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Abstract: Alpha oscillations (7–13 Hz) are the dominant rhythm in both the resting and active brain.
Accordingly, translational research has provided evidence for the involvement of aberrant alpha activ-
ity in the onset of symptomatological features underlying syndromes such as autism, schizophrenia,
major depression, and Attention Deficit and Hyperactivity Disorder (ADHD). However, findings on
the matter are difficult to reconcile due to the variety of paradigms, analyses, and clinical phenotypes
at play, not to mention recent technical and methodological advances in this domain. Herein, we seek
to address this issue by reviewing the literature gathered on this topic over the last ten years. For each
neuropsychiatric disorder, a dedicated section will be provided, containing a concise account of the
current models proposing characteristic alterations of alpha rhythms as a core mechanism to trigger
the associated symptomatology, as well as a summary of the most relevant studies and scientific con-
tributions issued throughout the last decade. We conclude with some advice and recommendations
that might improve future inquiries within this field.

Keywords: Schizophrenia Spectrum Disorder (SSD); Major Depressive Disorder (MDD); Attention
Deficit Hyperactivity Disorder (ADHD); Autistic Spectrum Disorder (ASD); neuropsychiatric disorders;
EEG; alpha oscillations; alpha frequency; alpha amplitude; connectivity

1. Introduction

Neuropsychiatric disorders are currently one of the most important sanitary emer-
gences to watch for in high- and middle-income countries. Recent data collected on the
European population [1] reports that approximately 165 million people are affected each
year by mental disorders, and it is estimated that more than 50% of the general population
in middle- and high-income countries will suffer from at least one mental disorder at
some point in their lives. Some pieces of evidence [2] suggest that these results may be an
underestimation, which would further increase these numbers. This would have enormous
consequences from an economic perspective, and in terms of years of life lived with disabil-
ity. This burden involves children as well, especially those from economically developed
countries, even though an increase in other countries is soon expected [3]. Nonetheless,
despite its relevance, it is still difficult to make a proper diagnosis because of the vast range
of manifestations and overlap among the symptoms that may exist even inside the same
cultural group, making these symptoms somewhat elusive to behavioral inspection [4–6].
In fact, despite the availability of numerous disorder assessment scales, the misdiagnosis
rates are still high, with some reports indicating that over one third of patients are mis-
diagnosed [7–10]. This has obvious consequences on the patient’s well-being. Therefore,
it is crucial to find a more reliable way of accurately making differential diagnoses, thus
enabling prompt and proper intervention.
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To this aim, various efforts have been put towards identifying neural markers capable
of discriminating between neuropsychiatric disorders, treatment response, and the outcome
prediction [11,12]. The electroencephalogram (EEG) has been very helpful, since it allows
the brain electrical activity to be recorded in a totally non-invasive manner, with a relative
fast montage and a high temporal precision [13,14]. For these reasons, it has been widely
used to assess brain function in both the healthy and pathological populations. Indeed, the EEG
is actually used in several clinical settings with diagnostic and prognostic purposes [15,16]. In
the research field, it is commonly used to link a modulation in its signal during a task execution
(ERP, event related potential) to a specific cognitive process [17,18]. Further, it is possible to
investigate the cognitive functions through the analysis of the brain’s oscillatory activity.

The Use of Alpha Rhythm for the Study of the Cognitive Functioning

Since Hans Berger’s [19] early studies, it has become evident that oscillatory patterns
can be extracted from the brain’s electrophysiological signal, resulting from the nearly
simultaneous firing of large ensembles of neurons. This rhythmic activity has been dif-
ferentiated into five main functional categories, according to its frequency [20,21]: delta
(δ; 0.5–3 Hz), theta (θ; 4–7 Hz), alpha (α; 8–13 Hz), beta (β; 14–30 Hz), and gamma (γ;
30–50 Hz). Their power is progressively reduced by increasing frequency, with a 1/f
ratio [22].

These rhythmic oscillations can be detected by analyzing the signal obtained from the
spontaneous brain activity, or in response to a sensory stimulation, internally or externally
driven [20]. Thus, these frequencies have been linked to sensory and cognitive aspects,
such as perception, attention, memory, or even consciousness [23–25]. Consequently, their
disruptions have been associated with alterations such as the ones occurring in brain lesions
or neuropsychiatric disorders [20,26]. It follows that the brain’s oscillatory activity can
possibly represent an electrophysiological marker of these conditions, in which, although
there is a biological connotate, it is still difficult to make a diagnosis after a behavioral
evaluation. In particular, alpha oscillations have been linked to several cognitive processes
such as memory, attention, distractor suppression, or even language [25,27].

Alpha oscillations are the most prominent rhythm in the human electroencephalo-
graphic signal [28]. A significant modulation of the alpha amplitude after external or
internal events is called event-related synchronization (or desynchronization) (ERS/ERD),
and is ascribable to an increase (or a decrease) in the rhythmic activity of a large num-
ber of neurons. Alpha synchronization seems to have a role in maintaining an active
and adaptive inhibitory mechanism during perceptual suppression of upcoming infor-
mation [29]. This inhibitory mechanism is enacted through a reduction in the cortical
excitability that lessens the processing capacity of a particular area which is irrelevant
to the ongoing processing [30,31]. Therefore, a synchronization within the alpha band
may be an electrophysiological correlate of an information suppression mechanism [32].
Moreover, alpha amplitude has an important role in predictive processes, since the ability to
predict the identity [33] or even the probability of occurrence [34] of the incoming stimulus
modulates alpha power, which plays a role in preparing the brain for forthcoming stimulus
perception [35,36]. Indeed, in the perceptual decision-making domain, alpha power ap-
pears to drive choice bias, as alpha ERD correlates with the adoption of a liberal criterion,
increased decision confidence, and visual awareness [37]. On the other hand, it has been
causally demonstrated [38] that the frequency of the maximum power within the alpha
band (i.e., individual alpha frequency, IAF) is a critical parameter in defining sensory accu-
racy. Indeed, reducing (or, otherwise, increasing) IAF would result in a worsening (or an
improvement) of the individual’s accuracy level [39–41]. Altogether, these results highlight
the functional role of alpha activity in perceptual and cognitive processes. Moreover, the
oscillatory activity can be used as a connectivity index between two or more brain regions,
comparing the synchronization in phase or in amplitude over the areas of interest [42].
This kind of information is particularly useful when considering the oscillatory activity
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within the alpha band, given the empirical evidence supporting its involvement in diverse
cognitive functions.

It follows that the alpha-based indices can be used to assess cognitive functioning in
a broad range of pathological conditions [43–45]. In particular, neuropsychiatric diseases
seem to be associated with anatomical and functional changes in the brain architecture,
including connectivity alterations [46,47]. For instance, a reduction in the alpha power over
the occipital regions is reported in children with Attention Deficit Hyperactivity Disorder
(ADHD) [48,49]. This alteration seems to interfere with the processing of relevant and
irrelevant stimuli, contributing to the attentional deficits in ADHD patients. Therefore,
the behavioral symptoms of these disorders seem to be accompanied by alterations in the
alpha-band oscillatory activity. For this reason, alpha-based parameters have been useful
for the diagnosis of diverse neuropsychiatric disorders, as highlighted by the number of
publications linking anomalous alpha activity to these conditions. In particular, among
the conditions included in the DSM-5, the literature mostly focused on disorders such as
schizophrenia, depression, ADHD, and autism. This also emphasizes the relevance of alpha
band parameters as potential neuromarkers when exploring the disorders’ expression. Thus,
a better understanding of the role of alpha waves for the manifestation of the symptoms
would help to better comprehend the disorder and its associated biotypes. This could allow
for a proper diagnosis and help to build more effective treatments and interventions.

However, even if the EEG-derived indices are commonly used in the clinical practice,
there is still a lack of agreement about the diagnostic accuracy of these measures. In
fact, even if there are plenty of EEG indices available in the literature, the results are
often conflicting, if not opposing [50]. This is mostly caused by the heterogeneity of the
studies and the different pathological biotypes [51], instead of the fast technological and
methodological advances which this field of research has witnessed in the last few years.
Indeed, while sometimes these new indices confirm the previous results, other times, they
do not. Thus, the aim of the present work is to examine the existing literature to find
reliable indices that would support the operator during the diagnosis and intervention
procedures. To better identify how these disorders differ at the neural level, we took into
account both local and connectivity electrophysiological indices within the alpha band, in
order to depict the issue from a broader perspective (see Table 1).

Table 1. Table showing the main electrophysiological indices used for the review, along with a brief
description.

