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Abstract: It’s known that a magnesium (Mg)-deficient diet is associated with an increased risk of
osteoporosis. The aim of this work is to investigate, by a histological approach, the effects of a
Mg-deprived diet on the bone of 8-weeks-old C57BL/6J male mice. Treated and control mice were
supplied with a Mg-deprived or normal diet for 8 weeks, respectively. Body weight, serum Mg
concentration, expression of kidney magnesiotropic genes, and histomorphometry on L5 vertebrae,
femurs, and tibiae were evaluated. Body weight gain and serum Mg concentration were significantly
reduced, while a trend toward increase was found in gene expression in mice receiving the Mg-
deficient diet, suggesting the onset of an adaptive response to Mg depletion. Histomorphometric
parameters on the amount of trabecular and cortical bone, number of osteoclasts, and thickness of
the growth plate in femoral distal and tibial proximal metaphyses did not differ between groups;
these findings partially differ from most data present in the literature showing that animals fed a
Mg-deprived diet develop bone loss and may be only in part explained by differences among the
experimental protocols. However, the unexpected findings we recorded on bones could be attributed
to genetic differences that may have developed after multiple generations of inbreeding.

Keywords: Mg-deficient diet; osteoporosis; C57BL/6J mice; bone histomorphometry; gene expression

1. Introduction

Magnesium (Mg) is the fourth most abundant cation in the body and the second most
widespread intracellular one [1–3]. Overall, the predominant action of Mg is related to
ATP utilization; in fact, it exists in all cells mainly as Mg-ATP. Regarding its physiological
role, Mg is essential for many enzymatic reactions by stabilizing the reaction intermediate
and/or the output product and simultaneously binding two substrates for the purpose
of facilitating the reaction [4,5]. A number of signaling cascades related to Mg involve
protein kinases, such as lymphocyte-specific protein tyrosine kinase (Lck), zeta-chain-
associated protein kinase 70 (ZAP-70), and interleukin-2-inducible T-cell kinase (Itk) [6].
Approximately 60–65% of the total magnesium is present in the skeleton embedded in
hydroxyapatite crystals, 32–35% is complexed with proteins and nucleic acids, and only
1–2% in plasma and other minor forms of deposition [4,7,8].

In humans, dietary Mg deficiency has been associated with hypertension, cardiac
arrhythmias, myocardial infarction, hypokalemia, hypocalcemia, and the risk of osteo-
porosis; in fact, in disorders that impair intestinal absorption of Mg and/or are associated
with renal loss of Mg (such as malabsorption syndromes, alcoholism, diabetes mellitus,
and drugs such as diuretics), the incidence of osteoporosis is higher than expected [9].
Several experimental studies in rodents have shown that progressively reduced Mg diets,
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compared with the recommended daily intake, result in a corresponding loss of bone mass
and increased skeletal fragility, due to increased bone resorption and/or reduced bone
formation during skeletal remodeling [10–15]. In fact, Mg has been shown to be important
for bone cell activity: (i) in vitro its depletion causes inhibition of osteoblastic growth, while
its presence has a mitogenic action [16,17]; (ii) in vivo, its depletion causes both a decrease
in the number of osteoblasts associated with alteration of their function and an increase
in the number of osteoclasts and the surfaces eroded by them [11–13,18,19]. In addition,
magnesium deficiency increases the production of pro-inflammatory cytokines, such as
tumour necrosis factor-α (TNF-α), interleukin-1 (IL-1), and substance P, which promote bone
resorption by osteoclasts [13].

Among rodents, the C57BL/6 mouse is widely used in biomedical research in studies
of effects related to dietary magnesium reduction on physiological processes in various
tissues/organs, as blood cells, liver, and the brain [20–24]. From the founding line C57BL/6,
after many generations of inbreeding, several substrains have been derived that differ in
small genomic variations leading to different phenotypes; of these, the most widely used
in research are C57BL/6N and C57BL/6J [25,26]. As for bone, Simon and coworkers [26]
have shown that, under normal conditions, the overall bone trabecular network is similar
between the two substrains, as are bone formation and resorption markers. Only Tu
and coworkers [27] investigated the effect of the reduction of magnesium in the diet for
8 weeks in C57BL/6J male mice using a radiologic and biochemical approach; they found a
reduction of bone volume, number of trabecular segments, and bone mineral content of the
femoral distal metaphysis and a decrease in Mg in plasma.

