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Abstract: Myeloid-derived suppressor cells (MDSCs) are therapeutic agents to prevent graft rejection
in organ transplants by modulating inflammation. Herein, the immunosuppressive effect of human
cord blood MDSCs on corneal allograft models was confirmed. CB-MDSCs were locally (subcon-
juctival, 5 × 105) or systemically (intravenous, 1 × 106) injected twice on days 0 and 7. A corneal
transplantation model was established using C57BL/6 and BALB/c mice, and corneal graft opacity
was measured to evaluate graft rejection up to 6 weeks. Results showed that graft survival in the
MDSCs groups increased compared to vehicle groups after 42 days. Systemic and local MDSC admin-
istration inhibited the maturation (MHC-IIhi CD11c+) of dendritic cells (DCs) and the differentiation
of interferon γ+ CD4+ Th1 in draining lymph nodes (LNs). However, vehicle groups increased the
infiltration of CD3+ T cells and F4/80+ macrophages and produced prominent neovascular and lym-
phatic vessels into the graft site with increased mRNA expression of VEGF-A/C and VEGFR-1/R-3.
Local MDSCs administration showed prominent anti-angiogenic/anti-lymphangiogenic effects even
at lower MDSCs doses. Thus, CB-MDSCs could relatively suppress the infiltration of pathological T
cells/macrophages into the corneas and the migration of mature DCs into draining LNs Therefore,
ocular and systemic MDSCs administration showed therapeutic potential for preventing corneal
allograft rejection.

Keywords: Myeloid-derived suppressor cells (MDSCs); corneal transplantation; graft rejection;
T cells; macrophages

1. Introduction

Penetrating keratoplasty (PK) is the most frequently performed transplantation inter-
nationally [1]. In this procedure, the diseased corneal opacity is replaced with a healthy
donor cornea to make daily life easier for people with vision loss. However, corneal graft
rejection is a major cause of graft failure, and graft rejection occurs in 30–40% of general
corneal transplantation cases [2–4]. Rejection rates are significantly higher in high-risk
cases, thereby increasing vascularized beds within the recipient cornea [5,6]. The cornea
is an immune-privileged state that can be compromised by inflammation, injection, or
neovascularization after corneal transplantation [7]. Therefore, immunosuppressants such
as steroids, cyclosporine, and tacrolimus are clinically used to control acute rejection af-
ter transplantation. However, the long-term use of steroids and immunosuppressants is
associated with serious problems such as diabetes, steroid-induced glaucoma, secondary
infection, and cataracts [8,9]. Therefore, the development of additional therapeutic agents
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to minimize the use of immunosuppressants and maintain long-term immune tolerance is
of clinical importance.

In allogeneic corneal transplantation immunity, CD4+ helper 1 cells and F4/80+
macrophages mainly contribute to transplant rejection. CD11c+ dendritic cells (DCs) as
potent antigen-presenting cells (APCs) that recognize alloantigens activate T cell-mediated
adaptive immune cells for immune-mediated graft rejection [10]. In addition, macrophages
enable the migration of immune cells between the eyes and draining lymph nodes by
inducing angiogenesis and lymphangiogenesis, which are initiated by ocular inflammation
postoperatively [11,12]. In the adaptive immune system, activated CD4+ T cells produce
inflammatory cytokines (such as IFN-r and IL-17), amplify the influx of innate immune
cells, and lead to corneal allograft rejection [13]. Apoptotic cells in corneal transplant rejec-
tion are directly caused by infiltrating CD4+ and CD8+ T cells, which destroy tissues in a
cytokine-mediated manner [14]. In addition, an increased MHC class II expression of APCs
is an important factor that influences the rate of Th1-mediated graft rejection through the
proliferation of alloantigen-specific T cells [15,16]. A strong immune response that disrupts
corneal immune privilege in this way is considered a type 4 hypersensitivity reaction that
may exacerbate graft rejection [3]. Therefore, APCs maturation and CD4+ cell proliferation
in corneal transplantation should be suppressed to increase graft survival outcomes.

Myeloid-derived suppressor cells (MDSCs) are heterogeneous populations of im-
mature myeloid cells, including myeloid progenitors, to control excessive inflammation
under pathological conditions such as chronic inflammation and cancer-mediated inflam-
mation [17–19]. MDSCs of various origins have shown promising results as therapeutic
immunomodulators [17–19]. Studies have elucidated the suppressive mechanism of the
activation and proliferation of T cells through inducible nitric oxide synthase (iNOS) and
arginase 1 (Arg-1) expression of MDSCs. MDSCs also induce regulatory T cells (Tregs) that
regulate or suppress T cells in the immune system [20,21]. Park et al. [22] reported that
human-derived cord blood (CB)-MDSCs present a potent immunosuppressive function
on T cell-mediated chronic inflammation in a mouse graft-versus-host disease (GvHD)
model through immunosuppressive molecules, including iNOS, Arg-1, and indoleamine
2,3-dioxygenase (IDO). MDSCs have attracted attention as important suppressive regu-
lators of non-neoplastic inflammation, such as inflammatory bowel diseases (IBD), acute
kidney injury, and autoimmune uveitis mouse models [23–25]. Therefore, human-derived
CB-MDSCs on corneal transplantation might show potential for therapeutic applications
and preventive methods to increase graft survival.