Table of EEG Indices

Index Full Name Description

ERD/ERS event-related
synchronization/desynchronization

Amplitude up/down-modulation in response to a specific
event, due to a synchronized activity of a large number

of neurons

FAA (PAA) frontal (or posterior) alpha
asymmetry

Relatively higher alpha power recorded from the left (as
compared to the right) hemisphere over frontal

(or posterior) regions

IAF individual alpha frequency The frequency bin displaying the highest power value
within the alpha band (8–13 Hz)

ITC intertrial coherence The degree of oscillatory phase-synchronization across
different trials

PAC phase amplitude coupling
Coupling between the phase of slower oscillations with the
amplitude of faster oscillations (i.e., reflecting integrative

mechanisms of neural activity within the brain)
PSD power spectral density Measure of signal’s power content versus frequency

Hence, given the abundance of work referring specifically to alpha oscillations, we
aimed to summarize the literature regarding the main neuropsychiatric disorders in both
adult and developing age groups which have emerged over the last 10 years. This work’s
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objective is to give the reader an overall perspective on how the alpha-based indices can be
useful when investigating neuropsychiatric conditions, to help isolate the core features that
better depict them. This may help with finding more reliable diagnostic and prognostic
indices for each condition. For this reason, we excluded from the current work articles
including patients with multiple diagnoses, or investigating comorbidities. Furthermore,
while inspecting the publications, we also excluded those investigating drug effects or
animal studies, in order to focus specifically on those studies which could help to define a
more concise view of these conditions.

2. Schizophrenia Spectrum Disorder (SSD)

Although over a hundred years have passed since Kraepelin’s pioneering works on
dementia praecox, the nosographical profile of Schizophrenia Spectrum Disorder (SSD) still
displays some core clinical features that place this disorder among the most debilitating
psychiatric syndromes. These hallmark symptoms include psychotic-like manifestations,
such as delusions and hallucinations (positive symptoms), amotivation, anhedonia, and
social withdrawal (negative symptoms), along with severe deficits in the cognitive (i.e.,
attention, working memory [WM], executive functions) and perceptual domain [52].

Inquiries aiming to elucidate the pathophysiological mechanics behind the emergence
of SSD have recently focused on providing an oscillatory account of the aforementioned im-
pairments, implying that such deficiencies might be engendered by a systematic failure to
temporally integrate local neural activities into large-scale networks [53,54]. These consid-
erations substantiate a conceptual framework based on the notion of SSD as a disconnection
syndrome, where an aberrant decrease (or increase) in cross-regional synchronization might
be responsible for the behavioral abnormalities witnessed in SSD patients [55]. Accordingly,
it has been proposed that this rhythmic dysconnectivity may elicit primary deficits at
a cognitive and perceptual level, whereas the subsequent pathological attempts at their
resolution should lead to the onset of positive symptomatology [53].

On a molecular level, such oscillatory alterations are construed as a by-product of
a malfunctioning of neurotransmitters’ dynamics. For instance, changes in inhibitory
mechanisms mediated by gamma-aminobutyric acid (GABA)ergic interneurons (especially
parvalbumin-positive cells) and reduced efficiency of N-methyl-D-aspartate receptors (NM-
DAR) have been tied to the emergence of SSD symptoms, which has also been associated
with dopaminergic disturbances in mesolimbic and mesocortical loci [56]. While the com-
plex interplay between these different dysregulations has been suggested to mainly affect
activity in the gamma band, mounting evidence garnered in the last few years points
toward their involvement in the generation of alpha rhythms as well [57–59].

2.1. Resting State Data

A seemingly common finding in SSD patients is a slightly reduced parieto-occipital
spontaneous alpha power (resulting in an increased cortical excitability) as compared to
healthy individuals [60,61]. This kind of evidence has been replicated in several studies
exploiting resting-state data, which showed a tendency toward a reduction in local alpha
activity as measured via power spectral density (PSD, i.e., the signal’s power content versus
frequency) not only posteriorly, but also in frontal and central regions [61–64]. Moreover,
a direct link has been found between this decrease in alpha power at the parietal and left
frontotemporal sites and the gravity of the positive SSD symptomatology [65,66]. Accord-
ingly, treatments capitalizing on alpha-tuned transcranial alternating current stimulation
(tACS), which were administered to patients experiencing auditory hallucinations, were
proven to restore such imbalances by boosting resting alpha power, consequently reducing
the severity of hallucinatory symptoms [67]. However, recent evidence appears to depict a
more nuanced portrait of the matter. While some studies described no reduction in terms
of posterior alpha activity in SSD patients [68–70], one reported higher parieto-central
alpha power in medicated patients as compared to healthy controls [71]. Such an increase
was also outlined by data collected in three additional papers, focusing on, rather than
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task-positive regions (i.e., neural areas more active during attention-demanding tasks), task-
negative areas, which are known to increase their level of excitability at rest [72]. A globally
heightened spectral power was reported in SSD individuals [73,74] when compared to
controls, whereas in a similar work, the same abnormal increase was found with regard
to an alpha component located over parietal and temporal areas largely overlapping with
the posterior portions of the Default Mode Network (DMN) [75]. Interestingly, spectral
inquiries carried out on DMN sites via EEG and magnetoencephalography (MEG) showed
comparable results, namely increased alpha power in the medial prefrontal and posterior
cingulate cortices (mPFC and PCC) of SSD patients [76,77].

Another oscillatory parameter that can be extrapolated from resting-state power anal-
yses is IAF, namely the exact frequency within the alpha band at the maximum amplitude
value. The existing literature suggests that a faster (rather than slower) IAF entails better per-
ceptual acuity and efficiency [38,78], with individuals displaying pronounced schizotypal
traits characterized by slower IAFs [79]. Findings gathered over the last decade unilaterally
uphold previous knowledge, namely slower resting-state IAFs in SSD patients [68–70,73,77],
with the degree of deceleration positively correlating with visuo-attentional performance
and scorings at cognitive scales [80]. Furthermore, faster IAFs in SSD individuals undergo-
ing multisession cognitive training was found to predict protocol outcome (i.e., responders
vs. non-responders). Along this line of reasoning, it has also been found that occipital IAFs
of patients affected by negative symptoms cycle more slowly than in healthy participants,
while the opposite held for individuals with SSD displaying positive symptoms [81]. Ac-
cordingly, IAFs in both groups of patients correlated with the severity of symptomatology,
as measured via behavioral scales [62].

At-rest connectivity metrics have also been largely exploited to gain some insights into
the network architecture of SSD patients. Heightened synchronization within the alpha
band has been reported in first-episode schizophrenic patients, with cortical hubs sited
along frontocentral, occipital, and right temporo-parietal regions displaying the highest
levels of interconnections, which was negatively correlated with scorings at cognitive
scales [82]. In a similar study, alpha coherence parameters were also found to be enhanced
both in an inter- and intra-hemispheric manner in SSD patients [83]. Notably, synchro-
nization measures gathered from DMN nodes are in line with such results (i.e., similar or
increased inter-areal alpha coupling in SSD) [75,76,84]. On the other hand, several studies
provided a different perspective on the way alpha oscillations behave on a network level in
SSD. Evidence for globally reduced alpha synchrony over frontal areas has been outlined
by means of different indices, such as phase-locking value (PLV) and phase-lag index (PLI),
in patients compared to healthy controls, with a concurrent increase in the information
flow from occipital to anterior sites (and a decrease in the opposite direction) [85]. A study
adopting non-negative matrix factorization, as well as both energy and entropy measures
of connectivity, in individuals with SSD unveiled a general decrease in alpha-band coher-
ence within four spread clusters centered on the bilateral cingulate, left temporal-parietal,
precuneal-PCC, and right prefrontal cortices [86]. These patterns of reduced rhythmic
interaction were reported to be associated with patients’ psychiatric symptoms. Another
work uncovered attenuation of inter-hemispheric alpha connections in SSD (but not healthy
individuals) at multiple sites (frontal, parietal, and temporal) [68]. A decrease in alpha-
tuned inter-hemispheric anterior connectivity and frontoposterior cross-talking was also
highlighted in two further studies adopting connectivity analyses [87,88].

To summarize, a significant slowdown of IAFs appears to be a core pathological feature
characterizing SSD. As for oscillatory power, spontaneous alpha activity appears to be
decreased and increased in SSD patients over, respectively, task-positive and task-negative
regions (Figure 1). On a network level, dysregulations in both directions (higher vs. lower
connectivity) in various neural clusters have been found, perhaps due to the different
methodological approaches adopted (scalp- or source-based computations), or sample
variability (first-episode vs. chronic or medicated vs. unmedicated patients).
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Figure 1. Graphical representation summarizing the main findings on resting-state alpha power in
SSD (relative to healthy individuals). The left panel (a) depicts alpha oscillatory patterns relative to
task-positive areas, while the right panel (b) depicts those relative to task-negative regions (largely
overlapping with DMN’s nodes). Upward and downward arrows indicate respectively an increase or
a decrease in alpha power or frequency speed. As for the former areas, alpha power is decreased,
while the latter show an overall increase of such oscillatory index. PFC (prefrontal cortex); PPC
(posterior parietal cortex); OCC (occipital cortex); mPFC (medial prefrontal cortex); PCC (posterior
cingulate cortex).