The purpose of the present work is to investigate with a histological approach the
effects of a Mg-deprived diet on C57BL/6J mice to better understand the influence of this
diet on bone architectures, in particular of the axial versus appendicular skeleton.

2. Materials and Methods
2.1. Experimental Animals and Treatment

8-week-old C57Bl/6 male mice (n = 14) were obtained from the animal facility of the
University of Parma. To minimize genetic drift from the founder line, the animals are
back-crossed with C57Bl6/J pure strain mice purchased from Charles River (Charles River
Laboratories, Calco, ITA) every 10 generations. The animals of the colony exhibit a very
good degree of uniformity in terms of reproductive capacity, rate of growth of newborns,
body weight, general appearance, and behavior.

All mice were supplied with a basal diet over a one-week acclimatization period.
Subsequently, the mice were randomized into two groups, each containing seven mice:
the treatment and control groups. In the treatment group, mice were fed a commercial
Mg-deprived diet (0% Mg wt/wt, Charles River Laboratory, Calco, ITA) and distilled water
ad libitum for 8 weeks; in the control group, mice were fed a normal diet (0.2% Mg wt/wt,
Mucedola, Settimo Milanese, ITA) and natural tap water ad libitum for 8 weeks. A complete
nutritional description of the two diets is supplied in Table S1 (Supplementary Materials).
Equal appreciation of the two diets was assessed by weighting daily the amount of food
consumed by control and treated mice. All animals were maintained in a temperature-
controlled room (22± 1 ◦C) with a 12:12 h light:dark cycle. The body weight of each animal
was recorded at the beginning of the experimental period and then every 14 days until the
day of sacrifice.

After 8 weeks, all mice were anesthetized with isoflurane and blood samples were
collected by cardiac puncture; then, mice were euthanized by cervical dislocation. Kidneys
and bones were collected for subsequent biochemical, histological, and histomorphome-
trical analyses. Blood samples were allowed to clot for 30 min and then centrifuged at
10,000 rpm for 10 min at room temperature. Serum was separated from the clot and stored at
−20 ◦C until use. For 1 control and 1 treated animal, serum couldn’t be properly separated
from blood.
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All experiments conformed to the National Research Guide for the Care and Use of
Laboratory Animals (D.L. 26/2014) and the recommendations of the Institutional Animal
Care and Use of the University of Parma (identification code Project ID: 719/2015-PR).
All achievements were made to minimize animal suffering and reduce the number of
animals used.

2.2. Serum Mg Concentration

Mg concentration was assessed in serum samples by using a specific commercial
colorimetric enzyme (glycerol kinase) assay kit (Sigma Aldrich, St. Louis, MO, USA). The
assay was performed according to the manufacturer’s instructions. Briefly, 5 µL of each
serum sample was directly pipetted into a 96-well plate and added with 50 µL of Master
Reaction Mix (35 µL Magnesium Assay Buffer, 10 µL Developer 5 µL Magnesium Enzyme
Mix), mixed on a horizontal shaker, and incubated for 10 min at 37 ◦C. The absorbance
at 450 nm was measured immediately after the incubation period (A450)initial and then
every 5 min until the highest measure approached the value of 1.5 (A450)final. For each
sample (A450)final − (A450)initial was calculated to correct for the non-specific background
of nicotinamide adenine dinucleotide phosphate (NADPH) present in the sample. The Mg
concentrations of unknown samples were determined by comparison with a calibration
curve obtained from Mg standard solution at 0; 0.06; 0.08; 0.12; 0.18; 0.24; 0.30 nmol/µL.