In this study, we investigated the therapeutic efficacy of locally or systemically ad-
ministered CB-MDSCs to suppress corneal allograft rejection by evaluating immunologi-
cal responses and the compromised immune privilege after corneal transplantation in a
murine model.

2. Materials and Methods
2.1. Animals

BALB/c and C57BL/6 female mice (6–8 weeks old; Koatech Bio. Inc., Pyeongtaek,
Korea) were housed in a specific pathogen-free environment for 1 week. All experiments
were conducted in accordance with the guidelines of the Catholic Institutional Animals
and the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research
(IACUC Approval no. EPS-MH-2020-1701-FA). Anesthesia was intraperitoneally induced
by 120 mg/kg ketamine and 20 mg/kg xylazine.

2.2. Murine Model of Corneal Transplantation

Corneal Transplantation (PK) was performed on BALB/c mice as recipients of corneal
allografts as previously described [26]. Briefly, the central cornea of C57BL/6 (donor) mice
was excised using a 2 mm biopsy punch, and the central cornea of BALB/c (recipient)
mice was excised for transplantation with a 1.5 mm biopsy punch. The donor corneal
graft was then sutured to the center of the recipient cornea by using six interrupted
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11-0 nylon sutures (Sharp Point, Reading, PA, USA). The eyelids of all recipient mice were
sutured by tarsorrhaphy 3 days after surgery; all corneal sutures were removed 7 days
after transplantation. Graft rejection was evaluated by clinical scoring under a microscope.
Grading was based on a scale of 0–4 in terms of the presence and extent of opacity, as
previously described [26]. Graft rejection was confirmed as two successive scores of ≥3,
indicating the obscured iris shapes. Graft survival graphs were modeled using Kaplan–
Meier survival curves.

2.3. MDSCs Administration

Human cord blood (CB)-MDSCs were provided by the ViGenCell Inc., (Seoul, Re-
public of Korea), and the Catholic Hematopoietic Stem Cell Bank, an affiliation of the
College of Medicine, The Catholic University of Korea, which was approved by the Insti-
tutional Review Board of the Catholic University of Korea, College of Medicine (Permit
No. MC17TNSI0002). hCB-MDSCs were generated ex vivo as described previously [23,27].
Briefly, neonatal umbilical cord blood was collected from the umbilical veins after ma-
ternal informed consent. After CD34+ cells were isolated with a magnetic cell-sorting
system (anti-human CD34 antibodies (isotype: mouse IgG1), cat# 130-046-702, Miltenyi
Biotec, Bergisch Gladbach, Germany) were cultured with Iscove’s Modified Dulbecco’s
Medium medium, combined with 10% heat-inactivated fetal bovine serum (Gibco, Thermo
Fisher Scientific, Waltham, MA, USA), 2 mM L-glutamine (Lonza), recombinant human
granulocyte-macrophage colony-stimulating hormone (100 ng/mL), and recombinant hu-
man Stem Cell Factor (50 ng/mL) (Peprotech, Rocky Hill, NJ, USA). After 6 weeks of culture,
about 90% of hCB-MDSCs expressed CD11b+CD33+ CD14+ HLA-DRlow/− through flow
cytometry [23,27]. Human CB-MDSCs were injected via 5 × 105 subconjunctival (subcon-
junctival; scj) or 1 × 106 via tail vein (intravenous; iv) in the corneal transplanted mice. The
control groups received an equal volume of vehicle (PBS) via local (scj) or systemic (iv)
injection. Each injection was administered via a subconjunctival or intravenous route on
day 0 (1st injection) and day 7 (2nd injection) post-transplantation, respectively.

