J(y, t) = −c1−γ
CD1−γ

t

[
∂N(y, t)

∂y

]
, 0 < γ ≤ 1. (40)

In the equations above, CDβ
t or CDγ

t is the Caputo time fractional operator defined in [46].
By introducing Equations (39) and (40) into Equations (34) and (36), respectively, we

have. In [72,73] the authors used the same kind of fractional modeling for some heat
transfer models.

∂θ(y, t)
∂t

= −c2

∂
[
−b1−β

CD1−β
t

∂θ(y,t)
∂y

]
∂y

, (41)

∂N(y, t)
∂t

= −c4

∂
[
−c1−γ

CD1−γ
t

∂N(y,t)
∂y

]
∂y

. (42)

In order to get the equivalent forms of Equations (41) and (42), we apply left inverse
operators I1−β

t (.) and I1−γ
t (.) and on both sides we have

CDβ
t θ(y, t) = c6

∂2θ(y, t)
∂y2 , (43)

CDγ
t N(y, t) = c7

∂2N(y, t)
∂y2 . (44)

The solution of Equation (43) is subject to conditions given in Equation (19) by means of
the Laplace transform method

θ̄(y, s) =
1
s

exp

−y

√
sβ

c6

, (45)

written in a suitable form,

θ(y, s) =
1
s
+

∞

∑
i=1

( −y√
c6
)i

i!s1− βi
2

. (46)
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By taking the inverse Laplace transform of Equation (46), we have

θ(y, t) = 1 +
∞

∑
i=1

( −y√
c6
)it−βi/2

i!Γ(1− βi)
. (47)

Therefore, by following a similar procedure, the solution of bioconvection can be obtained
as follows:

N(y, t) = 1 +
∞

∑
j=1

( −y√
c7
)jt−γj/2

j!Γ(1− η j)
. (48)

In order to obtain the analytical solutions for momentum equation, we use the expressions
of energy and bioconvection of fractional order in momentum Equation (38) after applying
the Laplace transform subject to conditions (23), we have

u(y, s) =
e−y
√

s

s
+

Gr

( sβ−1

c6
)− 1

 e−y
√

s

s2 − e
−y
√

sβ

c6

s2

− GrRa

( sγ−1

c7
)− 1

 e−y
√

s

s2 − e−y
√

sγ

c7

s2

. (49)

In order to obtain the inverse Laplace transform analytically, Equation (49) can be written
in its suitable form

ū(y, s) = 1
s + ∑∞

i=1
(−y)i

i!s1− i
2
+ Gr ∑∞

j=0 ∑∞
k=0

(c6)
j+1(−y)k

k!s1+βj+β−j− k
2
−Gr ∑∞

j=0 ∑∞
l=0

(c6)
j+1− l

2 (−y)l

l!s1+βj+β−j− βl
2

−GrRa ∑∞
m=0 ∑∞

n=0
(c7)

m+1(−y)n

n!s1+βm+β−m− n
2
+ GrRa ∑∞

m=0 ∑∞
p=0

(c7)
m+1− p

2 (−y)p

p!s1+βm+β−m− βp
2

.
(50)

Taking the inverse Laplace of Equation (50), we have

u(y, t) = 1 + ∑∞
i=1

(−y)it−
i
2

i!Γ(1− i
2 )

+ Gr ∑∞
j=0 ∑∞

k=0
(c6)

j+1(−y)ktβj−j− k
2

k!Γ(1+βj+β−j− k
2 )
−Gr ∑∞

j=0 ∑∞
l=0

(c6)
j+1− l

2 (−y)l tβj+β−j− βl
2

l!Γ(1+βj+β−j− βl
2 )

−GrRa ∑∞
m=0 ∑∞

n=0
(c7)

m+1(−y)ntβm−m− n
2

n!Γ(1+βm+β−m− n
2 )

+ GrRa ∑∞
m=0 ∑∞

p=0
(c7)

m+1− p
2 (−y)ptβm+β−m− βp

2

p!Γ(1+βm+β−m− βp
2 )

.

(51)

4. Results and Discussion

The unsteady bioconvection effect is studied in this investigation with a fractional
derivative for a vertical surface. By the Laplace transform method, exact solutions are
obtained and presented in the form of Wright’s function. Some graphs are plotted to see
the physical impact of flow parameters and are presented in this section. Figure 2 shows
the comparison between the Caputo fractional and classical velocity field by keeping other
parameters constant. It is clear from the figure that for α = 0.95 the fluid velocity shows
decay and for α = 0.6 more decay is detected. Additionally, for α = 0.4 and α = 0.2, the
velocity field reaches the maximum decline. This fact explains the memory effect of the
present fractional operator for varying values of the fractional parameter. The Caputo
fractional explains the memory of the function and further shows dual behavior for long
and short times due to the power law kernel that appears in its definition. Such results
are very important in some experimental data. Hence, by using a fractional approach, the
velocity exhibits more memory than the classical approach.

Figure 3 presents the outcome of the bioconvection Rayleigh number Ra and the
comparison between the Caputo fractional and classical approach to variable velocity field
was carried out by keeping other parameters constant. It is clear from the figure that the
fluid velocity falls when increasing the values of bioconvection Rayleigh number Ra. This
is due to the fact that, for larger values of Ra, the buoyancy effect from the transportation
of microorganisms decreases. Moreover, fractional velocity exhibits a greater decline than
the classical approach.