2.3. RNA Extraction, cDNA Preparation, and qPCR

Kidney tissue samples obtained from normal or Mg-deprived diet-fed mice were snap-
frozen in liquid nitrogen and ground to a fine powder. RNA was extracted starting from
30 mg of powder by using 1 mL of TRIZOL reagent (Thermo Fisher Scientific, Waltham, MA,
USA) and then purified with the PureLink RNA Mini kit (Thermo Fisher Scientific, Waltham,
MA, USA). cDNA Synthesis was carried out with the RevertAid First Strand cDNA Synthesis
kit (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instruc-
tions using a previously optimized protocol [28]. The expression of magnesium transporter
protein 1 (MagT1), transient receptor potential cation channel, subfamily M, member 6 (TRPM6),
transient receptor potential cation channel, subfamily M, member 7 (TRPM7) was measured by
qPCR amplification using 1 µL of cDNA with the SSOAdvanced Universal SYBR Green Su-
permix (Bio-Rad, Hercules, CA, USA) on the DNA Engine Opticon 4 (MJ Research, Walth-
man, MA, USA), as previously extensively described [28]. The sequence of the primers
used in qPCR is reported in Table 1, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was
used as the housekeeper gene. For each analysis, the samples were run in duplicate. The
gene expression level was calculated by the 2−∆∆Ct method, where Ct = threshold cycle;
∆Ct = Ct (target gene)− Ct (GAPDH) and ∆∆Ct = ∆Cttarget gene Treated− ∆Cttarget gene Control.

Table 1. Sequences of the primers used for qPCR.

Gene Forward Primer Sequence Reverse Primer Sequence

MagT1 5′-CCAAAGGGGCTGATACATA-3 5′-ATAGAAGAACGATGTGTG-3′

TRPM6 5′-AAAGCCATGCGAGTTATCAGC-3′ 5′-CTTCACAATGAAAACCTGCCC-3′

TRPM7 5′-GGTTCCTCCTCCTGTGGTGCCTT-3′ 5′-CCCCATGTCGTCTCTGTCGT-3′

GAPDH 5′-TCAAGCTCATTTCCTGGTAT-3′ 5′- GTCCAGGGTTTCTTACTCCT-3′

2.4. Histology and Histomorphometry

Soon after sacrifice, the fifth lumbar vertebra (L5), the femurs, and the tibiae from each
animal were retrieved, cleaned of soft tissues, and fixed in a solution of 4% paraformalde-
hyde with a pH of 7.4 in sodium phosphate saline (PBS).

2.4.1. Resin-Embedded Specimens

Vertebrae, right femurs, and right tibiae were then dehydrated in increasing ethanol
concentrations and embedded in methyl-methacrylate (Sigma Aldrich, Milan, Italy). Speci-
mens were cut with a Leica SP 1600 diamond saw microtome (Leica SpA, Milan, Italy) to
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obtain transverse serial sections of 200 µm thickness. The sections, taken from the center of
L5, from the middle of the femoral patellar groove, and just below the tibial condyles, were
glued to a glass slide and ground to a final thickness of 40 µm; they were then superficially
stained with Fast green 1% + 1% acetic acid, observed with a Nikon Eclipse Ni micro-
scope equipped with a DS-Fi2 camera (Nikon, Tokyo, Japan) and images were acquired by
means of NIS-Elements D 5.11.00 software (Nikon, Tokyo, Japan). Histomorphometry was
performed by means of the software Image J (NIH, Bethesda, Maryland, USA) to calculate:

- trabecular bone volume (BV/TV), trabecular thickness (Tb.Th), trabecular number
(Tb.N), and trabecular separation (Tb.Sp) in the L5 body, femoral distal, and tibial
proximal metaphyses;

- anterolateral cortical thickness (Ct.Th) measuring it at 10 random points in the verte-
bral body.

All measurements were performed according to the American Society for Bone and
Mineral Research (ASBMR) histomorphometry nomenclature [29].

2.4.2. Paraffin-Embedded Specimens

Left femurs and left tibiae were decalcified in a 10% EDTA solution for 20 days,
then were washed with PBS, dehydrated in graded ethanol, and embedded in paraffin.
Longitudinal serial sections (5 µm thick) of the femoral distal metaphysis and tibial proximal
metaphysis were stained with Toluidine blue & Eosin to measure at 10 random points the
thickness of the growth plate. Tartrate Resistant Acid Phosphatase (TRAP) reaction was
used to identify osteoclasts; the osteoclasts number (NOc) was calculated along the bone
surface (BS) in the interface along the growth cartilage and diaphyseal bone and expressed
as NOc/BS. All slides were observed with a Nikon Eclipse Ni microscope equipped with a
DS-Fi2 camera (Nikon, Tokyo, Japan) and evaluated by means of NIS-Elements D 5.11.00
software (Nikon, Tokyo, Japan).

