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Abstract: A high incidence and prevalence of neurodegenerative diseases and neurodevelopmental
disorders justify the necessity of well-defined criteria for diagnosing these pathologies from brain
imaging findings. No easy-to-apply quantitative markers of abnormal brain development and ageing
are available. We aim to find the characteristic features of non-pathological development and degen-
eration in distinct brain structures and to work out a precise descriptive model of brain morphometry
in age groups. We will use four biomedical databases to acquire original peer-reviewed publications
on brain structural changes occurring throughout the human life-span. Selected publications will
be uploaded to Covidence systematic review software for automatic deduplication and blinded
screening. Afterwards, we will manually review the titles, abstracts, and full texts to identify the
papers matching eligibility criteria. The relevant data will be extracted to a ‘Summary of findings’
table. This will allow us to calculate the annual rate of change in the volume or thickness of brain
structures and to model the lifelong dynamics in the morphometry data. Finally, we will adjust the
loss of weight/thickness in specific brain areas to the total intracranial volume. The systematic review
will synthesise knowledge on structural brain change across the life-span.
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1. Introduction

Brain structure continuously changes throughout life. In healthy individuals, age-
related brain atrophy and neurodevelopment account for these changes. In patients with
mental and psychological disorders, disease-related brain atrophy takes place. The at-
rophy can start in late adolescence and young adulthood and lead to abnormal brain
development [1]. Differentiation between normal and abnormal structural changes re-
mains a challenge [2–4]. The current study focuses on the age-specific anatomy of the brain
and describes the structural evolution of the brain across the life-span. A descriptive model
that recapitulates key features of brain development and ageing is a powerful medium for
obtaining comprehensive knowledge on the abnormalities signalling neurodegeneration.
The model is a potential tool assisting clinicians in the early diagnostics of dementia. Stud-
ies on the structural signs of both normal and abnormal brain development and ageing
remain relevant today.

The necessity of continuous research on the aforementioned issue is paramount.
Autism spectrum disorder puts a substantial socio-economic burden, and the average
diagnostic delay after initial concerns does not differ among high-, medium- and low-
income countries [5]. On average, autism incidence is around 80 cases per 100,000 children
in developed economies. The UAE is in the top-10 list of countries with the highest autism
rates, which reached 112.40 in 2021. The statistics on middle- and low-income countries is
incomplete because of misreported cases [6].

Neurocognitive slowing is a typical functional outcome of normal brain ageing, while
cognitive decline is a sign of cognitive deterioration. In high-income countries, the numbers
of people with cognitive decline has been rising due to population ageing. The latest
favourable trends in dementia incidence are typical for the Western countries. Meanwhile,
wealthy countries of other regions show the opposite tendency [7]. It is expected that
around 35.25 million people will be diagnosed with dementia in Asia by 2025, while 13.97
million people will be diagnosed in European countries [8]. Neurodegenerative diseases
(ND) are among leading causes of life loss and disability among the elderly, and the number
of deaths due to Alzheimer’s disease has risen disproportionally in comparison to the top
attributed cases of mortality (e.g., heart disease, cancer, and strokes) [9]. Individual causes
of dementia are hard to detect and predict. Therefore, the disease is commonly diagnosed
at late stages after the prominent manifestation of intellectual decline.