2.4. Immunofluorescent Staining

The mice were dissected on week 6 for whole eye tissue section experiments immedi-
ately after euthanasia. The whole eye tissues were fixed in 4% paraformaldehyde (Cat#
BPP9004, Tech and Innovation, Gangwon-do, Korea), precipitated on sucrose (Cat# S9378,
Sigma-Aldrich, Hamburg, Germany), and embedded using O.C.T compound (Cat# 4583,
Sakura Finetek, CA, USA) in a cryo-mold. The embedded eye tissues were sectioned on a
cryo-microtome at 8 µm thickness and attached to glass slides. The cryo-sectioned corneas
were incubated in a SuperBlock blocking solution (ThermoFisher, Rockford, IL, USA) at
20–25 ◦C for 30 min to block nonspecific staining. The corneas were immunostained with
Alexa Fluor 594-anti-mouse CD3 antibody (1:200, host:mouse, cat# 100240, BioLegend,
San Diego, CA, USA), Alexa Fluor 488-anti-mouse F4/80 antibody (1:200, host:mouse,
cat# 123120, BioLegend, San Diego, CA, USA) overnight at 4 ◦C and mounted using a Vec-
tor Shield mounting medium containing DAPI (cat# H-1200, Vector Laboratories, CA, USA).
For the TUNEL assay, the cryo-sections of the corneas were blocked in the SuperBlock
solution (ThermoFisher, Rockford, IL, USA) at 20–25 ◦C for 30 min and incubated for
permeabilization with PBST (0.1 Triton X in PBS) at 37 ◦C for 20 min. The permeabilized
corneas were stained via a terminal deoxynucleotidyl transferase dUTP nick end labeling
(TUNEL) staining kit (cat# 11684795910, Roche, Basel, Switzerland) in accordance with
the manufacturer’s recommendations. TUNEL-stained tissue was also mounted using a
Vector Shield mounting medium with DAPI. Frozen sections of corneas were examined
under a fluorescence microscope (Axiovert 200, Zeiss, Germany) in a blinded fashion at
20× magnification. Corneal photographs were quantified as the average of three pho-
tographs randomly selected for each animal, and each group included four animals in a
masked fashion.
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2.5. Corneal Whole Mount Staining by Immunofluorescence

Six weeks after transplantation, freshly obtained corneas were fixed in acetone at
20–25 ◦C for 15 min. The whole cornea was stained overnight at 4 ◦C with primary
antibodies, FITC-conjugated anti-mouse PECAM-1 antibody (1:100, host:rat, cat# sc-18916,
Santa Cruz, CA, USA), and Alexa Fluor 594-conjugated anti-mouse LYVE-1 antibody (1:100,
host:rat, cat# FAB2125T, R&D Systems, Minneapolis, MN, USA). All cornea mounts were
trimmed using a blade to flatten the cornea and mounted on slides by using the Vector
Shield mounting medium containing DAPI. Each whole cornea was examined with a
fluorescence microscope at 5× magnification (Axiovert 200, Zeiss, Germany). The area
within the grafted cornea covered by blood vessels (CD31) and lymphatic vessels (LYVE-1)
was calculated using ImageJ 1.52v (National Institute of Health, Bethesda, MD, USA).
Corneal CD31low LYVE-1hi vasculature represented the lymphatic vessels, and CD31hi

LYVE-1low vasculature represented the blood vessels. Neovascular perfusion (%) and
lymphatic neovascularization (%) areas were calculated through normalization of the total
corneal area by combining the sub-areas in the photographs of each individual mouse
under blinded random selection [23,24].

2.6. Real-Time Polymerase Chain Reaction (PCR)

PK mouse corneas were harvested 6 weeks after surgery, and three or four corneas
were randomly collected within each group. Total RNA was isolated from the trans-
planted corneas by Trizol (Invitrogen, Carlsbad, CA, USA) and RNeasy Mini (Qiagen,
Hilden, Germany). cDNA was then reverse transcribed from total RNA by using Super-
Script III™ Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA). Real-time PCR was
performed with Taqman PCR Mastermix and FAM dye-labeled predesigned primers (VEGF-
A: Mm00437306_m1, VEGF-C: Mm00437310_m1, VEGF-R2: Mm01222421_m1, VEGF-R3:
Mm01292604_m1, glyceraldehyde 3-phosphate dehydrogenase (GAPDH): Mm99999915_g1,
ThermoFisher, Rockford, IL, USA). GAPDH was used as an internal control for each reac-
tion. Gene expression levels were analyzed via the comparative threshold cycle method
using the analysis software (Quantity One 1-D analysis, Bio-Rad, Hercules, CA, USA), and
relative expression levels for each sample were expressed as fold change compared with
the untreated naive mice.

2.7. Flow Cytometry Assay

Draining LNs were isolated from graft recipients on postoperative day 42, and a
single-cell suspension was passed via a 70 µm cell strainer (Corning, CA, USA). Viable
single cells were subjected to plate counting as 5 × 105 cells/well in 96-well plates on
RPMI media (Welgene Inc., Gyeongsan-si, Republic of Korea) with 1% fetal bovine serum
(FBS; Gibco BRL, Karlsruhe, Germany) for 48 h. The cultured single cells were harvested
and immunostained with the following antibodies: PE-anti-mouse CD11c antibody (1:100,
host:hamster, cat# 117307, BioLegend, San Diego, CA, USA), Alexa Fluor 647-anti-mouse I-
Ad antibody (1:100, host:mouse, cat# 115010, BioLegend, San Diego, CA, USA), Alexa Fluor
488-anti-mouse CD4 antibody (1:100, host:mouse, cat# 100423, BioLegend, San Diego, CA,
USA), and PE-anti-mouse IFN-gamma antibody (1:100, host:rat, cat# 12-7311-82, Invitrogen,
Carlsbad, CA, USA). All antibodies were stained appropriately with the matched isotype
controls. The stained cells were analyzed with FACS Melody (BD Biosciences, Franklin
Lakes, NJ, USA) and FlowJo software X 10.5.3 (FlowJo LLC, Ashland, OR, USA).