2.2. Perceptual Impairments

Alpha oscillatory dynamics in SSD have been scrutinized in patients asked to perform
perceptual tasks. Indeed, a plethora of deficits involving sensory processing has been
reported in SSD, the severity of which has been hypothesized to trigger the onset of positive
symptomatology [53,89].

Auditory hallucinations correspond to the most salient psychopathological manifesta-
tion in SSD. As such, defective mechanisms in the rhythmic signaling underlying auditory
perception have been widely investigated to pinpoint some of the putative features driving
this kind of hallucinations. Auditory steady-state response (i.e., the electrical response
recorded from the auditory cortex to the entrainment induced by repetitive acoustic stimuli)
paradigms have been frequently employed to probe the electrophysiological malfunction-
ing in SSD [90]. These studies reported aberrations in the low frequency bands (theta and
alpha) in SSD (as compared to controls) during the task, such as lower evoked power, inter-
trial coherence (ITC), and increased theta–alpha phase–amplitude coupling (PAC) [90–92].
Similar tasks capitalizing on the presentation of multiple pairs of auditory stimuli yielded
interesting results about whether and how alpha oscillations mediate perceptual impair-
ment in auditory-related sensory gating. Specifically, evoked alpha power over posterior
and midline sites has been shown to undergo a reduced suppression in response to the
administered acoustic pairs in SSD as compared to controls [71,93,94], with the degree
of (deficient) suppression being associated with GABAergic levels over frontocentral ar-
eas [95]. However, evidence for a demeaned alpha suppression over midline posterior areas,
which tended toward a relative increase (i.e., more alpha suppression) over frontocentral
sites, has also been reported in SSD [96]. Moreover, audio-verbal training was found to
be effective in boosting such impaired alpha suppression in response to the second (but
not the first) acoustic stimulus in each pair, leading to an oscillatory improvement that
correlated with better scoring on verbal learning scales [97]. Impaired sensory gating was
also shown to be accompanied by reduced frontocentral alpha ITC between the first and
second auditory stimulus, which was inversely correlated with the negative symptoms
assessed using a behavioral scale [98]. Consistent with this finding, a lower alpha-tuned
inter-hemispheric coherence between temporal and parietal electrodes was outlined during
the completion of a passive auditory task in patients with SSD experiencing auditory
hallucinations (as compared to controls and SSD patients not affected by such symptoms).
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Likewise, aberrant rhythmic patterns within the alpha band have also been found through
paradigms presenting a series of standard acoustic stimuli intermingled with deviant tones.
Two studies showed that SSD patients exhibit lower ITC and evoked power than healthy
participants over central regions in response to standard tones, with the magnitude of
the power increase among patients correlating with verbal learning and working memory
capacities [99,100]. However, higher evoked alpha power, after both standard and deviant
stimuli, was also reported [101].

Overall, alpha rhythmic activity appears to be less reactive and susceptible to task-
relevant suppression in patients engaged in perceptual tasks, which suggest both an
over-increased power at rest and diminished control during the performance.

2.3. Cognitive Deficits

Impaired cognition is an additional feature enriching the already complex clinical
phenotype of SSD. Subtle derangements at this level often tend to occur many years before
the onset of psychotic symptoms, fueling the idea that delusions and hallucinations might
represent a pathological attempt to make sense of erratic and vague information provided
by deficient cognitive mechanisms [53]. While it remains to be clarified whether these
deficits result from a disruption of lower-level perceptual mechanisms, various inquiries
were set to further illuminate the oscillatory contributions to such phenomena.

The auditory oddball task has been among the most widely adopted paradigms to
disentangle the neurophysiological correlates underpinning the way in which patients with
SSD handle novel stimuli and cope with irrelevant information. For instance, SSD patients
and individuals at a high risk of developing psychosis were found to display a reduced
posterior alpha ERD as compared to healthy controls in response to target stimuli [102,103].
On the other hand, a similar study capitalizing on MEG recordings reported a significant
decrease in alpha ERS over occipital and posterior midline regions [104]. Transcranial
magnetic stimulation (TMS) treatments administered along the left frontoparietal axis to
restore these disbalances showed that, in most SSD patients, an increase in task-related
alpha power (recorded after, as compared to before, the TMS protocol) occurred in response
to both rare and frequent stimuli. This degree of spectral increase also displayed a slight
association with improvements in positive and negative symptomatology, as assessed via
behavioral scales [105].

Alpha ERD/ERS dysregulations in SSD have been explored even via working memory
(WM) paradigms. Indeed, individuals with SSD exhibit a reduced contralateral alpha sup-
pression (ERD-like response) in trials with higher cognitive loads. This aberrant reduction
correlated with worse WM performance both between (lower SSD relative to controls)
and within (lower SSD with less alpha suppression relative to those displaying greater
reduction) groups. In the latter case, a significant relationship with diminished contralateral
ERD and the psychiatric symptoms was also uncovered [106]. Furthermore, a comparable
reduction in contralateral alpha ERD, coupled with impaired behavioral performance, was
reported in SSD in two similar studies [107,108], while weaker inter-areal connectivity
within the alpha range has been outlined between occipital regions and several temporo-
parietal and frontal clusters (the magnitude of which was associated with the severity of
positive symptoms) [109].

Maladaptive alpha dynamics also appear to arise in SSD individuals instantiating
inhibition-related mechanisms (or a release from inhibition). Patients with SSD showed
higher alpha ERD over frontal and temporal sites during the inhibitory task [110]. Con-
versely, reduced alpha suppression over sensorimotor cortices was also found in SSD
during incongruent trials of a Stroop task (in association with slower reaction times) [111].

Lastly, mounting evidence suggests that a disruption in alpha dynamics might also
be involved in social cognition impairments (i.e., poor empathy judgment and mental-
izing skills, along with pathological social withdrawal) [112]. Specifically, SSD patients
engaged in a facial emotion recognition task displayed lower alpha power and higher
connectivity within the alpha band over frontocentral sites, together with lower accuracy
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in recognizing both happy and fearful emotional expressions [113]. When performing an
ecological face-to-face interaction with a confederate, the SSD group displayed an alpha
connectivity increase undetected in healthy controls during the more affiliative task con-
dition (closeness condition). Such an increase was found to be positively correlated with
negative symptoms [114]. Aberrant modulation of alpha power in SSD was also noted
during the Ultimatum Game, a social decision-making task involving a fair split of a sum
of money between other humans or a computer [115]. Patients displayed a more robust
upregulation of alpha power over midfrontal spots during the anticipation phase when
playing with a computer vs. a human agent. This power difference was proven to be
negatively correlated with positive symptoms [116]. Moreover, in a self-referential memory
task, SSD displayed higher scores when presented with self-related items (as compared
to neutral or other-related items), which was paralleled by a demeaned alpha ERS over
the midline and right frontocentral regions during the encoding phase, and a massive
reduction (relative to healthy subjects) in long-range alpha synchronization across multiple
cortical electrodes [117].

Altogether, these findings (Table 2) resemble those concerning perceptual processing,
namely a pervasive dysregulation in the way alpha oscillations instantiate phasic fluctua-
tions in event-related cortical excitability (ERD vs. ERS). Regarding connectivity metrics,
the results are more interspersed, even though they seem to point toward a reduction
in long-range alpha coherence across different cognitive tasks, suggesting a bioelectrical
disruption in the way higher-level neuronal firing modulates the activity of lower areas.

Table 2. Table representing the main electrophysiological findings in SSD, with the methods and the
studies who contributed to them.

Schizophrenia Spectrum Disorder (SSD)

Studies Analytic Method Main Findings

[68–70,73,77,80] Resting state IAF Slower IAF over posterior regions

[60–66] Resting state PSD Posterior and frontal Alpha
power reduction

[75–77] Resting state PSD Alpha power increase in the DMN

[68,75,76,82–88,97,109,114,117] Functional connectivity Aberrant long-range
functional connectivity

[71,93,94,96,99–105] Auditory evoked response Aberrant Alpha ERD/ERS over posterior
and frontocentral areas

[106–108,110,111] Evoked response during WM
and attentive tasks Aberrant Alpha ERD modulation

3. Major Depressive Disorder (MDD)

Major depression has been described as a psychiatric syndrome whose core features
entail persistently low mood and anhedonia, coupled with sleep and psychomotor distur-
bances, fatigue, or loss of energy. Alterations in the affective domain might also involve
feelings of worthlessness or guilt and suicidal thoughts, suggesting a pervasive tendency
toward negative self-referential thinking and ruminations. In addition, subclinical cog-
nitive deficits (i.e., diminished ability to concentrate, impaired attentional and memory
functioning) have often been reported in patients suffering from this disorder [52].