2.5. Statistical Analysis

The IBM SPSS v25.0 statistical package (International Business Machines Corporation,
Armonk, NY, USA) was used. Data are expressed as mean values ± standard deviation
of the mean (SD). The statistical analysis was based on the Student’s t-test. The limit of
statistical significance was set at p < 0,05. Graphics were prepared by using the GraphPad
Prism v9.0 software (GraphPad software, San Diego, CA, USA).

3. Results
3.1. Effects of the Mg-Deprived Diet on Body Weight and Mg Serum Concentration

All the animals included in the study gained weight during the 8-week study. However,
the body weight gain was significantly reduced to 50% after 4 weeks and to 45% after
8 weeks in mice receiving the Mg-deprived diet compared with mice receiving the control
diet (Figure 1).
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Figure 1. Body weight gain. Mice were fed either a normal (control) or a Mg-deficient diet (treated).
Body weight gain was calculated after 4 weeks (A) and 8 weeks (B) as % of the initial value. Data
(n = 7 for each group) are presented as, box-and-whisker plots- (Center line, median; box limits, first
and third quartiles; whiskers, max-min). * Significant differences of the treated group vs. the control
group (p < 0.05).
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After 8 weeks of treatment, mice fed the Mg-deficient diet exhibited a significant
reduction (20%) in serum Mg concentration compared with the control group (Figure 2).
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Figure 2. Serum Mg concentration. Mg was measured in serum of mice fed either a normal (control)
or a Mg deficient (treated) diet. Data (n = 6 per each group) are presented as box-and-whisker plots-
(Center line, median; box limits, first and third quartiles; whiskers, max-min). * Significant differences
of the treated group vs. the control group (p < 0.01).

3.2. Expression of TRPM6, TRPM7 and MagT1

By quantitative PCR (qPCR), we investigated whether animals fed with the Mg-
deprived diet for 8 weeks exhibited differences in the expression of Mg transport and
homeostasis systems compared with controls. To this end, we measured the relative expres-
sion levels of MagT1, TRPM6, and TRPM7 mRNA in frozen kidney tissue samples. Chronic
Mg deprivation did not have any significant effect on the expression of Mg transporters in
the kidney, as reported in Figure 3.
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Figure 3. Relative expression of Mg transporters mRNA levels. mRNA was extracted from kidney
tissue of mice fed either a normal (control) or a Mg deficient diet (treated) for eight weeks, retro
transcribed and amplified by q-PCR. Data (n = 7 for each group) are presented as a bar graph.
The relative fold change of MagT1 (A), TRPM6 (B) and TRPM7 (C) mRNA of treated samples vs.
controls has been calculated via the 2−∆∆Ct method. GAPDH was used as housekeeping gene;
Ct = threshold cycle, ∆Ct = normalized Ct = Ct(Target) − Ct(GAPDH) and
∆∆Ct = ∆CtTarget(treated sample) − ∆CtTarget(control sample).
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3.3. Histology and Histomorphometry

Unexpectedly, the histological observations of all bone segments investigated showed
that their morphological aspect is very similar in both the treatment (Mg-deprived diet) and
control groups (Figure 4). Histomorphometric data are reported in Table 2; no significant
differences were found between the experimental groups for all the parameters evaluated,
thus confirming the histological observations.
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Figure 4. Micrographs of representative histological transverse sections of L5 vertebral body (A,B),
femoral distal metaphysis (C,D), and tibial proximal metaphysis (E,F) of treatment and control groups.

Table 2. Histomorphometric parameters measured in L5 vertebral body, femoral distal metaphysis,
and tibial proximal metaphysis sections. BV/TV: trabecular bone volume (%); Tb.Th: trabecular
thickness (µm); Tb.N: trabecular number; Tb.Sp: trabecular separation (µm); Ct.Th: cortical bone
thickness (µm). All values are expressed as mean ± S.D. (n = 7 for each group).