The identification of infants and elderly at risk of neurological disorders is important
for optimal disease management [10]. For this reason, scientists look for highly sensitive
screening and diagnosing tools, which enable early therapeutic strategies and targeted
interventions. According to the recent updates from molecular biology studies, genetic
tests can detect over 500 neurodevelopmental diseases [11]. The test specificity is sufficient
for distinguishing dementia variants [12,13]. Still, the available diagnostic methods pos-
sess the following limitations. First, genetic tests are invasive, labour intensive, and time
consuming. In addition, neurologists face difficulties in choosing an appropriate genetic
test and interpreting the laboratory results [14]. Second, neurobehavioral and cognitive
questionnaires are relatively short. Usually, they are well-tolerated by examinees, but the
sensitivity and specificity are low in the paediatric population and in adults. For example,
the Hammersmith Infant Neurological Examination predicts adverse neurophysiological
outcomes at 1 year with a sensitivity of 50–64% and specificity of 73–77% [15]. The sensi-
tivity and specificity of differentiation among dementia phenotypes with cognitive tests
is around 71.92% and 70.06%, correspondently [16,17]. Third, molecular imaging with
positron emission tomography can reveal early metabolic changes that are not visible on
CT and MRI scans. The latter mainly document the brain macrostructure [18]. Although
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nuclear imaging is highly sensitive, the examination is invasive. The exposure to radiation
and possible allergic reactions are the drawbacks of radiotracer injection. Additionally,
the number of PET scanners is insufficient to arrange the routine screening of patients at risk
of dementia [19,20]. MRI is the method of choice for detecting structural abnormalities in
the brain, identifying disease-specific diagnostic signs at late stages of neurodegeneration,
and reflecting their functional outcomes [4,21,22]. The early diagnostics of dementia neces-
sitate the quantitative analysis of MRI findings along with bioengenering technologies. The
creation of population norms will advance these technologies, thus meeting the demands
of neuroscience for early and reliable diagnostics.

Scientists fail to describe the exact pathophysiological mechanisms in which age-
related brain atrophy contributes to malfunctioning of the nervous system. Many publica-
tions cover either the structural or functional impairment. High variability in individual
anatomy and physiology complicates studies on structure–function association [4,23–25].
Morphological studies with structural MRI revealed a marked variance across individuals
in the extent of age-related brain change [26]. Research on brain functioning produced
inconclusive findings on the onset and rate of episodic memory loss in the elderly. Different
inherited and lifestyle factors account for these results [27,28]. A link between structural
and functional impairment has not yet been explicitly explained.

Hypothetically, different brain parts have a common pace of age-related structural
changes in the normal ageing, while a disproportion in the regional atrophy indicates
accelerated brain ageing. Another hypothesis of the current study is the specificity of
brain morphometry findings regarding normal growing and maturation in childhood and
adolescence. In analogy to late life, morphometric changes in the pediatric population also
remain an object of ongoing studies [29]. For this reason, we want to create a descriptive
model of volumetric changes in the brain across the life-span.

The aim of our review is to find the characteristic features of non-pathological develop-
ment and decline in distinct brain structures and to work out a precise descriptive model of
brain morphometry among age groups. Specifically, we want to determine whether diverse
brain compartments develop and decline proportionally throughout life and to calculate
the annual rate of change.

2. Materials and Methods

We will perform a meta-analysis of available findings and modelled age-related
changes in the brain. This approach is advantageous over a retrospective analysis or
prospective observation, especially when researchers want to establish populational norms.
A meta-analysis serves as a reliable source of data if performed in accordance with the
standardized methodology [30,31]. Another reason for this study design is the intent to
overcome limitations of original studies such as a small sample size, a narrow age range of
cohorts, etc.

This protocol will be prepared in accordance with the Preferred Reporting Items
for Systematic Review and Meta-Analyses Protocol (PRISMA-P) and registered in the
PROSPERO International database of prospectively registered systematic reviews (protocol
No: CRD42022354112). The PRISMA-P checklist is included in the supporting material
(Supplementary File S1).

2.1. Eligibility Criteria

To perform the search, we will pre-define and list the inclusion and exclusion criteria
for the literature (see Table 1). Given that we focus on the structural change of the healthy
population, the articles reporting findings on the following pathologies will be excluded:
impaired development, mental disorders, organic brain pathologies, injuries to the head,
and neurodegenerative diseases. We will not limit the age and sex of the study participants.
The literature sources will be required to report findings of in vivo MRI examinations of
the total brain or specific brain structures with outcome measurements such as absolute
or proportional change in volume and/or size (width, length, thickness). We will exclude



Biomedicines 2023, 11, 1999 4 of 14

reviews, case reports, theses, dissertations, conference abstracts, editorial letters, and proto-
col papers. Animal studies and interventional research will also be eliminated from the
search query.