2.8. Statistical Analysis

Data normality was performed with the D’Agostino–Pearson test. Student’s t-test or
one-way ANOVA with post hoc paired Tukey’s test was used to calculate the significance
between groups. Kaplan–Meier analysis with log-rank test was conducted to evaluate
graft survival. Data were expressed as the mean ± standard error of the mean (SEM) and
considered statistically significant at p < 0.05. Data were statistically analyzed using Prism
version 5.0 (GraphPad, San Diego, CA, USA).



Biomedicines 2022, 10, 3223 5 of 15

3. Results
3.1. Local and Systemic MDSCs Administration Enhanced the Corneal Graft Survival after
Corneal Transplantation

The corneal allograft survival was evaluated by administering MDSCs locally or
systemically. MDSCs suspended in PBS were administered via local (scj) or systemic
(iv) injection, and the PBS (scj, iv, respectively) control group was injected with the same
volume of the vehicle (PBS) on 0 days and 7 days. MDSC suspensions were administered
locally (subconjunctival, 5 × 105) or systemically (intravenous, 1 × 106) on days 0 and
7 postoperatively in each group. Postoperatively, the grafted cornea of each recipient
mouse was examined and clinically scored in a blinded manner every week. The objects
added to each group were PBSiv (n = 9), MDSCiv (n = 9), PBSscj (n = 11), and MDSCscj
(n = 11) that, were composed of screening individuals without infection, hemorrhage, and
synechiae in all mice. The MDSC-injected groups had significantly better graft survival
than the PBS-injected group (p < 0.05) at 6 weeks. The PBSiv and PBSscj groups showed
less than 50% graft survival during the experiment, and the median survival time (MST)
was 28.0 days. However, both local and systemic MDSCs-injected mice showed over 50%
survival 6 weeks after surgery, and MST was undefined (Figure 1).
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Figure 1. Comparison of corneal allograft survival according to the local and systemic administration
of MDSCs. BALB/c (recipient) corneas were engrafted orthotopically onto C57BL/6 (donor) corneas
by using PBSiv (n = 9), MDSCiv (n = 9), PBSscj (n = 11), and MDSCscj (n = 11). Locally and systemically
injected MDSCs (scj, iv) groups displayed significantly better corneal allograft survival than PBS-
injected (scj, iv) groups (* p < 0.05) for 42 days. Kaplan–Meier survival curves were obtained via the
log-rank test for the statistical comparison of four groups.

3.2. Local and Systemic MDSCs Suppressed DC Maturation and IFNγ-Expressing Effector CD4+
T Cell Generation in Draining LNs in the Corneal Transplantation Model

The increased expression of MHC class II on DCs promotes T cell-mediated immune
responses, which contributed to the dominant proliferation of IFN-γ+ CD4+ Th1 cells
during graft rejection. Furthermore, IFN-γ+ CD4+ T cells are important in graft rejection
by directly participating in graft tissue injury. Accordingly, flow cytometry was utilized to
analyze CD11c+MHC-IIhi cells in the cornea, including the conjunctiva, and IFNγ+CD4+
T cell populations in draining LNs. The MHC-IIhi CD11c + cell population decreased
significantly in the MDSCs groups (34.60 ± 1.22% for MDSCiv; 28.17 ± 0.75% for MDSCscj)
compared with that in the vehicle groups (42.43 ± 1.27% for PBSiv; 43.80 ± 1.23% for PBSscj)
(Figure 2A,C, p < 0.01). In addition, IFN-γ+ CD4+ T cell population significantly decreased
in the MDSCs groups (2.48 ± 0.16% for MDSCiv; 1.75 ± 0.21% for MDSCscj) compared with
the vehicle groups (3.42 ± 0.10% for PBSiv; 3.57 ± 0.15% for PBSscj; Figure 2B,D, p < 0.01).
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These data suggested that local and systemic administration of MDSCs can modulate the
maturation of the MHC-IIhi CD11c+ cells and the proliferation of IFNγ-expressing effector
Th1 cells dominant in corneal allograft rejection.
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Figure 2. Populations of major histocompatibility complex (MHC) IIhi CD11c+ cells and differ-
entiation of interferon (IFN)-γ-expressing effector T cells in draining lymph nodes after corneal
transplantation. Populations of MHC IIhi CD11c+ dendritic cells (DC) and differentiation of inter-
feron (IFN)-γ-expressing effector T cells in draining lymph nodes (LNs). (A) Representative flow
cytometry plot showing MHC IIhi CD11c+ cells after CD11c+ gating. (B) Representative flow cytome-
try plot presenting the differentiation of IFNγ+ CD4+ cells. (C) Quantitative analysis of MHC IIhi