L5 Vertebral Body Treatment Control

BV/TV 13.7 ± 3.3 14.5 ± 4.2
Tb. Th 34.2 ± 5.1 38.8 ± 6.1
Tb. N 4.1 ± 1 3.7 ± 0.6
Tb. S 225 ± 67 237 ± 52
Ct Th 68 ± 14.2 60 ± 6.1

Femoral distal metaphysis

BV/TV 13.7 ± 3.8 13.7 ± 3.5
Tb. Th 31.7 ± 6.9 31.5 ± 5.6
Tb. N 4.3 ± 0.8 4.4 ± 0.7
Tb. S 203 ± 45 199 ± 34

Tibial proximal metaphysis

BV/TV 7.3 ± 4.2 7.5 ± 3.3
Tb. Th 26.4 ± 4.8 28.5 ± 4.8
Tb. N 2.68 ± 1.2 2.68 ± 0.7
Tb. S 406 ± 180 378 ± 144
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Furthermore, the morphological observation of the growth plate in the femoral distal
metaphysis and tibial proximal metaphysis for each group (Figure 5) shows that the
chondrocytes in the treatment group present the same morphology and typical columnar
organization as the control one.
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Figure 5. Representative histological sections of the growth plate in the femoral distal metaphysis
(A,B) and tibial proximal metaphysis (C,D) of treatment and control groups.

Histomorphometric results concerning the thickness of the growth plate are shown in
Table 3; no significant differences were found between the treatment and control groups.

Table 3. Thickness (µm) of growth plate measured in femoral distal metaphysis and tibial proximal
metaphysis sections. All values are expressed as mean ± S.D. (n = 7 for each group).

Growth Plate Thickness Treatment Control

Femoral distal metaphysis 98.5 ± 22.5 102.3 ± 15.7
Tibial proximal metaphysis 106.1 ± 11.6 110.1 ± 23.4

The osteoclasts present in the osteo-chondral interface along the growth cartilage and
diaphyseal bone of femoral distal and tibial proximal metaphyseal sections are highlighted
by the TRAP reaction as shown in Figure 6.

The number of osteoclasts (NOc/BS) doesn’t change between treatment and control
groups, both in the tibia and the femur, as reported in Table 4.
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Table 4. Number of osteoclasts (NOc/BS) measured in interface along the growth cartilage and
diaphyseal bone of femoral distal metaphysis and tibial proximal metaphysis sections. All values are
expressed as mean ± S.D. (n = 7 for each group).

NOc/BS Treatment Control

Femoral distal metaphysis 9.3 ± 1.9 9 ± 1.9
Tibial proximal metaphysis 8.4 ± 3.7 8.8 ± 3.2

4. Discussion

The findings of this study reveal some unusual responses of bone in 8-week-old
C57BL/6 mice subjected to a Mg-deprived diet for 2 months, since unexpectedly the
amount of bone didn’t change between Mg-deprived diet mice and control ones, while
previous literature data [10–15], with special regard to C57BL/6J mice [27], mainly show a
reduction in trabecular bone in rodents fed a Mg-deprived diet.

All the animals gained weight during the 8-week study, irrespective of whether they
were assigned to the control group (normal diet) or the treated group (Mg-deprived diet).
However, the percentage of weight gain at 4 and 8 weeks was significantly lower for treated
mice compared with matched controls. The weight difference occurred despite the equal
consumption of food by the two groups, in line with the results previously obtained from
other groups [11,14,30].

In our experimental setting, we observed a 20% reduction in serum Mg concentration
in mice receiving the Mg-depleted diet compared with controls. This reduction is less
severe than the reduction observed by others that fed C57BL/6J male mice with a low-Mg
diet [27,30]. Although a direct comparison of these data might be not appropriate due to
differences in the experimental setting (i.e., mice age, treatment time, diet composition), an



Biomedicines 2023, 11, 655 9 of 13

inverse relationship between Mg serum concentration and both the treatment time and the
age of mice at the beginning of the experiment seems to exist.

The adaptive response to Mg status changes is a complex and tightly regulated pro-
cess that involves, among other mechanisms, the transcriptional and translational control
of Mg-membrane transporters. TRPM6/TRPM7 Mg channels mediate the luminal Mg
uptake from the pro-urine in the distal convoluted tubule of the kidney [31]. Increased
mRNA gene expression of these genes following Mg-dietary restriction has been regarded
as a compensatory mechanism to cope with a low-Mg state [32,33]. In our experimental
model, we found that the expression of TRPM7 and TRPM6 is not significantly altered
in the treated group compared with controls. However, the levels of TRPM6 had a trend
toward increasing without reaching statistical significance, possibly due to the small size
of the experimental groups. Similarly to TRPM6, the expression of MagT1, an oxidoreduc-
tase that is involved in the trafficking and stability of Mg channels and transporters [34]
slightly increased following 8 weeks of Mg deprivation. Overall, these data suggest a
good adaptive capacity of 8-week-old C57Bl/6 male mice to long-term dietary Mg depri-
vation. Interestingly, TRPM6 was included in a group of kidney-specific magnesiotropic
proteins involved in the autosomal-recessive disorder hypomagnesemia with secondary
hypocalcemia (HSH) [35,36].