Oscillatory insights into the pathophysiological dynamics underlying MDD suggest
that individuals diagnosed with this disorder exhibit rhythmic aberrations, encompassing
lower frequency bands, which is likely due to alterations occurring at cortical and sub-
cortical loops that coalesce into a neuropathological phenotype known as thalamocortical
dysrhythmia [64,118,119]. Consistent with this notion, MDD patients display higher alpha
power levels over the left (relative to the right) frontal lobe, an oscillatory pattern called
frontal alpha asymmetry (FAA; Figure 2) [120]. Given the inverse relationship between
alpha rhythms and cortical excitability, this electrophysiological abnormality has been
framed within the approach–withdrawal model [121], where an increased activation of
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the right vs. left frontal cortices has been thought to occur in individuals more prone to
behavioral withdrawal vs. approach (i.e., proneness toward a negative vs. positive affective
style). As such, FAA has been deemed as one of the most reliable biomarkers (although for
a different account, see [122–124]) indexing MDD-related affective asymmetries responsible
for symptoms such as hopelessness or helplessness and anhedonia [118,120,125].
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Figure 2. Schematic depiction of FFA patterns witnessed in depressive patients. Relative to healthy
individuals (left panel), MDD patients (right panel) display higher relative alpha power over the left
(vs. right) frontal cortex.

Aside from FAA, while it has been recently proposed that MDD might be also char-
acterized by interhemispheric asymmetries over posterior sites (i.e., posterior, or parietal,
alpha asymmetry, PAA) [118], interareal communication seems to be altered as well. For
instance, MDD patients displayed higher alpha-band coherence within the DMN and
between anterior midline areas and the frontoparietal network [126,127]. These aberrant
patterns of interregional cross-talking are assumed to underlie many functional dysregu-
lations, putatively resulting in ruminative thoughts, increased self-focus, and a reduced
ability to concentrate and properly deploy attentional resources [127].

Thus, a general disruption in alpha rhythms, occurring on several different levels,
seems to crucially contribute to the pathogenic mechanics behind MDD syndrome and
some of its associated affective and cognitive symptoms.

3.1. Resting State Data

Much of the resting-state literature gathered over the last decade has been devoted
to the investigation of FAA, with the aim of affirming its role as a neuromarker able to
provide an early diagnosis in individuals at risk, but also to anticipate the clinical outcomes.
A stronger activation in the alpha band of the right frontal cortex in MDD was replicated
in several studies [128–135], some of them showing a robust relationship between the
degree of FAA and scores on depression behavioral scales [136,137]. FAA has also been
proven to predict treatment effectiveness. For instance, FAA seems to display a negative
correlation with sensitivity to specific psychotherapeutic protocols [138], while bifrontal
alpha-tuned tACS was capable of reducing both alpha power over the left prefrontal cortex
(i.e., asymmetry decrease) and the depressive symptoms [139,140].

Lateralized patterns of rhythmic activation have been reported over posterior sites as
well. Although not as straightforward as FAA, PAA appears to be a recurrent oscillatory
feature of MDD [118]. Specifically, alpha power was found to be enhanced over the left
parietal cortex of female patients suffering from MDD [131], whereas a sample of depressed
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adolescents tested in a different study displayed an opposite lateralization trend, which
was associated with rumination and anhedonia symptoms [141]. Further, MDD patients
less sensitive to deep-brain stimulation treatments seem to show an increased parietal
alpha activity over the left hemisphere, with the magnitude of PAA negatively correlating
with behavioral depression scores [142]. In addition, anodal transcranial direct-current
stimulation (tDCS) over the dorsomedial PFC was shown to induce a greater reduction in
anxiety scores in patients displaying lower and higher baseline alpha power, as recorded
from, respectively, the left parietal lobe and the precuneus [143].

Apart from oscillatory asymmetries, canonical spectral aberrations within the al-
pha band have also been described in patients exhibiting suicidal ideations [144]. Higher
parieto-central alpha power was also found to characterize elders suffering from late-life de-
pression [145], and to better discriminate MDD individuals from healthy participants [146].
Moreover, a positive clinical outcome in depressed patients has been associated with a
decrease in frontal alpha power triggered by 10-Hz repetitive TMS protocols and electrocon-
vulsive therapy [147,148]. However, some studies also reported lower posterior oscillatory
power within the alpha band in MDD [149,150], the degree of which was linked with
depression severity and attentional impairments [151,152]. Conversely, symptomatologic
improvements in MDD have been proven to correlate with frontal and midline alpha power
increases stemming from alpha-tuned repetitive TMS protocols [153,154].

Resting-state paradigms have also been exploited to address whether and how MDD
might alter rhythmic connectivity dynamics. To begin with, proneness to brooding ru-
mination appeared to go along with reduced alpha–gamma PAC over posterior brain
areas [155], and global reduction in functional connectivity within the alpha band has been
proven to correlate with depression severity [156]. In a network-based study adopting
both nodal and global measurements, lower alpha connectivity was uncovered in MDD.
Additional analyses also revealed decreased nodal clustering in several cortical hubs spread
over frontal regions, as well as the temporal lobe and the visual cortex [157]. Multi-layer
analyses run on MEG data to explore interareal oscillatory cross-talking showed similar
results, namely a decrease in alpha connectivity in depressed participants [158]. Conversely,
alpha-tuned repetitive TMS protocols were shown to ignite an increase in connectivity in
MDD, displaying symptom improvements [159]. Still, these results are challenged by plenty
of data suggesting an opposite (positive) relationship between levels of alpha connectivity
and depression severity. Increased interhemispheric (central) and intrahemispheric (right
frontocentral) alpha coherence was found to discriminate depressed individuals from those
diagnosed with bipolar disorder [160]. Similarly, MDD displays higher alpha coupling,
linking frontopolar loci to the temporal and parieto-occipital regions [161]. Moreover,
depressed patients also displayed increased cross-regional alpha connectivity between the
ventromedial PFC and both the left mPFC and left dlPFC, as well as between the subgenual
anterior cingulate cortex (ACC) and the left dlPFC [162,163]. Furthermore, positive out-
comes yielded by antidepressant-based treatments have been associated with weaker alpha
oscillatory connectivity bridging the insular cortex to the rostral ACC [164], whereas the
magnitude of the TMS-driven decrease in spectral correlation metrics relative to the left
hemisphere was shown to be correlated with clinical ameliorations [165].

Taken together, resting-state data concur in assigning FAA (and to a lesser degree PAA)
a pathophysiological role in the emergence of MDD. As for more generic impairments in
oscillatory power and connectivity, the aforementioned patterns appear more difficult to
interpret. These controversial findings might be construed as the result of heterogeneous
clinical samples in terms of age or gender, not to mention the different frequency bins
(within the canonical alpha band) adopted throughout the analyses. Lastly, a scenario
where MDD might exhibit diverging rhythmic phenotypes should not be ruled out; this
jeopardizes a unified interpretation of the matter.
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3.2. Cognition, MDD and Alpha Rhythms

Oscillatory fingerprints underpinning impaired alpha activity in MDD are not re-
stricted to the resting brain. Electrophysiological investigations during cognitive tasks
are consistent with the notion that cortical circuits responsible for attentional deployment,
memory storage, and executive functions display demeaned activation in MDD [127].

For instance, during the auditory oddball task, MDD patients who exhibited lower
IAFs and alpha power at rest were shown to upregulate such parameters during tasks in
response to deviant stimuli [150], along with increased event-related alpha phase synchro-
nization between frontocentral and parieto-occipital electrodes in response to target stimuli
during a visual oddball paradigm [166].

With regard to the WM domain, MDD patients displayed poorer behavioral perfor-
mance on a Sternberg task, which was associated with decreased posterior alpha power
during the retention period [167,168]. Moreover, lower increases and decreases in alpha
phase synchronization within, respectively, the frontoparietal route and occipito-central
cortical clusters have been reported in MDD during the n-back task [169].

Altered patterns of alpha activity appear to also underlie impairments in inhibitory
mechanisms, as measured using Go/No-Go tasks. For instance, both reaction times and
accuracy rates were reported to be significantly lower in depressed patients displaying
suicidal behavior. These data were linked to abnormally high alpha power levels recorded
from the ventromedial PFC and ACC during, respectively, Go and No-Go trials [170].
Further, mindfulness-based therapeutic protocols have been reported to enhance task-
related alpha ERD and left frontoparietal coherence during the same task, with the degree
of oscillatory realignment shown to correlate with clinical ameliorations [171].