CD11c+ cell populations (n = 3). Comparison between MDSCs (MDSC iv, MDSC scj) and vehicle
(PBSiv, PBSscj) showed that the MDSCs groups presented a decreased maturation of MHC IIhi CD11c+
cells, whereas the vehicle groups did not. The immunomodulating effect of MDSCs was significantly
better in the local (scj) injection group than in the systemic (iv) injection group. (D) Quantitative
analysis graph of IFNγ+ CD4+ cell differentiation (n = 3). MDSCs groups (MDSC iv, MDSC scj) led
to inhibit differentiation of IFNγ+ CD4+ cells when compared with vehicle groups (PBSiv, PBSscj).
Representative flow cytometric data from three independent trials with pooled cells from three mice
per group. * p < 0.05, ** p < 0.01.
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3.3. MDSCs Reduced Recruiting Macrophages and CD3+ T Cells in Grafted Corneas

Immunohistochemical staining showed that considerable F4/80+ cells (macrophages
marker) infiltrated, and some CD3+ T cells (pan T cells marker) were observed in vehicle (iv,
scj) groups in corneal allografts (Figure 3B,C) when compared with the infiltration of CD3+
T cells. F4/80+ macrophages were reduced in MDSC (iv, scj) injected groups (Figure 3D,E).
F4/80+ macrophages were abundantly recruited to the corneal stroma after corneal trans-
plantation. The MDSCs groups showed a significant decrease compared with the vehicle
groups (PBSiv vs. MDSCscj p < 0.01, PBSiv vs. MDSCiv p < 0.001, PBSscj vs. MDSCscj
p < 0.01, PBSscj vs. MDSCiv p < 0.001, Figure 3G). Moreover, the infiltration of CD3+
T cells was significantly suppressed by MDSCs administration (MDSCiv vs. PBSscj p < 0.01,
MDSCiv vs. PBSiv p < 0.001, MDSCscj vs. PBSscj p < 0.01, MDSCscj vs. PBSiv p < 0.001,
Figure 3F). Normal corneas were not observed with infiltrating macrophages and T cells
(Figure 3A,F,G).
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mune cells. (A) Representative IHC staining showed the naive group (A) and infiltration of CD3+ 
T cells (green; white arrow) and F4/80+ macrophages (red; white arrowhead) in the grafted corne-
as (B–E) on week 6 (20× magnification, scale bar = 50 μm). (F) Quantitative analysis of CD3+ T cell 
infiltration (n = 3). (G) Quantitative analysis of F4/80+ macrophages infiltration (n = 3). In the 
MDSCs groups, the infiltration of CD3+ T cells and F4/80+ macrophages in the grafted corneas was 
significantly suppressed regardless of the delivery site. Three to four different sections from three 
independent mice were randomly selected for counting blinded samples, and the average was 
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Figure 3. Immunohistochemical (IHC) staining of corneal allografts to evaluate infiltrating immune
cells. (A) Representative IHC staining showed the naive group (A) and infiltration of CD3+ T cells
(green; white arrow) and F4/80+ macrophages (red; white arrowhead) in the grafted corneas (B–E)
on week 6 (20× magnification, scale bar = 50 µm). (F) Quantitative analysis of CD3+ T cell infiltration
(n = 3). (G) Quantitative analysis of F4/80+ macrophages infiltration (n = 3). In the MDSCs groups,
the infiltration of CD3+ T cells and F4/80+ macrophages in the grafted corneas was significantly
suppressed regardless of the delivery site. Three to four different sections from three independent
mice were randomly selected for counting blinded samples, and the average was calculated. Data
were presented as average ± SEM. ** p < 0.01, *** p < 0.001.
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3.4. MDSCs Prevented Cellular Apoptosis in Grafted Corneas

F4/80+ macrophage participates in the inflammatory environment and angiogenesis-
related to graft rejection. Allogeneic CD3+ T cells are one of the major factors inducing
apoptosis in transplanted corneas. Therefore, TUNEL staining was used to confirm apopto-
sis by immune cells post-transplantation. Representative fluorescence micrographs were
taken at the graft and showed that TUNEL-positive apoptotic cells were readily observed;
significant differences were also found between MDSCs and PBS groups (Figure 4A–E).
MDSCs (iv, scj) groups had significantly inhibited apoptosis compared with the PBS groups
(PBSiv vs. MDSCscj p < 0.01, PBSiv vs. MDSCiv p < 0.001, PBSscj vs. MDSCscj p < 0.05,
PBSscj vs. MDSCiv p < 0.01, Figure 4F). No significant differences were detected between
the local and systemic groups of each therapeutic agent in the TUNEL assay (Figure 4F).
These results indicated that MDSCs could significantly inhibit immune cell infiltration and
graft tissue damage.
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Figure 4. Assessment of cellular apoptosis in the corneal graft 6 weeks after the operation. Rep-
resentative terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL; green; white
arrow) assay images (20× magnification, scale bar = 50 µm) of the corneal graft of each group; non-
transplanted naive cornea (A), PBSiv (B), PBSscj (C), MDSCiv (D), and MDSCscj (E). (F) Quantitative
analysis graph of TUNEL-positive apoptotic cells (green). MDSC-treated groups inhibited the cell
death of the grafted corneas compared with that of the PBS-treated group (* p < 0.05, ** p < 0.01,
*** p < 0.001). Each experiment consisted of three corneas per group.