Table 1. Inclusion and exclusion criteria.

Inclusion Criteria
Exclusion Criteria

for Literature for Subjects

1. Original peer-reviewed studies
2. Studies of the longitudinal
and cross-sectional design
3. Studies on absolute or
proportional change in volume,
thickness, and other dimensions
of the brain structures
4. Female and male participants
of any age starting from birth
5. Individuals free from mental
disorders, brain pathologies,
and injuries

1. Grey literature
2. Editorial letters and
protocol papers
3. Case studies and reviews
4. Studies performed on animals
5. Interventional studies (both
therapeutic and surgical
interventions)
6. Exposure of the participants
to any factor that can potentially
affect results.
.

Patients suffering from:
1. Mental and psychological
disorders (F00–F99 in ICD-10)
2. Cerebrovascular diseases
(I60– I69)
3. Organic pathology of the
central nervous system (e.g.,
brain and meninges tumors:
C71, D32–33)
4. Injury to the head (S00–S09)
.
.
.

2.2. Information Sources and Strategy

A comprehensive systematic search for literature will be conducted using four biomed-
ical databases: PubMed, Embase, Scopus, and Web of Science. The pre-search was per-
formed in September–October 2022 in PubMed and its Medical Subject Headings (MeSH).
The review is set to start in November 2023. The strategy will be updated ahead of the
manuscript submission. The names of 112 brain structures will be used as the keywords
for the search strategy. The structures will be segmented from the brain MRI with the
FreeSurfer software [32]. We will look for combinations of all the key terms in the “title”,
“abstract”, and “MeSH”/”thesaurus” fields. MeSH terms will include “brain”, “Magnetic
Resonance Imaging”, “organ size,” “atrophy”, “aging”, and “age factors”. Our search
will be limited to the papers published in English from 1990 to 2023. We will conduct
hand screening of reference lists in the retrieved papers. All records identified in the litera-
ture search will be uploaded to the systematic review software Covidence for automatic
deduplication and blinded screening. Reproducible search strings for all databases will be
appended to the review (Supplementary File S2).

2.3. Study Selection

Once the papers are uploaded to the Covidence software, two independent reviewers
will subsequently screen the title/abstract and full text against the predefined criteria. A
third reviewer will resolve the discrepancies identified with the software. The reasons for
exclusion of full text records will be stored. A PRISMA flow diagram will be used to report
the screening process.

2.4. Data Extraction

Two independent reviewers will extract the data from the final list of papers into a
summary of findings table. These records will include the basic characteristics (the authors,
country, publication year, journal, study design, and mean age of study participants) in
addition to the targeted data (change in size and volume of a brain structure within a period
of time). The third reviewer will resolve eventual discrepancies in the data collection.

2.5. Quality Assessment of Individual Studies

Two independent reviewers will critically appraise each individual study included
into the analysis. They will assess the quality of individual studies with the Joanna Brigs
Institute checklist for analytical cross-sectional studies [33]. The tool has 8 questions with
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multiple choice answers “yes”, “no”, “unclear”, and “not applicable”. If a study scores less
than 4 “yes” answers, it will be excluded from the statistical analysis.

We will construct funnel plots for each brain region and visually assess them. In the
diagrams, the effect size is plotted against the standard error of the effect size. Asymmetry
of the graph indicates publication bias. In our review, the effect size corresponds to annual
atrophy of a studied brain structure.