Defective emotional processing is an additional symptomatological feature charac-
terizing major depression, with disrupted alpha rhythm dynamics contributing to this
pathological phenomenon. In a sample composed of MDD patients with and without
dysphoria, higher bilateral frontal alpha power was reported in response to both pleasant
and unpleasant emotional stimuli only in MDD patients with dysphoric symptoms [172].
During an emotion self-regulation study employing happy emotion induction training, a
power decrease in the upper alpha band over the frontal and temporal sites was reported
during the first session of the protocol. Intriguingly, changes in task-related FAA (asym-
metry decrease) resulting from such self-regulation training were proven to correlate with
scoring at the behavioral scales [173]. Similarly, bifrontal alpha tACS applied to MDD
patients was reported to attenuate left alpha power, and thus FAA, during the passive
viewing of emotionally positive images [139]. In addition, a weaker posterior alpha ERD
was found in MDD patients engaged by WM items superimposed on negative emotional
pictures, whereas the opposite pattern was witnessed when positive emotional pictures
were presented in the background [174].

Biases in emotional processing have also been investigated through face recognition
paradigms. For instance, FAA appeared to unfold in MDD in response to both happy and
sad faces [175]. Moreover, alpha–gamma PAC unveiled an attenuated interplay between
right-lateralized cortical (i.e., orbitofrontal cortex) and subcortical (i.e., thalamus and amyg-
dala) neural nodes in non-responders to antidepressant treatments, which was likely to
reflect abnormal sensitivity to negative emotional stimuli [170].

Lastly, impaired alpha activity has been proven to play a pivotal role in higher cogni-
tive abilities. Patients with MDD were found to display FAA patterns when performing a
reinforcement learning task, the occurrence of which has been deemed to underlie losses
in approach-related motivation [176]. Reduced alpha power over the left hemisphere was
also reported during a multi-stage decision-making task in MDD patients [134], while a
neurofeedback training was able to boost alpha power as measured during the completion
of a counting task over the ACC and parieto-occipital sites [177].

In brief, task-relative alpha dysregulations tend to be often witnessed in MDD. Aside
from FAA, generic alterations in oscillatory power and inter-regional communication
have been found to underpin different cognitive deficits. However, the direction of these
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alterations is still unclear (Table 3), and seemingly depends on each individual’s patho-
physiological biotype, as well as the specific cognitive process.

Table 3. Table representing the main electrophysiological findings in the MDD, with the methods
and the studies who contributed to them.

Major Depressive Disorder (MDD)

Studies Analytic Method Main Findings

[118,128–137] Resting state PSD Frontal Alpha asymmetry
[118,131,141,142] Resting state PSD Posterior Alpha asymmetry

[144–146,149–152] Resting state PSD Aberrant posterior Alpha power

[126,127,156–158,160–164,169] Functional connectivity Aberrant short and long-range
functional connectivity

[134,167,168,170] Evoked response during WM
and attentive tasks

Aberrant Alpha power over posterior (reduced)
and midfrontal (increased) areas

4. Autism Spectrum Disorder (ASD)

Autism spectrum disorder (ASD) is a complex neurological and developmental disor-
der characterized by impairments in social cognition and interaction other than sensory
and perceptual abnormalities [178,179]. The behavioral and cognitive symptoms associated
with ASD are extremely heterogeneous, and the diagnosis is based on different patterns of
behavior, including: (a) persistent deficits in social communication and social interaction,
such as socio-emotional reciprocity, non-verbal communication, or difficulties adjusting
behavior according to various social contexts; (b) restricted interests, repetitive patterns
of behavior, such as stereotyped motor movements, inflexible adherence to routines, or
unusually intense interests [179].

4.1. The Role of Alpha Oscillations in ASD’s Symtomatology

Studies on the neural underpinnings of ASD show functional and anatomical alter-
ations within the perceptual neural network [180–182]. ASD individuals showed alterations
in long-range structural and functional connectivity (rather than in a local areas) [180,183–185].
Specifically, ASD individuals seem to display a reduction in interhemispheric long-range
synchronization within the alpha band. Indeed, it has been demonstrated that ASD in-
dividuals have a reduction in the alpha phase coherence between temporal regions [181].
Other authors [186] showed that frontal alpha asymmetry in 6-month-old children corre-
lates with ASD diagnosis at 24 months. Similarly, connectivity measures within the alpha
band have also been linked to sensory symptoms assessed using behavioral scales [180].
These results point toward a decrease in long-range cross-talking, although additional
evidence also reports an increase in short-range connectivity among the ASD popula-
tion (Figure 3) [180,181,187]. In general, these connectivity patterns seem to significantly
differ from the ones found in neurotypical individuals, reflecting an atypical brain net-
work development in ASD. Specifically, while neurotypicals show a strengthening of
long-range connections and a weakening of short-range ones with aging, the opposite
tendency can be seen in ASD [188,189]. Furthermore, several studies based on connectivity
measures [182,190,191] highlight the role of the directional interactions among brain areas
in ASD. In more detail, ASD individuals show a prevalence of ascending connections from
posterior to anterior areas, pointing to a tendency to convey more bottom-up information.
Altogether, and consistent with previous literature [192,193], these pieces of evidence high-
light electrophysiological abnormalities in ASD (i.e., reduced interhemispheric connectivity
over temporal and frontal regions). Since these aberrant modulations appear at early
stages of development, they tend to be accompanied by anatomical disturbances, including
atypical axon numbers, synaptogenesis, and pruning [187,194]. Altogether, these alterations
seem to significantly contribute to the perceptual deficits and clinical manifestations of ASD.
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Figure 3. Imbalance in alpha connectivity in ASD relative to typically developing individuals. Persons
with ASD show a local increase in connectivity in both posterior and anterior areas, while long-
range connectivity between these two regions is reduced (dashed lines). Conversely, neurotypical
individuals show the opposite pattern, resulting in a minor local integration (shaded circles).

A large number of studies also associated brain oscillatory activity with ASD symp-
toms. Specifically, Machado and colleagues [195] investigated the role of PSD in sensory
elaboration in ASD, using a visual and audio-visual passive task. They reported a reduction
in alpha power and an increase in slow-delta, high-beta, and gamma bands. This seems to
be mainly due to the role that the alpha phase plays for the integration of cortical informa-
tion, supporting executive function and the response to sensorial stimuli via the modulation
of neuronal excitability [196]. Coherently, Han et al. [180] reported that brain connectivity
within the alpha band correlates with symptom severity in ASD, specifically with the
“sensory stimuli and relating behavior” subscale of the Autism Behavior Checklist. This
alteration in brain activity may be responsible for a disruption in the excitatory/inhibitory
balance and, consequently, may affect the neural response, leading to biased behavioral
responses to sensory stimuli. Such imbalance could partly explain the unusual interest in
simple objects characterizing people with ASD [180,196]. In line with this evidence, studies
addressing how ASD individuals allocate attentional resources have revealed abnormal
processing of the upcoming stimuli. Specifically, during an intersensory attention task, in
which the suppression of a distractor is relevant to reaching good performance levels, ASD
individuals do not show the anticipatory power increase in the alpha band over parieto-
occipital areas that is seen in neurotypical individuals before the distracting stimuli [197].
The lack of this preparatory activity has been associated with impaired performance due
to the presence of task-irrelevant sensory information. Furthermore, people with ASD
did not exhibit any posterior alpha desynchronization (with the resulting reduction in
power) during the appearance of a relevant target, which was associated with impaired
behavioral performance and increased ASD symptomatology [198]. Thus, these aberrant
alpha power modulation patterns seem to be linked to impairments in perceptual suppres-
sion of irrelevant sensory information, contributing to difficulties in focusing on relevant
stimuli [180,196].

Another EEG measure linked to ASD symptoms is the mu–alpha suppression, i.e., a
reduction in the alpha power over sensorimotor areas during action execution or observa-
tion of actions and facial expressions [199]. Consistent with the mirror neurons hypothesis,
mu suppression reflects the internal simulations of others’ actions, allowing one to better
understand their intentions [200]. Several studies [201,202] have shown less consistent
mu–alpha suppression in ASD, which is possibly related to social deficits.

In conclusion, due to its heterogeneous manifestations, ASD can be challenging to
diagnose using behavioral scales. The findings described here indicate that some of its
symptoms can be linked to specific neural alterations, thus legitimatizing the search for
neural markers of ASD. Thus, finding an electrophysiological correlate of ASD would
considerably support and ease the diagnostical evaluation.
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4.2. EEG Indices for an Early ASD Diagnosis

Despite the significant number of electrophysiological measures available in the liter-
ature, there is still a lack of concordance regarding which index would best represent an
anatomical marker of ASD to assist an early diagnosis [178,203]. In fact, several MEG and
EEG studies have reported anomalies in one or more frequency bands in ASD, linking these
indices to symptom severity. Yet, the results are often conflicting [50,204–211]. This seems
to be attributable to the great discrepancies between experimental design and procedures,
as well as sample discrepancies (e.g., some studies were conducted on children, while
others on adults, some on persons with a low- or high-functioning profile, under or without
medications, etc.) [204,212–214].