In Figure 4, the same behavior Pr can be observed for the velocity with integer and
non-integer orders. From the figure, it is clear that velocity is a decreasing function of Pr.
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Physically, Pr is the dimensionless number that tests the relative breadth of a boundary layer
of thermal conductivity and momentum. With higher values of Pr, thermal conductivity is
reduced, the viscosity of the fluid is enhanced and, finally, a decline in velocity is observed.
It is also observed that the boundary layer breadth declines.

Figure 5 presents increasing values of the time and shows that velocity can be enhanced
for longer periods of time. Figure 6 shows a comparison between Caputo and classical
Grashof number (Gr ) in the field variable velocity field, by keeping other parameters
constant, and an opposite trend of Pr can be seen. It is observed that field variable fluid
velocity can be enhanced for larger values of the Grashof number (Gr). These phenomena
occur with increases in the velocity due to the increased thermal buoyancy effect. Figure 7
shows bioconvection when keeping other parameters constant and varying the values of
the Caputo fractional parameter α, and it is observed that bioconvection shows a decline
for larger values of α and the maximum decline can be attained for smaller values of α near
the plate. It is also found that the momentum boundary layer thickness decreases.

Figure 8 shows the evaluation among Caputo fractional and classical bioconvection
fields by keeping other parameters constant, and it is shown that the bioconvection field can
be decreased with higher values of Lb. This is because Lb is reciprocal to mass diffusivity,
so its large values decrease the bioconvection profile. Figure 9 is plotted for the validation
of the present results. In the absence of bioconvection, the present result was reduced to the
result obtained in [25] and they are clearly in good agreement. Further, in order to justify the
present fractional modeling with a classical time derivative, we created a fractional model
with artificial replacement of the integer order derivative with a non-integer order and a
fractional model obtained with generalized constitutive laws and found very interesting
results, which are presented in Figures 10–12. In the literature, many results are obtained
with artificial replacement after making the governing equation dimensionless. Here, we
present a comparison between the fractional modeling obtained with artificial replacement
and generalized constitutive laws for temperature, bioconvection and velocity field. It
is clear from the figures that artificial replacement exhibits memory, but not accurately,
as the correct fractional approach through constitutive laws does. In addition, a correct
mathematical model obtained with generalized laws shows a rapid decline in the boundary
layers of the fluid properties.

Figure 2. Comparative analysis of velocity distribution for different β and γ values.
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Figure 3. Comparative analysis of velocity distribution for different Ra values.

Figure 4. Comparative analysis of velocity distribution for different Pr values.

Figure 5. Comparative analysis of velocity distribution for different time values.
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Figure 6. Comparative analysis of velocity distribution for different Gr values.

Figure 7. Comparative analysis of bioconvection distribution for different γ values.

Figure 8. Comparative analysis of bioconvection distribution for different Lb values.
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Figure 9. Comparison between present Results in the absence of bioconvection and Nehad el al. [25].

Figure 10. Comparison of temperature between classical time derivative, Caputo fractional model
with artificial replacement and Caputo model with generalized constitutive law.

Figure 11. Comparison of bioconvection between classical time derivative, Caputo fractional model
with artificial replacement and Caputo model with generalized constitutive law.
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Figure 12. Comparison of velocity between classical time derivative, Caputo fractional model with
artificial replacement and Caputo model with generalized constitutive law.

5. Conclusions

The present study deals with bioconvection with a heat transfer model with a Caputo
fractional model. The exact solutions are obtained for the dimensionless governing equa-
tions with Laplace transform methods. Some physical impacts of flow parameters have
been discussed through graphical illustrations. The major outcomes are the following:

• The fractional parameter can be used to control the boundary layers of the fluid
properties like bioconvection, temperature and velocity.

• The fractional approach can be the best fit in some experimental work, where the
needed and desired results can be achieved for different values of fractional parame-
ters and time.

• The fractional model obtained with generalized constitutive laws gives better and
more accurate results in terms of memory than the fractional approach with artificial
replacement.

• The present results are compared with the existing literature in the absence of biocon-
vection and they are in good agreement.
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Abbreviations
The following abbreviations are used in this manuscript:

Symbol Name
ρ Fluid density
s Laplace transform
µ Viscosity
Pr Prandtl number
g Gravitational acceleration
Lb Bioconvection Lewis number
T Fluid temperature
Gr Grashof number
Tw Temperature at wall
Ra Bioconvection Rayleigh number
T∞ Ambient temperature of the fluid
erfc(.) Gauss’s error function of complimentary
βT Volumetric coefficient of thermal expansion
φ The dimensionless nanoparticle volume fraction
ρm Mass density
t Time (s)
ρ∞ Fluid density
N∗ Concentration of microorganisms
N The dimensionless concentration of microorganisms
N∞ The density of motile microorganisms
Cp Specific heat at constant pressure
k Thermal conductivity
DN Diffusivity of microorganisms
θ Dimensionless temperature
u Velocity
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