2.6. Data Analysis and Synthesis

Prior to statistical analysis, we will explore the heterogeneity level of the studies with
the Higgins–Thompson I2 test [34]. Potential sources of heterogeneity include the strength
of the magnetic field of MRI scanners, the type of segmentation, sample size, and study
design. If I2 exceeds 75%, we will perform a narrative systematic review instead of the
meta-analysis. The final manuscript will present the number of qualifying articles and give
a description of the overall trend of structural changes in the brain. The systematic review
will analyse the sample size, age, and sex of the participants, and it will derive average
statistical data on annual changes in brain regions. The team statistician will calculate the
following parameters: (1) the average annual pace of enlargement or atrophy of each brain
structure and (2) the side-specific change of brain structures in size or volume. For the
analysis, we will use descriptive statistics and machine learning.

We will calculate the mean value of the left and right side volumes to receive the
average size. To compensate for the variability in head size, the data will be estimated
on a normalised volume in percentage to the total intracranial volume. Afterwards, we
will compute the percentage of relative change per year, which is the first derivative of
the model divided by the initial value and provided in % per year. To model the lifelong
evolution of volumetric data for specific brain areas, we will consider linear, quadratic,
cubic, or higher degree equations (see Equations (1)–(4)). Scatterplots in Figure 1 depict the
models that we built based on the results of a preliminary search for references covering
age-related change in the hippocampal [2,35–41] and lateral ventricle volumes [2,3,42–44].

Vol = β0 + β1 Age + ε (1)

Vol = β0 + β1 Age + β2 Age2 + ε (2)

Vol = β0 + β1 Age + β2 Age2 + β3 Age3 + ε (3)

Vol = β0 + β1 Age + β2 Age2 + ... + βk Agek, k = 1, 10. (4)

(A)

Figure 1. Cont.
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(B)

(C)

Figure 1. Cubic (A), fourth (B), and fifth order (C) models of lifelong change in hippocampal and
lateral ventricle relative volumes.

We will also use hybrid models with exponential cumulative distributions for growth
with the linear, quadratic, cubic, or higher degree equations (see Equations (5)–(7)).

Vol = β4(1 − e−Age/β5) + β0 + β1 Age + ε (5)

Vol = β4(1 − e−Age/β5) + β0 + β1 Age + β2 Age2 + ε (6)

Vol = β4(1 − e−Age/β5) + β0 + β1 Age + β2 Age2 + β3 Age3 + ε. (7)

Then, we will select the model explaining most of the data with a minimum number of
parameters. To identify the best one among the candidate models, we will use a Bayesian
information criterion (see a scatterplot in Figure 2). Finally, we will assess the portion
of brain atrophy in a specific brain area by calculating the percentage of atrophy, i.e., its
absolute relative difference with the control model. As the control model, we will use the
relative rate of change in the CSF volume, which is a marker of the total brain shrinkage.
The study pipeline is shown in Figure 3.
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Figure 2. Best model types for hippocampus and lateral ventricles according to Bayesian informa-
tion criterion.

Figure 3. Study pipeline.
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3. Discussion
3.1. Establishing Descriptive Model for Brain Ageing

A vast amount of literature is available on the volumetric decline of specific brain
regions and neurocognitive slowing. Still, a thorough descriptive model of normal brain
ageing is missing. This can be attributed to the following limitations that are typical
for recent studies. First, researchers investigated specific age groups, and they did not
study changes throughout life. Second, different methodological approaches used by
the authors may account for incompatible findings [45]. For example, some studies
used the cross-sectional design, and others—used the longitudinal one. Third, individual
variations in brain structure limit our ability to establish population norms. Fourth, genetics,
environmental, lifestyle, and cultural distinctions contribute to pronounced difference
in brain morphology among nations. The current systemic review and meta-analysis
investigates brain development and ageing in the global population.

MRI-based neuroimaging studies with voxel- and surface-based brain morphometry
can detect a tiny change of brain structure. With these techniques, bioengineers help
clinicians to quantify cortical and subcortical grey matter atrophy in terms of volume loss,
macro-morphological changes, and cortical thinning [46,47]. One can evaluate structural
damage to the white matter with voxel-based morphometry [46]. Recent studies reported
the following outcomes of brain atrophy in normal ageing: volumetric reduction in the
cortex and the sudden shrinkage of neuronal networks [48]. The latter describes the
way in which brain atrophy impairs structural and functional connectivity. However,
the aforementioned studies failed to provide a precise descriptive model of structural
changes in cognitively preserved individuals, and future research should address this
shortcoming. The evolution of brain structure in different life periods is briefly discussed
in the next paragraphs.