An EEG study from Matlis and colleagues [203], conducted on a large sample of
children with ASD, showed a robust reduction in the peak alpha-ratio (i.e., reduced pos-
terior to anterior power ratio) in persons with ASD. The authors also used this index
as an electrophysiological marker for ASD, reaching high accuracy levels. These results
suggest that ASD individuals may have higher power values over the anterior areas, which
correlates with behavioral inhibition and sociability [215,216]. A recent study [188] used
the EEG data obtained from the spontaneous brain activity in 3-month-old infants to
predict a later ASD diagnosis. This study highlighted that the best predictors of a later
ASD diagnosis at 18 months are a lower frontal and a higher fronto-temporal connectivity.
These results are consistent with the literature indicating the presence of hypoconnectiv-
ity within the frontal regions, which is in line with the executive and social difficulties
among the ASD population [217,218]. Similarly, Orekhova et al. [219] demonstrated that
high-risk 14-month-old infants later diagnosed with ASD showed higher alpha-based
connectivity over the fronto-central areas. These results are in line with the aforementioned
studies [187,220,221] suggesting that ASD individuals are associated with a shift from early
white matter maturation during infancy to hypoconnectivity with aging.

Altogether, these data suggest the presence of an excitation–inhibition unbalance in
the neural excitability in persons with ASD [178,222,223]. This feature could be responsible
for a modified signal-to-noise ratio, resulting in an altered sensorial experience. In fact,
due to the abnormal levels of cortical excitability, these individuals could be characterized
by hypo- or hyper-responsiveness to sensorial stimuli, thus affecting several cognitive
and perceptive domains. Therefore, such electrophysiological alterations may underlie
perceptual alterations, contributing to explanations for some of the distinctive symptoms
of ASD. The gamma band has been demonstrated to have a key role in these dynamics,
given its involvement in the binding of perceptual information into one coherent whole
via the integration of responses from near areas [224]. However, the results involving the
measurement of the gamma frequency are often conflicting, since its large frequency spread
makes it difficult to track the phase between brain areas [178]. To avoid these difficulties,
it can be useful to use cross-coupling indices, in which the phase of a lower frequency
oscillation in one area has been shown to modulate the amplitude of a higher frequency
in another area [225]. Due to its involvement in top-down processing and the perceptual
experience [226,227], alpha power has been demonstrated to be a promising index for the
study of ASD-related difficulties. In addition, this index is highly sensitive to alterations
in long-range connectivity [228,229]. Thus, integrating both frequencies using the alpha–
gamma PAC could provide an accurate depiction of the local and global connectivity [196].
Several studies report altered alpha–gamma PAC among the ASD population [185,230,231],
achieving a diagnostic accuracy of 90% [185]. However, while Berman and colleagues [231]
found an increased alpha–gamma PAC within the ASD group, other studies [185,230]
reported the opposite result. This discrepancy is likely due to differences in the experimental
designs (resting state vs. visual task EEG recording) [185,230,231]. In general, as suggested by
Kessler et al. [178], alterations in the alpha–gamma PAC may reflect an imbalance between
excitatory/inhibitory activity in the perceptual brain network, resulting in a hypo- or
hyper-sensitivity to various classes of stimuli and, thus, different clinical manifestations
among the ASD population. This explanation could clarify the conflicting results (Table 4)
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about the alpha–gamma PAC, and then help to understand the nature of the perceptive
alterations in individuals with ASD.

Table 4. Table representing the main electrophysiological findings in the ASD, with the methods and
the studies who contributed to them.

Autistic Spectrum Disorder (ASD)

Studies Analytic Method Main Findings

[195,197,198] Task-induced PSD Impaired modulation of Alpha power

[186,203,215] Topographical distribution
of Alpha power Aberrant Alpha power in frontal regions

[185,230,231] PAC Aberrant Alpha–Gamma PAC

[180,181,184,185,187,189] Functional connectivity Aberrant short- (enhanced) and long-range
(reduced) functional connectivity

[201,202] Evoked response during
motor tasks

Less suppressed Mu–Alpha ERD/ERS over
sensorimotor areas

5. Attention Deficit Hyperactivity Disorder (ADHD)

ADHD is a neurodevelopmental disorder defined by two main pathological clus-
ters [179]: (A) marked difficulties in the deployment and maintenance of the attentional
focus (likely due to ineffective suppression of distracting stimuli) during most daily-life
activities; (B) hyperactivity and poor impulsiveness control (i.e., logorrheic behavior, inter-
rupting or intruding on others, blurting out answers before questions are over, squirming in
seat). These two different core symptoms might occur separately or jointly, and have been
associated with impairments in sensorimotor mechanisms, reward processing, affective
self-regulation, and executive functions [232,233]. While the onset of such symptoms occurs
before the age of 12, they tend to persist in adulthood, often in comorbidity with anxiety
disorders, depression, or substance abuse [234,235].

5.1. The Role of Alpha Oscillations in ADHD’s Symtomatology

EEG analyses have played a pivotal role in the exploration of ADHD oscillatory
biomarkers [43,46,47]. Although some findings might appear to be controversial due
to the heterogeneity of ADHD phenotypes, existing literature suggests that individuals
diagnosed with ADHD exhibit several alterations in oscillatory mechanisms crucial for
cognition (see for instance [236]). Mid-frontal theta [237] and motoric beta alterations are
often reported [238,239] together with impairments involving posterior alpha rhythms. In
particular, it has been observed that the anticipation of visual distractors is linked to an
alpha activity decrease over the visual cortex in typically developing individuals, whereas
the anticipation of relevant stimuli increases it [30,49]. Moreover, an increase in the alpha
power has been reported over relevant regions during high-demanding cognitive tasks,
which is thought to suppress external inputs in order to support the relevant ones [49].

Consequently, ADHD’s symptoms may depend on abnormal oscillatory neural ac-
tivity. Such alterations may also help to explain the WM deficit in ADHD. For instance,
Lenartowicz and colleagues [240] recorded EEG activity in a large sample of ADHD chil-
dren during a spatial WM task. EEG parameters associated with encoding, vigilance,
and maintenance functions were analyzed. During the encoding, reduced occipital alpha
power was reported, while the maintenance phase was accompanied by a greater power
increase in the alpha band, interpreted as a compensatory response to weak alpha activity
during the previous encoding stage. Such a failure in the encoding process was associated
with poorer reading comprehension and executive functioning, as well with more severe
ADHD symptomatology. Similarly, Hasler and colleagues [241] found reduced alpha and
theta anticipatory activity in adults with ADHD when engaged in bottom-up and top-
down attentive tasks. Such patterns were thought to reflect dysfunctional neural dynamics
underlying the suppression of distractors and the prioritization of relevant information
(Figure 4). The reduced ability to inhibit task-irrelevant stimuli may prompt or result from
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the enhanced tendency to mind-wander in ADHD. Some studies [48,242] linked alpha and
theta reduction to spontaneous mind-wandering, namely the attentional shift from the task
at hand to inner and unrelated thoughts [243]. The reduced ability to inhibit task-irrelevant
stimuli may prompt or result from the enhanced tendency to mind-wander, and may trigger
some of the core cognitive symptoms characterizing ADHD. In line with these considera-
tions, Bozhilova and colleagues [242] asked adults with ADHD to perform a Go/No-Go
task, while mind-wandering reports and EEG data (relative to both response execution
and inhibition) were collected. The authors reported a higher error rate in the ADHD
group and increased reaction time variability, along with reduced event-related alpha and
beta suppression during No-Go trials. A hierarchical regression model applied to these
measurements unveiled that ADHD diagnosis and proneness to mind-wandering might
share a common oscillatory deficit, consistent with the notion that mind-wandering may
be a supplemental pathological facet of this disorder. These pieces of evidence have been
further supported by a later study [48], in which the authors reported how the reduction in
the alpha and theta modulation in ADHD patients during WM and attentional paradigms
is linked to mind-wandering episodes. Altogether, these findings suggest that alpha band
alterations responsible for the impaired inhibition of task-irrelevant information might also
underlie the increase in mind-wandering episodes.
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(relative to controls) during the anticipation of a target stimulus in a visual task. Noteworthily, the
lack of modulation comprises both contralateral ERD and ipsilateral ERS.