The histomorphometric results of bone segments investigated in C57BL/6 mice demon-
strated that no significant differences were found between the Mg-deprived diet group
and the normal-fed diet group for all the parameters that characterize the amount of bone,
independently of the architecture analyzed (Table 2). In line with our results, Rude and
coworkers [11] didn’t find a significant decrease in trabecular bone in the distal femur after
2 weeks of an Mg-deprived diet in 28-day-old BALB/c female mice; only in the proximal
tibia was the loss of trabecular bone significant with respect to control mice. By contrast, Mg
deprivation in rats mainly leads to a reduction in bone mass, especially of trabecular bone,
even when treatment times are shorter than those used in this study [12,18]. By a micro
computed tomography approach, Tu and coworkers demonstrated that the global size of
the trabecular bones was smaller in 4-weeks-old C57BL/6J mice fed with Mg-deprived diet
for 8 weeks compared with controls [27]. With a similar radiologic approach, Gruber and
coworkers [14] showed in 28-day-old BALB/c female mice subjected to a Mg-deprived diet
for up to 6 weeks a significant decrease in trabecular bone mineral content in the distal
femoral metaphysis versus control mice, while bone mineral density and mean cortical
thickness at the femoral midshaft didn’t significantly change between the Mg-deficient
mice and control mice. The authors suggested that the different response of bones to a
Mg-deprived diet depends on the different bone turnover of trabecular versus compact
bone; a similar behavior was already observed in our previous investigations in response
to a calcium-deprived diet in rats [37,38].

Furthermore, our results on the thickness of the metaphyseal growth cartilage show
no differences between the two groups of animals (Table 3); this outcome is in contrast with
data reported in the literature. In fact, Rude and coworkers [11] showed that the width
of the cartilage growth plate in the proximal metaphysis of the tibia in young BALB/c
mice fed a severe Mg-deprived diet for 6 weeks decreased by 33% and the columnar
organization of chondrocytes was altered with a decrease in cell proliferation, suggesting
that Mg deficiency reduced bone growth. In another animal species, also Gruber and
coworkers [39] report that the metaphyseal growth plate in the tibiae of rats subjected to a
6-month dietary restriction of Mg shows significantly reduced formation of chondrocyte
columns compared with control animals.

A third outcome that does not match those present in the literature is the number of
osteoclasts calculated in the femoral and tibial metaphyses; in fact, the NOc/BS remains
the same independently of the treatment (Table 4). Indeed, it is reported that rats fed a
Mg-deprived diet [13,15,18,19] or diets at 10% of the Mg nutritional requirement [12] show
in the trabecular bone an increase in the osteoclast number and in the surface covered
by osteoclasts, suggesting that the decrease in bone mass is due to an increase in bone
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resorption. In consideration of the above-discussed findings, it is remarkable to highlight
that the results obtained in rats cannot be directly compared with those obtained with mice
since these two species show genetic and metabolic differences, and it is not possible to
establish reliable general rules to validate extrapolation from one species to another [40,41].
In this regard, it is important to emphasize that Rude and coworkers [11] showed in young
BALB/c mice fed an Mg-deprived diet that in the distal femur the number of osteoclasts
doesn’t increase and also that BV/TV doesn’t decrease with respect to control mice, thus
suggesting that the amount of trabecular bone doesn’t change between the two groups
since the NOc/BS remains the same. This result is in line with our finding: in fact, the
number of osteoclasts doesn’t change as much as BV/TV between the two groups.