3.5. MDSCs Alleviated Neovascularization and Lymphangiogenesis on Grafted Corneas

The angiogenesis and lymphangiogenesis of the grafts were assessed by fluores-
cent immunohistochemical staining of platelet endothelial cell adhesion molecule (CD31,
known as PECAM-1) and lymphatic endothelial hyaluronan receptor-1 (LYVE-1) at post-
operative 6 weeks. The representative photographs of the immunofluorescence-stained
neovascularization and lymphangiogenesis were shown on whole grafted corneas of each
group (Figure 5A–D). The corneal whole-mount staining was analyzed as a graph by
quantifying the areas of blood vessels and lymphatic vessels in each total corneal area
(Figure 5E,F). MDSCs (scj or iv) groups had a significantly decreased CD31hi neovascu-
larization area in the quantitative graph of the whole mount corneas (PBSiv vs. MDSCiv
p < 0.01, PBSscj vs. MDSCscj p < 0.001, Figure 5E). The quantification of the lymphan-
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giogenic area revealed that the systemic or local injections of MDSCs clearly reduced
LYVE-1hi lymphangiogenesis in the whole corneal mounts (PBSiv vs. MDSCiv, p < 0.05;
PBSscj vs. MDSCscj, p < 0.001, Figure 5F). Furthermore, the mRNA expression levels of
angiogenesis (VEGF-A, VEGFR-1) and lymphangiogenesis (VEGF-C, VEGFR-3)-related
genes were assessed in extracted grafted corneas at 6 weeks post-transplantation (Figure 6).
The mRNA expression of VEGF-A, VEGFR-1, VEGF-C, and VEGFR-3 significantly de-
creased in the MDSCiv group, compared with the PBSiv group at 6 weeks (p < 0.05, p < 0.05,
p < 0.05, and p < 0.05, respectively, Figure 6A–D). The local delivery of MDSCs significantly
suppressed the levels of angiogenesis- and lymphangiogenesis-related gene expression
compared with those in the PBSscj group (p < 0.01, p < 0.05, p < 0.01, and p < 0.0001, respec-
tively, Figure 6A–D). No significant difference in CD31hi and LYVE-1hi areas (%) occurred
in the whole corneal staining between MDSCs groups, even at a lower dose in the MDSCscj
group than in the MDSCiv group (Figure 5E,F). In addition, no significant differences in
the levels of angiogenesis- and lymphangiogenesis-related mRNA genes between MDSCs
groups were noted (Figure 6).
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Figure 5. Comparisons of neovascularization and lymphangiogenesis in corneal allografts via MDSC
administration. Representative whole-mount corneal immunofluorescent CD31hi (green) and LYVE-
1hi (red) staining images from each group: PBSiv (A), MDSCiv (C), PBSscj (B), and MDSCscj (D).
The representative photograph is a combination of multiple stitched photographs (5× magnification,
scale bar = 500 µm) taken after dividing the whole cornea into several parts. MDSC groups (MDSCiv,
MDSCscj) presented the significantly suppressed areas of neovascularization (E), green-CD31hi;
white arrows for blood vessels) and lymphangiogenesis ((F), red-LYVE-1hi) rather than those of the
vehicle groups (PBSiv, PBSscj). Data are presented as the mean ± SEM of three repeated experiments
involving three corneas per group (E,F); * p < 0.05, ** p < 0.01, and *** p < 0.001)).
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Figure 6. Real-time polymerase chain reaction analysis of the mRNA expression levels of angiogenesis
and lymphangiogenesis on the grafted cornea. mRNA levels of angiogenesis ((A): VEGF-A and (C):
VEGFR-1) and lymphangiogenesis ((B): VEGF-C, (D): VEGFR-3) on the grafted corneas 6 weeks after
corneal transplantation. The MDSCs groups (MDSCiv, MDSCscj) were compared with PBSiv and
PBSscj (n = 3–4, * p < 0.05, ** p < 0.01 and *** p < 0.001). The local and systemic administration of
MDSC groups (MDSCiv, MDSCscj) showed a decreased mRNA expression of VEGF-A, VEGFR-1,
VEGF-C, and VEGFR-3, in comparison with that of the PBS-treated groups (PBSiv, PBSscj). Data were
normalized to GAPDH as internal control, and relative values were expressed as the fold change of
the naïve corneas. Data are presented as mean ± SEM of three or four experiments. Each experiment
consisted of three or four corneas per group.