Accordingly, a review by Lenartowicz and colleagues [49] highlighted how such atten-
uation in alpha suppression during visuo-attentional tasks is primarily linked to the ADHD
inattentive profile, along with atypical lateralization patterns. Neurotypical individuals
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engaged in visuo-attentional paradigms show inter-hemispheric modulations in posterior
alpha power. In particular, ERD is commonly reported in the hemisphere contralateral to
the attended stimulus, while ERS is reported ipsilaterally. This inter-hemispheric imbalance
is altered in ADHD patients, who do not display atypical modulations over posterior
regions [244]. Similar results have been replicated by several different studies [245–250].
Specifically, Guo et al. [247] adopted a visuospatial attentional task in which the stimulus
onset could be primed by a cue consisting of a gaze pointing toward either the left or
right hemifield. The authors reported that, in the control group, an alpha lateralization
with ERD was present in the hemisphere contralateral to the hemifield containing the
to-be-attended upcoming stimuli, while children diagnosed with ADHD did not exhibit
such a lateralization. This aberrant modulation was more pronounced in the left hemi-
sphere, and was proven to correlate with both behavioral performance and severity of the
inattentive symptoms. Interestingly, this lateralization pattern has been observed even over
the sensorimotor areas when employing a motor task [248]. In this case, a reduction in the
mu–alpha power over sensorimotor regions was reported to occur within the hemisphere
contralateral to the hand performing the task in the neurotypical group, but not in ADHD.
Moreover, in the ADHD group, a correlation was found between the aberrant lateralization
in the oscillatory pattern and both the behavioral performance and difficulties to control
disruptive motor activity and attentional processes in daily life.

Altogether, these results emphasize once more how the pathophysiological mecha-
nisms triggering the symptoms of such a disorder might ensue from a deficient modulation
of posterior alpha power, which may hinder the proper suppression of distracting informa-
tion and, as a consequence, the allocation of attentional resources toward relevant stimuli.
An interesting line of research, consequently, attempted to artificially modulate alpha
activity with the aim of inducing shift in performance and in the symptoms’ severity in
individuals with ADHD.

5.2. Normalizing Alpha Power Using the Neurofeedback Technique

As mentioned above [49,244,247], imbalanced alpha oscillations are an important
biomarker of ADHD symptomatology. Accordingly, many authors used neurofeedback to
normalize alpha power imbalances in ADHD patients. Neurofeedback-based protocols con-
sist of training sessions where the participants learn to self-modulate their brain oscillations
through real-time feedback, with the aim of concurrently reshaping specific behavioral
routines [251,252]. The effectiveness of such approach in ADHD patients has been demon-
strated by Escolano and colleagues [253], who were able to enhance fronto-midline upper
alpha power in ADHD children undergoing 18 training sessions. The authors reported
improvements in neuropsychological tests assessing WM, concentration, and impulsivity.
Indeed, boosting alpha power appeared to generate a rebound effect that entailed a robust
task-related alpha power decrease. A similar approach has been employed in another
study [254] in which the authors induced a rebound effect through a neurofeedback pro-
tocol aimed at desynchronizing the alpha power during a Go/No-Go task. This resulted
in a subsequent power normalization, and in improvements in terms of motor inhibition.
Furthermore, results highlighting the relevance of alpha desynchronization in attentive
visual paradigms [49] have been adopted to reduce the power in this frequency range via
neurofeedback protocols in ADHD individuals, prompting significant improvements to
sustained attention [255].

In conclusion, the literature revealed how some electrophysiological features such as
the posterior alpha suppression seem to be linked to the occurrence of ADHD symptoma-
tology [49,51,240,244]. These findings are further strengthened by neurofeedback studies,
which highlighted how normalizing these aberrant oscillatory patterns could benefit ADHD
patients. Altogether, these pieces of evidence (Table 5) underline the benefits of looking
into oscillatory activity in the alpha band, as well as how this kind of information can be
used to induce an amelioration.
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Table 5. Table representing the main electrophysiological findings in ADHD, with the methods and
the studies who contributed to them.

Attention Deficit Hyperactivity Disorder (ADHD)

Studies Analytic Method Main Findings

[49,240,241,244,246,247,250]
Topographical distribution

of Alpha power
during attentional tasks

Aberrant
Alpha ERD/ERS lateralization

[240,245]
Topographical distribution

of Alpha power
during motor tasks

Reduced Mu–Alpha ERD/ERS
lateralization

[48,242]
Evoked response

during spontaneous
mind wandering and tasks

Reduced Alpha ERD/ERS

6. General Conclusions

The present work aimed to review the last 10 years of research on the role of alpha
oscillations among the main neuropsychiatric disorders, such as SSD, MDD, ASD, and
ADHD, to summarize the high volume of publications on these topics.

The main findings suggest that individuals with SSD may display, in task-positive re-
gions, a reduction in both the alpha power and frequency compared to healthy individuals,
while in task-negative areas, the oscillatory power appears to be increased [76,80]. Further,
FAA has proven to be a valuable proxy of MDD emergence, since these patients seem to
display an increase in the alpha power over the left frontal hemisphere, and a decrease in
the right one compared to controls [118,131]. In individuals with ASD, ground evidence
suggests the presence of an imbalance in the alpha band’s neural connectivity, with a local
increase in short-range connectivity in both the posterior and anterior networks, while
the long-range connectivity between these two regions is reduced [180,181,194]. Lastly, a
lower modulation of contralateral alpha ERD and ipsilateral alpha ERS has been found in
ADHD during the anticipation of target stimuli in a visual task, when compared to typically
developing individuals [48,49].

Nonetheless, robust electrophysiological biomarkers of neuropsychiatric disorders are
still difficult to identify. This seems to be due to the enormous differences in the clinical
conditions and their behavioral manifestations. Furthermore, in the studies we considered,
several methodological discrepancies emerged. In particular, some studies use high-density
EEG while others do not, resulting in a range between 16 and 256 electrodes, and, simi-
larly, important discrepancies can be found regarding the number of individuals included
in the studies. Other relevant discrepancies concern the participants’ age (children vs.
adults), the disorder onset (first or not), whether the person is under treatment (behav-
ioral/pharmacological), or the choice to record the EEG signal during a task or in a resting
state condition. Moreover, a consistent heterogeneity can be seen in the biotypes included
in the research (for instance, considering the inattentive, the hyperactive, or both subtypes
in the ADHD sample). Altogether, these factors might lead to discrepancies in the scientific
literature, despite searching for the same condition. Thus, even the line of research focusing
specifically on the role of alpha bands found conflicting results with small differences in
the experimental methodology.

The current work also highlights how the availability of several EEG indices to address
the same issue allows for a deeper understanding of certain specific aspects of the phenom-
ena. Indeed, most of these measures are often based on the investigation of different alpha
parameters, not allowing for a direct comparison between studies. This is often regarded
as controversial evidence, making it difficult to draw parallels even with regard to studies
sharing methodological similarities. Therefore, herein, we emphasize the importance for
future research to adopt a standardized methodological procedure, allowing for a better
comparison of these fragmented pieces of evidence. Such an approach might also help
provide an overall conclusion regarding the magnitude of the effects found herein. This
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may strengthen our highlights, allowing researchers and clinicians to use the aforemen-
tioned finding to plan more effective evidence-based treatments tailored to each specific
clinical phenotype. In this paper, we attempted to circumscribe these conditions and their
electrophysiological peculiarities, for example by excluding from the current work studies
investigating comorbidities. Forthcoming studies should fill this gap, since tracing links
between these pathological conditions would provide a more exhaustive picture, possibly
illustrating how these behavioral and neurophysiological features overlap. This would also
help us to understand which alpha-based indices better explain the commonalities between
these disorders.

In conclusion, the last 10 years of research have brought several proofs on the role
of alpha oscillations in neuropsychiatric disorders. In particular, alterations in the alpha
power and frequency have been reported in patients with SSD [76,80], whereas FAA has
been proven to be able to discriminate MDD from healthy controls [118,131]. Furthermore,
an imbalance in the alpha band brain connectivity between long- and short-range regions
has been observed in ASD [180,181,194]. Finally, ADHD seems to display reduced alpha
power during stimuli processing relative to controls [48,49].