The discrepancy between our results on bone and a few literature data available on
mice, in particular those obtained by Tu and coworkers [27] on the C57BL/6J strain, could
be due to differences in the methodological approach (histomorphometric vs. radiologi-
cal) or to the existence of different C57BL/6 substrains that we are not aware of, whose
response of bone to Mg deficiency might differ from the expected one. In fact, it has been
demonstrated that after many generations of inbreeding, several substrains have been
derived from the C57BL/6 founder line [25,42] and are reported to differ in several pheno-
types that differentially affect glucose, alcohol, or drug tolerance [43–45]. From a genetic
perspective, in the same mice strain or probably substrain, Mg dietary restriction acts upon
the expression of magnesiotropic and calciotropic genes, inducing adaptation. An essential
adaptive role for the distal convoluted tubule in the kidney was described during dietary
restriction and subsequent hypomagnesemia since expression levels of selected genes were
adjusted [46]. In fact, Liron and colleagues [47] observed sometimes severe variations
in the bone phenotype of C57BL/6J mice, hypothesizing that these differences could be
attributed to variations among substrains. In particular, they found that C57BL/6J-OLA
mice display a significantly lower trabecular bone mass compared with C57BL/6J-RCC and
C57BL/6J-JAX substrains. Interestingly, Sankaran and coworkers [48] reported that hind
limb unloading in the two substrains of C57BL/6 mice resulted in a different bone response
such that bone loss was significantly greater in C57BL/6N mice than in C57BL/6J mice,
suggesting that this outcome may be modulated, in part, by the Herc2, Myo18b, and Acan
genes. Accordingly, Rendina-Ruedy and colleagues [49] showed that during a high-fat diet
C57BL/6J mice were protected against bone loss compared withwith C57BL/6N mice, and
therefore they differ in their metabolic and skeletal response.

By PCR amplification of the nicotinamide nucleotide transhydrogenase (Nnt) and
a-synuclein (SNCA) genes, we ruled out that the C57BL/6 mice we used for the present study
can be traced back to the C57BL/6N or the C57BL/6J-OLA substrains (data not shown).
Nonetheless, some substrains’ features have not yet been well identified by biomedical
researchers [25] and might develop compensatory mechanisms involving bone and kidney
metabolism. Therefore, we cannot exclude that after many multiple generations of inbreed-
ing in our animal facility, new genetic differences, currently uncharacterized, may have
developed and contributed to the peculiar observed phenotype, which evidenced skeletal
resistance to dietary magnesium depletion.

5. Conclusions

In 8-week-old male C57BL/6 mice, the Mg-deprived diet for 8 weeks resulted in a
reduction in body weight gain, serum Mg levels, and a trend toward increased expression
in kidney-specific magnesiotropic genes without loss of bone mass compared with the
control animals. On the contrary, most data present in the literature show that animals fed
a Mg-deprived diet develop bone loss, along with a reduction in body weight and serum
Mg levels and an increase in kidney magnesiotropic gene expression. Nonetheless, it is
necessary to underline that our results cannot be directly compared with those found in
the literature. In fact, literature data mainly reported studies involving rats or mice strains
different from C57BL/6 mice. The animals’ ages also differed, as did the diet formulations
and the treatment time, and all these parameters were expected to influence the outcome.
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The comparison of our results with those obtained in different experimental settings
suggests that Mg deprivation produces more consistent and reliable effects on bone resorp-
tion in rats than in mice. These differences are likely supported by anatomical differences
between the two species that make detecting slight differences at the histological level in
small bones more difficult. Moreover, our results and those obtained by others highlight
that the widely used C57BL/6 seems to adapt quickly and efficiently to Mg deprivation
by adjusting the levels of genes involved in Mg transport through the kidney distal con-
volute tube. Indeed, another study aimed to investigate the effect of Mg deprivation in
C57BL/6J mice on muscle dysfunction and found no detectable variation in muscle fiber
morphometry concomitantly with the up-regulation of magnesiotropic genes, including
TRPM6 [30].

We are confident that our results may contribute to the development of roadmaps to
facilitate researchers engaged in the study of the effects of Mg deprivation on bones in
choosing the right experimental model depending on both their scientific question and
methodological approach.

In addition, we suggest the hypothesis that the lack of effects of Mg deprivation on
bone could be attributed to genetic differences, which are currently unknown, that may
have developed after multiple generations of inbreeding of the C57BL/6J strain in our
animal facility.

In conclusion, it is interesting to consider that certain genetic profiles could provide
peculiar skeletal resistance to severe magnesium deficiency, which makes the forthcoming
investigations to identify possible genes involved in such resistance particularly intriguing.
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