4. Discussion

The immune privilege of a healthy cornea, characterized by immunomodulatory
factors in the eye and the absence of vascularization and lymphangiogenesis, is an im-
portant factor in preserving corneal transparency and graft survival in corneal allograft
models [28,29]. The breakdown of immune privilege through inflammation, trauma,
surgery, and infections, can induce the growth of blood vessels and lymphatics into the
cornea and increase the risk of graft rejection by increased exposure of alloantigens to
the immune system [7,30–32]. In our study, the local and systemic administration of CB-
MDSCs suppressed graft rejection in the corneal allograft and positively affected graft
survival. However, studies have yet to investigate ocular MDSC injection, which has
clinical advantages in corneal allografts over systemic injection. Our data presented that
the local/subconjunctival injection of relatively lower doses of CB-MDSCs rather than the
systemic injection prolonged corneal graft survival and contributed to potential immune
modulation on graft rejection. Umbilical cord blood (UCB) is a source of MDSCs, because
UCB DCs express lower levels of MHC class II, CD80, and CD86, compared to the periph-
eral blood, and they are rich in MDSCs, which could have a prominent immunomodulatory
potential and reduce the risk of HLA mismatched related immunologic responses among
others adult sources. [33] Therefore, UCB-derived MDSCs could be a good candidate for
further promising clinical trials.

We confirmed that the ocular administration of MDSCs on days 0 and 7 significantly
prolonged graft survival in an allogeneic corneal transplant model for up to 6 weeks.
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Previous studies showed that the intravenous adoptive transfer of MDSCs delays graft
rejection in a corneal allotransplantation model by regulating T-cell activation [34]. Indirect
allorecognition and T cell activation are the main immunopathogeneses of corneal allograft
rejection. Alloantigens from the grafted donor cornea is processed by MHC class II APCs,
which present processed antigens to the recipient’s naive T cells, generating alloreactive T
cells in draining LNs (10, 15, 16). In the present study, we identified the regulation of IFN-γ+
CD4+ cells and MHC class IIhi CD11c+ APCs that play an important role in corneal allograft
rejection. Previous studies demonstrated that human MDSCs secrete inhibitory mediators
(such as IL-10 and TGF), inhibit TLR ligand-induced IL-12 production of DCs, and impair
T cell stimulatory functions of DCs in animal models [34–36]. Dietz S et al. demonstrated
that MDSCs are capable of downregulating HLA class I/II molecules and upregulating
co-inhibitory molecules, including programmed death ligand-1/2 [37]. In our study, the re-
duced infiltration of CD11c+ MHC IIhi cells in draining LNs of the MDSC groups indicated
that CB-MDSCs could suppress the maturation and migration of DCs. Interestingly, the
subconjunctival injection of lower-dose MDSCs presented a higher inhibitory activity of
DCs maturation than systemic injection.

The infiltrations of IFN-γ secreting CD4+ and CD8+ T cells into graft sites can aggra-
vate the inflammatory environment and expand the recruitment of more T cells and F4/80+
macrophages into grafted corneas [26,32]. In a healthy cornea, the immune privilege of the
eye suppresses antigen-specific delayed-type hypersensitivity [38] mediated by anterior
chamber-associated immune deviation [38,39]. However, impaired immune privilege after
corneal transplantation leads to antigen-specific delayed-type hypersensitivity, which in-
duces donor antigen-specific T cell proliferation and infiltration of macrophages into graft
sites [39]. Macrophages are also a critical factor in corneal graft rejection as they further
recruit immune cells and aggravate inflammatory responses by locally producing IFN-γ
and tumor necrosis factor. Our data presented that CB-MDSCs administration suppressed
the infiltration of CD3+ T cells and F4/80+ macrophages in allograft corneas. In addition,
the maturation of CD11c+ DCs and the expansion of IFN-γ+ CD4+ T cells in draining
LNs were significantly decreased by MDSCs injection. Previous studies reported that
MDSCs can produce anti-inflammatory mediators and inhibit CD4+ T cell proliferation
mediated by the iNOS expression of MDSCs in animal models [22,35,40]. Jensen, K. P. et al.
demonstrated a significant increase of MDSCs early posttransplant in mouse cardiac trans-
plantation and human kidney transplantation humans, which suppressed the proliferation
and production of IL-2 and IFN-γ on T cells [41]. Inflammatory mediators, such as IFN-γ,
secreted by CD4+ T cells and macrophages during graft rejection destroy tissues, as shown
by a significant decrease in apoptosis at the graft site injected with CB-MDSCs in our
study. This finding indicated that the recruitment of allogeneic T cells and macrophages
into the grafted corneas was suppressed by MDSCs treatments; therefore, graft rejection-
related inflammatory environment and grafted tissue destruction could be alleviated by
injected MDSCs.