3.1.1. Period of Development

The total brain volume trajectory is strongly associated with age and cognitive status
both in children and the elderly [49,50]. Radiological findings may promote the early
diagnostics of impaired neurodevelopment. Still, diagnostic criteria for autism and other
neurodevelopmental disorders are not uniform, and the resources for proper examination
are limited. Various intellectual, behavioral, and psychiatric disorders in children may result
from abnormal cortical development. To identify atypical change during the maturation
period, physicians need the normative values for the cortical brain structures in 1–6 year old
healthy children. This is the peak brain development period. The early signs of behavioral
and developmental disorders become apparent at this age [42]. Researchers try to find out
which particular mechanisms of brain development result in dysfunction in socio-emotional
and communication networks in infants and toddlers with autism [51,52].

3.1.2. Period of Maturation

The dynamics of the structural brain change in middle-aged adults, and older adults
resemble the trajectory of functional performance throughout life [45,53]. From a neuro-
physiological point of view, an increase in performance lasts up to the age of 40, and it is
followed by a plateau in neurocognitive functioning in the midlife and a decline in older
adults [54–57]. The speed and extent of change seems to accelerate with age. It remains
unknown if the pace of age-related transformation is common for distinct brain regions or
if atrophy is slightly more prominent in certain locations.

3.1.3. Period of Decline

Brain atrophy accounts for morphometric and functional changes in physiological
and accelerated ageing. At the microscopic level, the atrophy presents with glial, myelin,
axonal and/or neuronal loss. Macroscopically, brain atrophy results in brain shrinkage
and compensatory enlargement of cerebrospinal fluid spaces: the ventricles and the sub-
arachnoid space. A ventricular volume trajectory shows a strong association with age,
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because it is a summary marker of atrophy of the grey and white matter [58,59]. Specific
structural markers serve as radiologic signs of disease-related atrophy, e.g., the hippocam-
pal volume trajectory is clearly associated with amyloid angiopathy [58,60]. However,
the sensitivity of the quantitative radiomical markers is too low to use them in screening for
neurodegeneration, and their specificity is insufficient for differentiation among dementia
subtypes. Large-scale standardised studies do not provide a comprehensive outline of
the normal volumetric decline. In the absence of such studies, physicians make subjective
judgements on the pace of brain ageing. This increases the chance of late or false diagnosis.
Meanwhile, the therapeutic efficiency of anti-amyloid drugs is significantly higher at early
stages of Alzheimer’s disease, which also justifies the importance of research on normal
and pathological brain ageing [61–66].

3.2. Developing Reference Norms with Meta-Analysis

The current article is a protocol of the future study. Once we complete the anal-
ysis, we will compare the findings with the results of studies on relevant issues. For
the discussion, we will consider available systematic reviews covering the following re-
search questions: (1) an atrophy rate of brain parts vulnerable to changes in neurodevel-
opmental delay and neurodegenerative disorders and (2) brain structural correlates of the
aforementioned pathologies.

Relationships between environmental factors and brain structure are not the major
research topic for the study. Still, the data on environmental risks may show the multi-
dimensionality of the research question. The latter is not limited to brain changes across
the life, but it also includes the impact of adverse life events, dietary patterns, physical
exercise, and vitamin or mineral supplementation on cognitive function in children and
the elderly [67–71]. The future manuscript will contain the results of the prospective meta-
analysis discussed in the context of healthy and pathological transformations in the brain.