Hence, the alpha band indices may represent reliable and practical measures to support
the clinician during the diagnosis formulation, the choice and the evaluation of a treatment,
or the assessment of the symptoms.
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Abbreviations

ACC Anterior cingulate cortex
ADHD attention deficit hyperactivity disorder
ASD autism spectrum disorders
dlPFC dorsolateral prefrontal cortex
DMN default mode network
DSM-5 diagnostic and statistical manual of mental disorders
EEG electroencephalogram
ERD event-related desynchronization
ERP event related potential
ERS event-related synchronization
FAA frontal alpha asymmetry
IAF individual alpha frequency
ITC intertrial coherence
MDD major depressive disorders
MEG magnetoencephalography
mPFC medial prefrontal cortex
OCC occipital cortex
PAA posterior/parietal alpha asymmetry
PAC phase amplitude coupling
PCC posterior cingulate cortex
PFC prefrontal cortex
PPC posterior parietal cortex
PSD power spectral density
SSD schizophrenia spectrum disorder
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tACS transcranial alternating current stimulation
tDCS transcranial direct-current stimulation
TMS transcranial magnetic stimulation
WM working memory
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43. Lejko, N.; Larabi, D.I.; Herrmann, C.S.; Aleman, A.; Ćurčić-Blake, B. Alpha Power and Functional Connectivity in Cognitive

Decline: A Systematic Review and Meta-Analysis. J. Alzheimer’s Dis. 2020, 78, 1047–1088. [CrossRef]
44. Douw, L.; de Groot, M.; van Dellen, E.; Heimans, J.J.; Ronner, H.E.; Stam, C.J.; Reijneveld, J.C. ‘Functional Connectivity’ Is a

Sensitive Predictor of Epilepsy Diagnosis after the First Seizure. PLoS ONE 2010, 5, e10839. [CrossRef] [PubMed]
45. Morand-Beaulieu, S.; Wu, J.; Mayes, L.C.; Grantz, H.; Leckman, J.F.; Crowley, M.J.; Sukhodolsky, D.G. Increased Alpha-Band

Connectivity During Tic Suppression in Children with Tourette Syndrome Revealed by Source Electroencephalography Analyses.
Biol. Psychiatry: Cogn. Neurosci. Neuroimaging 2021, in press. [CrossRef] [PubMed]

46. Hinkley, L.B.N.; Vinogradov, S.; Guggisberg, A.G.; Fisher, M.; Findlay, A.M.; Nagarajan, S.S. Clinical Symptoms and Alpha Band
Resting-State Functional Connectivity Imaging in Patients with Schizophrenia: Implications for Novel Approaches to Treatment.
Biol. Psychiatry 2011, 70, 1134–1142. [CrossRef]

47. Fingelkurts, A.A.; Fingelkurts, A.A.; Rytsälä, H.; Suominen, K.; Isometsä, E.; Kähkönen, S. Impaired Functional Connectivity at
EEG Alpha and Theta Frequency Bands in Major Depression. Hum. Brain Mapp. 2007, 28, 247–261. [CrossRef] [PubMed]

48. Bozhilova, N.; Kuntsi, J.; Rubia, K.; Asherson, P.; Michelini, G. Event-Related Brain Dynamics during Mind Wandering in Attention-
Deficit/Hyperactivity Disorder: An Experience-Sampling Approach. NeuroImage Clin. 2022, 35, 103068. [CrossRef] [PubMed]

49. Lenartowicz, A.; Mazaheri, A.; Jensen, O.; Loo, S.K. Aberrant Modulation of Brain Oscillatory Activity and Attentional Impairment
in Attention-Deficit/Hyperactivity Disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 19–29. [CrossRef] [PubMed]

50. Lefebvre, A.; Delorme, R.; Delanoë, C.; Amsellem, F.; Beggiato, A.; Germanaud, D.; Bourgeron, T.; Toro, R.; Dumas, G. Alpha
Waves as a Neuromarker of Autism Spectrum Disorder: The Challenge of Reproducibility and Heterogeneity. Front. Neurosci.
2018, 12, 662. [CrossRef] [PubMed]

51. Loo, S.K.; McGough, J.J.; McCracken, J.T.; Smalley, S.L. Parsing Heterogeneity in Attention-deficit Hyperactivity Disorder Using
EEG-based Subgroups. J. Child Psychol. Psychiatry 2018, 59, 223–231. [CrossRef] [PubMed]

52. Edition, F. Diagnostic and Statistical Manual of Mental Disorders. Am. Psychiatric Assoc. 2013, 21, 591–643.
53. Uhlhaas, P.J.; Singer, W. Oscillations and Neuronal Dynamics in Schizophrenia: The Search for Basic Symptoms and Translational

Opportunities. Biol. Psychiatry 2015, 77, 1001–1009. [CrossRef] [PubMed]
54. Uhlhaas, P.J. Dysconnectivity, Large-Scale Networks and Neuronal Dynamics in Schizophrenia. Curr. Opin. Neurobiol. 2013, 23,

283–290. [CrossRef]
55. Stephan, K.E.; Friston, K.J.; Frith, C.D. Dysconnection in Schizophrenia: From Abnormal Synaptic Plasticity to Failures of

Self-Monitoring. Schizophr. Bull. 2009, 35, 509–527. [CrossRef] [PubMed]
56. Pittman-Polletta, B.R.; Kocsis, B.; Vijayan, S.; Whittington, M.A.; Kopell, N.J. Brain Rhythms Connect Impaired Inhibition to

Altered Cognition in Schizophrenia. Biol. Psychiatry 2015, 77, 1020–1030. [CrossRef] [PubMed]
57. Lozano-Soldevilla, D.; ter Huurne, N.; Cools, R.; Jensen, O. GABAergic Modulation of Visual Gamma and Alpha Oscillations and

Its Consequences for Working Memory Performance. Curr. Biol. 2014, 24, 2878–2887. [CrossRef] [PubMed]

http://doi.org/10.3389/fnhum.2010.00186
http://www.ncbi.nlm.nih.gov/pubmed/21119777
http://doi.org/10.1016/j.tics.2012.10.007
http://www.ncbi.nlm.nih.gov/pubmed/23141428
http://doi.org/10.3389/fncom.2014.00036
http://www.ncbi.nlm.nih.gov/pubmed/24772077
http://doi.org/10.1016/S0167-8760(96)00066-9
http://doi.org/10.1093/cercor/bhv146
http://doi.org/10.1016/j.pneurobio.2022.102367
http://www.ncbi.nlm.nih.gov/pubmed/36273720
http://doi.org/10.1523/JNEUROSCI.0160-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20573914
http://doi.org/10.1016/j.concog.2017.02.005
http://doi.org/10.1523/JNEUROSCI.1432-16.2016
http://www.ncbi.nlm.nih.gov/pubmed/28123017
http://doi.org/10.1016/j.cub.2022.01.003
http://doi.org/10.1016/j.cub.2014.11.034
http://doi.org/10.1016/j.cub.2017.06.033
http://www.ncbi.nlm.nih.gov/pubmed/28756954
http://doi.org/10.1523/JNEUROSCI.3184-18.2019
http://doi.org/10.1089/brain.2011.0008
http://doi.org/10.3233/JAD-200962
http://doi.org/10.1371/journal.pone.0010839
http://www.ncbi.nlm.nih.gov/pubmed/20520774
http://doi.org/10.1016/j.bpsc.2021.05.001
http://www.ncbi.nlm.nih.gov/pubmed/33991741
http://doi.org/10.1016/j.biopsych.2011.06.029
http://doi.org/10.1002/hbm.20275
http://www.ncbi.nlm.nih.gov/pubmed/16779797
http://doi.org/10.1016/j.nicl.2022.103068
http://www.ncbi.nlm.nih.gov/pubmed/35696811
http://doi.org/10.1016/j.bpsc.2017.09.009
http://www.ncbi.nlm.nih.gov/pubmed/29397074
http://doi.org/10.3389/fnins.2018.00662
http://www.ncbi.nlm.nih.gov/pubmed/30327586
http://doi.org/10.1111/jcpp.12814
http://www.ncbi.nlm.nih.gov/pubmed/28921526
http://doi.org/10.1016/j.biopsych.2014.11.019
http://www.ncbi.nlm.nih.gov/pubmed/25676489
http://doi.org/10.1016/j.conb.2012.11.004
http://doi.org/10.1093/schbul/sbn176
http://www.ncbi.nlm.nih.gov/pubmed/19155345
http://doi.org/10.1016/j.biopsych.2015.02.005
http://www.ncbi.nlm.nih.gov/pubmed/25850619
http://doi.org/10.1016/j.cub.2014.10.017
http://www.ncbi.nlm.nih.gov/pubmed/25454585


Biomedicines 2022, 10, 3189 22 of 29

58. Puig, M.V.; Antzoulatos, E.G.; Miller, E.K. Prefrontal Dopamine in Associative Learning and Memory. Neuroscience 2014, 282,
217–229. [CrossRef] [PubMed]

59. Lemercier, C.E.; Holman, C.; Gerevich, Z. Aberrant Alpha and Gamma Oscillations Ex Vivo after Single Application of the NMDA
Receptor Antagonist MK-801. Schizophr. Res. 2017, 188, 118–124. [CrossRef]
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