Allograft rejection creates an inflammatory environment and increases the infiltration
of immune cells, such as T cells and macrophages, into grafted corneas. Macrophages
produce inflammatory cytokines and VEGFs, which are major causes of angiogenesis and
lymphangiogenesis at graft sites [26,42]. Newly developed angiogenesis and lymphangio-
genesis are the main causes of corneal immune privilege disruption after corneal trans-
plantation because donor antigen-presenting mature DCs (MHC IIhi CD11c+ cells) migrate
from the grafted cornea to LNs through lymphatic vessels (efferent loop) and alloantigen-
specific T cells in LNs are recruited to cornea via blood vessels (afferent loop) [26]. Thus,
corneal angiogenesis and lymphangiogenesis increase after corneal transplantation and
promote the migration of mature DCs in draining LNs and the recruitment of CD3+ T cells
into grafted sites. Previous studies demonstrated that MDSCs could indirectly suppress
angiogenesis and lymphangiogenesis by decreasing inflammation in an iNOS-dependent
manner and inhibiting macrophage infiltration and activation in grafted sites [43–46].
Fujimoto K et al. demonstrated monocytic MDSCs injection prolonged graft survival after
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murine cardiac transplantation by inhibiting naïve T cell activation in iNOS dependent
manner [47]. Cao P et al. presented an adoptive transfer of bone marrow-derived MDSCs
significantly prolonged the survival of allo-skin graft and improved immune tolerance
through the Arg-1 pathway in the transplant mice. Furthermore, MDSCs could promote
the prominent expansion of Tregs to induce an efficient immune tolerance [48].

In our study, the local and systemic injection of CB-MDSCs inhibited angiogenesis and
lymphangiogenesis on the whole mount immunofluorescent staining of the corneas and sig-
nificantly led to the decreased mRNA expression of angiogenesis and lymphangiogenesis-
related genes, such as VEGF-A, VEGFR-1, VEGF-C, and VEGFR-3 in the grafted site.
Therefore, MDSCs could suppress allograft rejection by inhibiting the maturation and
migration of DCs, infiltration of macrophages, and ingrowth of angiogenic and lymphatic
vessels in grafted sites.

Among the administration methods of cellular therapeutic agents, the systemic injec-
tion has some limitations in clinical applications, and the efficacy of cell therapy mostly
depends on the delivery method. Circulating injected cells are largely trapped within
various nontarget organs, such as the lung, liver, and kidney, and they pose risks of serious
side effects, such as pulmonary embolism and strokes [49–51]. The mechanisms of the accu-
mulation of MDSCs under pathological conditions are still unclear [52]. Nevertheless, these
problems of systemic injection can be overcome by using local administration in clinical
trials because MDSCs can be directly delivered to the diseased site via local administration
without being largely trapped in other organs. In addition, local delivery often yields better
efficiency than systemic injection under more controlled allocation [53–56]. In our study,
although the processing dose was lower, it was confirmed that the local delivery of CB-
MDSCs suppressed allogenic graft rejection with impaired expression of neovascularization
and lymphangiogenesis compared with the systemic injection, but the difference was not
significant. Therefore, our data suggested that the low-dose local subconjunctival injection
of MDSCs was methodologically more stable and efficient than the high-dose systemic
intravenous injection. One of the objectives of this study was to confirm the therapeutic
efficacy of the local and systemic administration of MDSCs in this model, even at a lower
dose of local delivery. However, further studies on variable doses regarding administration
routes of MDSCs in this corneal transplantation model will clarify the amount of MDSCs
in future clinical trials. Furthermore, there are still many debated issues to be clarified in
further investigation. MDSCs could inhibit dysregulated immune responses, such as au-
toimmune diseases and transplantation, but they also suppress critical immune responses
in bacterial and viral infections and tumor growth/metastasis. Therefore, MDSCs could
affect physiological and pathological conditions, depending on their environment, such
as chronic inflammation and stress. [57] The other concern may be the possibility of the
differentiation of immature MDSCs into other immune cells, including DCs, macrophages,
or neutrophils, affected by several external environmental conditions [58,59]. In our study,
local and systemic MDSCs treatment did not show an increased population of DCs and
macrophages at the transplanted cornea, compared to PBS control groups, but we need
to evaluate the specific distribution and differentiation of MDSCs systemically in further
experiments. Finally, therapeutic cell transfer always holds potential risks, including re-
cruitment of injected cells to nontargeted organs and immune reaction against transferred
cells, which need to be studied carefully before the clinical application [58,60].

In summary, our findings suggested that the local and systemic injection of CB-MDSCs
could suppress allogenic T cell-mediated graft rejection by inhibiting the maturation of
DCs and the pathological development of angiogenesis/lymphangiogenesis at graft sites,
thereby suppressing the infiltration of alloantigen-specific T cells and macrophages into the
grafted corneas and the migration of mature activated DCs into draining LNs. Interestingly,
lower doses of locally administered CB-MDSCs showed similar efficacy in terms of graft
survival to that of systemic administration. To our knowledge, this is the first study to
compare the efficacy of local and systemic delivery of CB-MDSCs to suppress graft rejection
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on murine allogeneic corneal transplantation. Therefore, the local delivery of CB-MDSCs
would be helpful for corneal graft survival in clinical trials.
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