The necessity of the current systematic review arises from the absence of reliable
markers of delayed neurodevelopment and accelerated ageing: no threshold criteria for
abnormal annual change in the brain are established. Visual assessment of the MRI by the
radiologist can confirm dementia diagnosis when cognitive decline becomes prominent.
However, subtle changes in the brain remain misreported [21]. This evidences the necessity
of supporting clinical decision making with the analysis of radiomical data or developing
computer-aided decision tools for automatic image analysis.

Statistics for meta-analysis help to diminish the risk of unreliable research outcomes
resulting from inter-study heterogeneity. The meta-analytic approach allows for combining
evidence from numerous studies, thus enlarging the study sample, as well as consolidating
complex and sometimes conflicting findings [72]. After receiving data from different popu-
lations, we will apply a random-effects model to minimise errors in data presentation [72].
The model assists in controlling for unobserved heterogeneity, which is constant over time
and not correlated with independent variables.

Our meta-analysis will illustrate life-long trends in brain volumetric changes. We
will use regression models to provide trendlines for the variables of interest [73,74]. The
trendlines will reflect normative values for volumetric changes in brain parts. This approach
will allow us to identify people at risk of brain disorders at a certain age [74]. A large
individual deviation from the normative curves may indicate pathologic ageing.

We will focus on the studies of cognitively normal people and model the annual rate of
change in their brains. A reason for narrowing the research question to the cognitively intact
population is limitations of the concept of accelerated ageing, which should be critically
reappraised. For example, it remains unknown whether neurodegeneration is a kind of
accelerated ageing [75,76] or an outcome of pathological changes in the body [75,77–79].

When studying accelerated ageing, one should consider individual multi-component
reserves in the brain. The structural reserve refers to the number of neurons and synapses,
whereas the cognitive reserve determines the ability of the brain to cope with structural
brain damage [80]. Supposedly, individual cognitive and structural reserves affect the



Biomedicines 2023, 11, 1999 10 of 14

quality of life in the elderly population and modulate the risk of developing Alzheimer’s
disease and other types of dementia. Variance in cognitive abilities and amount of neurons
and synapses hardens the determination of the precise age of the organism. Calculation of
the biological brain age is tricky, because indicators of normal ageing are still missing and
the methodology of assessing reserves is not standardised [81]. Hence, we should rather
focus on non-pathologic brain ageing.

The objective of the current study totally fits the idea of ’Precision Medicine’, which
is a concept of personalizing disease prevention and treatment. The concept integrates
advanced statistical analysis into routine assessment of clinical findings along with the
environmental, social, and behavioral factors impacting the individual [82]. Currently,
radiological reports have limited value due to the semi-quantitative evaluation of structural
changes by radiologists. Diagnostic errors arise from technical limitations of scanners and
misinterpretation by physicians [83,84]. Therefore, bioengineering should create reliable
tools for computerised diagnostics and automatic analysis of imaging findings.

We aim to improve the situation by applying quantitative assessment of radiological
findings (radiomics) into practice instead of keeping it exceptionally for research. Radiomi-
cal findings will support early diagnostics and clinical decision making, thus meeting the
demand of time. Radiomics mine high-dimensional data on organ structure and correlate
this information with age and clinical endpoints [85]. Modelling structural changes in
the healthy cohort will promote future studies on risk stratification of neurodevelopmen-
tal/neurodegenerative diseases with radiomics. These studies are currently performed and
published, but their clinical applicability remains low [23–25,53,55,86–88].

4. Conclusions

This meta-analysis will help modelling the populational curves of brain development
and ageing. For performing a comprehensive assessment of life-long structural changes, we
will take into analysis multiple morphometry parameters, e.g., volume, thickness, length
and width of brain regions. A systematic review and meta-analysis is the preferable study
design for the formulated research question. Combining data from cross-sectional studies
and longitudinal observations will allow us to acquire more statistical data on structural
changes in the brain. The theoretical value of the future study is the implementation of
highly sensitive screening and quantitative assessment of individual risks, which fully fits
the idea of ’Precision Medicine’. The practical application of the study is establishing the
reference norms that could be used in screening individuals for developmental delay and
cognitive decline.
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